
NaCl: Cryptography for the Internet

Peter Schwabe

Radboud University Nijmegen, The Netherlands

Joint work with Dan Bernstein and Tanja Lange

January 21, 2013

Workshop on Cryptography for the Internet, Tenerife, Spain



Why are we here?

I Various well understood algorithms, e.g. AES-128, RSA-2048,
SHA-2, SHA-3 etc.

I Various implementations of these algorithms, bundled in libraries
(e.g., OpenSSL)

I Applications simply use the libraries and the world (i.e., the Internet)
is safe

Two answers

I The above is wrong (I hope everybody here agrees)
I “Crypto for 2020” not only needs to fix existing problems but

anticipate future ones

NaCl: Cryptography for the Internet 2



Why are we here?

I Various well understood algorithms, e.g. AES-128, RSA-2048,
SHA-2, SHA-3 etc.

I Various implementations of these algorithms, bundled in libraries
(e.g., OpenSSL)

I Applications simply use the libraries and the world (i.e., the Internet)
is safe

Two answers
I The above is wrong (I hope everybody here agrees)

I “Crypto for 2020” not only needs to fix existing problems but
anticipate future ones

NaCl: Cryptography for the Internet 2



Why are we here?

I Various well understood algorithms, e.g. AES-128, RSA-2048,
SHA-2, SHA-3 etc.

I Various implementations of these algorithms, bundled in libraries
(e.g., OpenSSL)

I Applications simply use the libraries and the world (i.e., the Internet)
is safe

Two answers
I The above is wrong (I hope everybody here agrees)
I “Crypto for 2020” not only needs to fix existing problems but

anticipate future ones

NaCl: Cryptography for the Internet 2



NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Aim: Fix the problems of crypto for the Internet
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

This talk

I Introduce NaCl
I Topics I would like to discuss in the context of NaCl

NaCl: Cryptography for the Internet 3



NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Aim: Fix the problems of crypto for the Internet
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

This talk
I Introduce NaCl

I Topics I would like to discuss in the context of NaCl

NaCl: Cryptography for the Internet 3



NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Aim: Fix the problems of crypto for the Internet
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

This talk
I Introduce NaCl
I Topics I would like to discuss in the context of NaCl

NaCl: Cryptography for the Internet 3



Space shuttles vs. elevators

“OpenSSL is the space shuttle of crypto libraries. It will get you
to space, provided you have a team of people to push the ten
thousand buttons required to do so. NaCl is more like an
elevator – you just press a button and it takes you there. No
frills or options.

I like elevators.”

Matthew Green in his blog entry The anatomy of a bad idea

NaCl: Cryptography for the Internet 4



Protecting Internet communication . . .

I Alice wants to send a message m to Bob
I Alice uses Bob’s public key and her own private key to compute an

authenticated ciphertext c, sends c to Bob
I Bob uses his private key and Alice’s public key to verify and recover

m

NaCl: Cryptography for the Internet 5



. . . with the space-shuttle approach

I First choose algorithms and parameters, e.g. AES-128, RSA-2048,
SHA-256

I Generate random AES key
I Use AES to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s RSA public key from wire format
I Use key to encrypt AES key and signature
I . . .

I Plus more code to allocate storage, handle errors etc.

NaCl: Cryptography for the Internet 6



. . . with the space-shuttle approach

I First choose algorithms and parameters, e.g. AES-128, RSA-2048,
SHA-256

I Generate random AES key
I Use AES to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s RSA public key from wire format
I Use key to encrypt AES key and signature
I . . .

I Plus more code to allocate storage, handle errors etc.

NaCl: Cryptography for the Internet 6



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m

I All objects are C++ std::string variables represented in wire
format, ready for transmission

I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission

I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors

I Bob verifies and decrypts:
m = crypto_box_open(c,n,pk,sk)

I Initial keypair generation for Alice and Bob:
pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)

I Initial keypair generation for Alice and Bob:
pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)

NaCl: Cryptography for the Internet 7



Signatures in NaCl

I crypto_box does not use signatures but a public-key authenticator
I Sometimes non-repudiability is required or one wants broadcast

authenticated communication

I NaCl also contains signatures with an easy-to-use interface:
pk = crypto_sign_keypair(&sk)

generates a 64-byte private key and a 32-byte public key
sm = crypto_sign(m, sk)

signs m under sk; sm is 64 bytes longer than m

m = crypto_sign_open(sm, pk)

verifies the signature and recovers m

NaCl: Cryptography for the Internet 8



Signatures in NaCl

I crypto_box does not use signatures but a public-key authenticator
I Sometimes non-repudiability is required or one wants broadcast

authenticated communication
I NaCl also contains signatures with an easy-to-use interface:

pk = crypto_sign_keypair(&sk)

generates a 64-byte private key and a 32-byte public key
sm = crypto_sign(m, sk)

signs m under sk; sm is 64 bytes longer than m

m = crypto_sign_open(sm, pk)

verifies the signature and recovers m

NaCl: Cryptography for the Internet 8



Back to space-shuttles and elevators: Security.

“About two percent of the manned launch/reentry attempts
have killed their crew”
http://en.wikipedia.org/wiki/List_of_
spaceflight-related_accidents_and_incidents

“the only known free-fall incident in a modern cable-borne
elevator happened in 1945 when a B-25 bomber struck the
Empire State Building in fog”
http://en.wikipedia.org/wiki/Elevator

NaCl: Cryptography for the Internet 9

http://en.wikipedia.org/wiki/List_of_spaceflight-related_accidents_and_incidents
http://en.wikipedia.org/wiki/List_of_spaceflight-related_accidents_and_incidents
http://en.wikipedia.org/wiki/Elevator


Back to space-shuttles and elevators: Security.

“About two percent of the manned launch/reentry attempts
have killed their crew”
http://en.wikipedia.org/wiki/List_of_
spaceflight-related_accidents_and_incidents

“the only known free-fall incident in a modern cable-borne
elevator happened in 1945 when a B-25 bomber struck the
Empire State Building in fog”
http://en.wikipedia.org/wiki/Elevator

NaCl: Cryptography for the Internet 9

http://en.wikipedia.org/wiki/List_of_spaceflight-related_accidents_and_incidents
http://en.wikipedia.org/wiki/List_of_spaceflight-related_accidents_and_incidents
http://en.wikipedia.org/wiki/Elevator


NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data

NaCl: Cryptography for the Internet 10



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data

NaCl: Cryptography for the Internet 10



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring

I NaCl systematically avoids all loads from addresses that
depend on secret data

NaCl: Cryptography for the Internet 10



NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data

NaCl: Cryptography for the Internet 10



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

NaCl: Cryptography for the Internet 11



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

NaCl: Cryptography for the Internet 11



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs

I NaCl systematically avoids all branch conditions that depend
on secret data

NaCl: Cryptography for the Internet 11



NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data

NaCl: Cryptography for the Internet 11



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

NaCl: Cryptography for the Internet 12



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

NaCl: Cryptography for the Internet 12



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

NaCl: Cryptography for the Internet 12



NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time

NaCl: Cryptography for the Internet 12



NaCl Security: Centralizing randomness

I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of
entropy

I Debian developer had removed on line of randomness-generating
code

I NaCl uses /dev/urandom, the OS random-number generator
I Reviewing this code is much more tractable than reviewing separate

RNG in every library

NaCl: Cryptography for the Internet 13



NaCl Security: Centralizing randomness

I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of
entropy

I Debian developer had removed on line of randomness-generating
code

I NaCl uses /dev/urandom, the OS random-number generator
I Reviewing this code is much more tractable than reviewing separate

RNG in every library

NaCl: Cryptography for the Internet 13



NaCl Security: No unnecessary randomness

I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored
ECDSA requirement of new randomness for each signature

I Signatures leaked PlayStation 3 code-signing key

I NaCl uses deterministic crypto_box and crypto_sign
I Also simplifies testing: NaCl uses automated test battery by eBACS

(ECRYPT Benchmarking of Cryptographic Systems)

NaCl: Cryptography for the Internet 14



NaCl Security: No unnecessary randomness

I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored
ECDSA requirement of new randomness for each signature

I Signatures leaked PlayStation 3 code-signing key
I NaCl uses deterministic crypto_box and crypto_sign
I Also simplifies testing: NaCl uses automated test battery by eBACS

(ECRYPT Benchmarking of Cryptographic Systems)

NaCl: Cryptography for the Internet 14



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack

I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

NaCl: Cryptography for the Internet 15



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped

I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

NaCl: Cryptography for the Internet 15



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010

I NaCl pays attention to cryptanalysis and makes very
conservative choices

I Primitives in NaCl all offer 128 bits of security

NaCl: Cryptography for the Internet 15



NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack
I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security

NaCl: Cryptography for the Internet 15



You might think that elevators are slow. . .

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

NaCl: Cryptography for the Internet 16



You might think that elevators are slow. . .

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

NaCl: Cryptography for the Internet 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

NaCl: Cryptography for the Internet 17



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

NaCl: Cryptography for the Internet 17



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys

I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

NaCl: Cryptography for the Internet 17



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed

I Also fast on mobile devices: See our CHES 2012 paper “NEON
crypto”

NaCl: Cryptography for the Internet 17



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”

NaCl: Cryptography for the Internet 17



NaCl online

http://nacl.cr.yp.to
I No license: NaCl is in the public domain
I No patents that we are aware of

NaCl: Cryptography for the Internet 18



Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?

I Deployment. . .
I NaCl for embedded devices
I Side-channel-protection requirements
I Importance of correctness proofs
I Importance of post-quantum NaCl

NaCl: Cryptography for the Internet 19



Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?
I Deployment. . .

I NaCl for embedded devices
I Side-channel-protection requirements
I Importance of correctness proofs
I Importance of post-quantum NaCl

NaCl: Cryptography for the Internet 19



Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?
I Deployment. . .
I NaCl for embedded devices
I Side-channel-protection requirements

I Importance of correctness proofs
I Importance of post-quantum NaCl

NaCl: Cryptography for the Internet 19



Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?
I Deployment. . .
I NaCl for embedded devices
I Side-channel-protection requirements
I Importance of correctness proofs

I Importance of post-quantum NaCl

NaCl: Cryptography for the Internet 19



Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?
I Deployment. . .
I NaCl for embedded devices
I Side-channel-protection requirements
I Importance of correctness proofs
I Importance of post-quantum NaCl

NaCl: Cryptography for the Internet 19


