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Why are we here?

I Various well understood algorithms, e.g. AES-128, RSA-2048,
SHA-2, SHA-3 etc.

I Various implementations of these algorithms, bundled in libraries
(e.g., OpenSSL)

I Applications simply use the libraries and the world (i.e., the Internet)
is safe

Two answers

I The above is wrong (I hope everybody here agrees)
I “Crypto for 2020” not only needs to fix existing problems but

anticipate future ones
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NaCl: A new cryptographic library

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Aim: Fix the problems of crypto for the Internet
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

This talk

I Introduce NaCl
I Topics I would like to discuss in the context of NaCl
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Space shuttles vs. elevators

“OpenSSL is the space shuttle of crypto libraries. It will get you
to space, provided you have a team of people to push the ten
thousand buttons required to do so. NaCl is more like an
elevator – you just press a button and it takes you there. No
frills or options.

I like elevators.”

Matthew Green in his blog entry The anatomy of a bad idea

NaCl: Cryptography for the Internet 4



Protecting Internet communication . . .

I Alice wants to send a message m to Bob
I Alice uses Bob’s public key and her own private key to compute an

authenticated ciphertext c, sends c to Bob
I Bob uses his private key and Alice’s public key to verify and recover

m
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. . . with the space-shuttle approach

I First choose algorithms and parameters, e.g. AES-128, RSA-2048,
SHA-256

I Generate random AES key
I Use AES to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s RSA public key from wire format
I Use key to encrypt AES key and signature
I . . .

I Plus more code to allocate storage, handle errors etc.
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. . . with the elevator approach

c = crypto_box(m,n,pk,sk)

I sk: Alice’s 32-byte private key
I pk: Bob’s 32-byte public key
I n: 24-byte nonce
I c: authenticated ciphertext, 16 bytes longer than plaintext m
I All objects are C++ std::string variables represented in wire

format, ready for transmission
I C NaCl is similar; using pointers, no memory allocation, no errors
I Bob verifies and decrypts:

m = crypto_box_open(c,n,pk,sk)
I Initial keypair generation for Alice and Bob:

pk = crypto_box_keypair(&sk)
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Signatures in NaCl

I crypto_box does not use signatures but a public-key authenticator
I Sometimes non-repudiability is required or one wants broadcast

authenticated communication

I NaCl also contains signatures with an easy-to-use interface:
pk = crypto_sign_keypair(&sk)

generates a 64-byte private key and a 32-byte public key
sm = crypto_sign(m, sk)

signs m under sk; sm is 64 bytes longer than m

m = crypto_sign_open(sm, pk)

verifies the signature and recovers m
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Back to space-shuttles and elevators: Security.

“About two percent of the manned launch/reentry attempts
have killed their crew”
http://en.wikipedia.org/wiki/List_of_
spaceflight-related_accidents_and_incidents

“the only known free-fall incident in a modern cable-borne
elevator happened in 1945 when a B-25 bomber struck the
Empire State Building in fog”
http://en.wikipedia.org/wiki/Elevator
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NaCl Security: No secret load addresses

I Osvik, Shamir, and Tromer in 2006: 65 ms to steal Linux dmcrypt
AES key used for hard-disk encryption

I Attack background:
I Most AES implementations use lookup tables
I Secret AES key influences load addresses
I Load addresses influence cache state
I Cache state influences measurable timings
I Use timing measurements to compute the key

I Most cryptographic libraries still use lookup tables but add
“countermeasures”

I Obscuring the influence on timings is not very confidence inspiring
I NaCl systematically avoids all loads from addresses that

depend on secret data
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NaCl Security: No secret branch conditions

I Brumley and Tuveri in 2011: A few minutes to steal OpenSSL
ECDSA key

I Attack background:
I Branch conditions in scalar multiplication depend on key bits
I Branch conditions influence timings
I Use timing measurements to compute the key

I Most cryptographic software has such data flow from secret data to
branch conditions

I Example: memcmp to verify IPsec MACs
I NaCl systematically avoids all branch conditions that depend

on secret data
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NaCl Security: No padding oracles

I Bleichenbacher in 1998: Decrypt SSL RSA ciphertext by observing
server responses to ≈ 106 variants of ciphertext.

I Attack background:
I SSL first inverts RSA, then checks for PKCS padding (which many

forgeries have)
I Subsequent processing applies more serious integrity checks
I Server responses reveal pattern of PKCS forgeries
I Pattern reveals plaintext

I Typical protection: try to hide differences between padding checks
and subsequent integrity checks

I Hard to get right; see, e.g., Crypto 2012 paper by Bardou, Focardi,
Kawamoto, Steel, and Tsay

I NaCl does not decrypt unless ciphertext passes MAC
verification

I MAC verification in NaCl rejects forgeries in constant time
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NaCl Security: Centralizing randomness

I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of
entropy

I Debian developer had removed on line of randomness-generating
code

I NaCl uses /dev/urandom, the OS random-number generator
I Reviewing this code is much more tractable than reviewing separate

RNG in every library
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NaCl Security: No unnecessary randomness

I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored
ECDSA requirement of new randomness for each signature

I Signatures leaked PlayStation 3 code-signing key

I NaCl uses deterministic crypto_box and crypto_sign
I Also simplifies testing: NaCl uses automated test battery by eBACS

(ECRYPT Benchmarking of Cryptographic Systems)
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NaCl Security: Conservative choice of primitives

I Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de Weger in
2008: rogue CA certificate, exploiting MD5 weakness

I “Flame” in 2012: New MD5 attack

I By 1996 Dobbertin and Preneel were calling for MD5 to be scrapped
I Many applications today use RSA-1024 (Google SSL, Tor, DNSSEC)
I Shamir and Tromer in 2003: RSA-1024 is breakable (1 year, ≈ 107

USD)
I Reaction by NIST and RSA labs: Move to RSA-2048 by 2010
I NaCl pays attention to cryptanalysis and makes very

conservative choices
I Primitives in NaCl all offer 128 bits of security
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You might think that elevators are slow. . .

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

NaCl: Cryptography for the Internet 16



You might think that elevators are slow. . .

I Typical reason for low-security crypto or no crypto: speed
I For example, DNSSEC on using RSA-1024:

“tradeoff between the risk of key compromise and
performance. . . ”

I NaCl offers exceptionally high speeds, keeps up with the
network

I NaCl operations per second on AMD Phenom II X6 1100T for any
reasonable packet size:

I > 80000 crypto_box
I > 80000 crypto_box_open
I > 70000 crypto_sign_open
I > 180000 crypto_sign

I Handles arbitrary packet floods up to ≈ 30 Mbps per CPU,
depending on protocol

NaCl: Cryptography for the Internet 16



Even higher NaCl Speed

I Pure secret-key crypto for any packet size, 80000 packets of 1500
bytes fill up a 1 Gbps link

I Pure secret-key crypto for many packets from the same public key:
split crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Very fast rejection of forged packets under known public keys
I Fast batch signature verification: doubling verification speed
I Also fast on mobile devices: See our CHES 2012 paper “NEON

crypto”
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NaCl online

http://nacl.cr.yp.to
I No license: NaCl is in the public domain
I No patents that we are aware of
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Topics/Questions I’d like to discuss

I Is the “elevator approach” the right one to secure the Internet?
I What other functionalities (elevator buttons) are required?
I What important crypto-layer problems are not addressed by NaCl?

I Deployment. . .
I NaCl for embedded devices
I Side-channel-protection requirements
I Importance of correctness proofs
I Importance of post-quantum NaCl
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