
FSBday:Implementing Wagner's Generalized Birthday Atta
k against theround-1 SHA-3 Candidate FSBChristiane Peters, Peter S
hwabejoint work with Dan Bernstein, Tanja Lange and Ruben NiederhagenEindhoven University of Te
hnologySeptember 10, 2009SHARCS 2009



Wagner's generalized birthday atta
kGiven 2i−1 lists 
ontaining B-bit strings.Generalized birthday problem:The 2i−1-sum problem 
onsists of �nding 2i−1 elements�exa
tly oneper list�su
h that their sum equals 0 (modulo 2).Wagner (CRYPTO '02)We 
an expe
t a solution to the generalized birthday problem after onerun of an algorithm using time O((i − 1) · 2B/i) and lists of size O(2B/i).FSBday 2



Wagner's tree algorithmGiven 4 lists 
ontaining ea
h about 2B/3 elements whi
h are 
hosenuniform at random from {0, 1}B.
◮ On level 0 take two lists and 
ompare their elements on their leastsigni�
ant B/3 bits.Merge: If two elements 
oin
ide on those B/3 bits; put the xor ofboth elements into a new list. Pro
eed in the same manner with theother two lists.Uniform randomness of the elements ⇒ both lists will 
ontain about

2B/3 elements.
◮ On level 1 take the remaining two lists. Compare their elements by
onsidering the remaining 2B/3 bits.Expe
t to get 1 mat
h after the merge step. FSBday 3



Tree algorithm for 2
i−1 listsThe tree algorithm generalizes to 2i−1 lists as follows:

◮ Compare lists � always two at a time � by looking at the leastsigni�
ant B/i bits of elements.
◮ On level i − 2 we are left with two lists whose elements need to be
ompared on 2B/i remaining bits.

FSBday 4



Pre
omputation stepSuppose that there is spa
e for lists of size only 2c with c < B/i.Bernstein (SHARCS '07):
◮ Generate 2c·(B−ic) entries and only 
onsider those of whi
h the leastsigni�
ant B − ic bits are zero.
◮ Then apply Wagner's algorithm with lists of size 2c and 
lamp away

c bits on ea
h level.
B/i B/i B/i · · · B/iWagner
c c c · · · B − icBernstein

B FSBday 5



Pre
omputation stepSuppose that there is spa
e for lists of size only 2c with c < B/i.Bernstein (SHARCS '07):
◮ Generate 2c·(B−ic) entries and only 
onsider those of whi
h the leastsigni�
ant B − ic bits are zero.
◮ Then apply Wagner's algorithm with lists of size 2c and 
lamp away

c bits on ea
h level.Generalization:
◮ The least signi�
ant B − ic bits 
an have an arbitrary value
◮ Clamping value does not have to be the same on all lists (but: sumof all 
lamping values has to be 0).
◮ If an atta
k does not produ
e a 
ollision we simply restart the atta
kwith di�erent 
lamping values. FSBday 5



Repeating (parts of) the tree algorithm
◮ When performing the algorithm with smaller lists some bits are left�un
ontrolled� at the end.
◮ Deal with the lower su

ess probability by repeatedly running theatta
k with di�erent 
lamping values.
◮ We 
an apply the same idea of 
hanging 
lamping values to anarbitrary merge step of the tree algorithm.

FSBday 6



Target: the 
ompression fun
tion of FSB48Given a binary random 192 × 393216 matrix H ; number of blo
ks:
w = 24.Input: a regular weight-24 bit string of length 393216, i.e., there isexa
tly a single 1 in ea
h interval [(i − 1) · 16384, i · 16834]1≤i≤24.Output: Xor the 48 
olumns indi
ated by the input bit string.

3 · 217

192

214Goal: Find a 
ollision in FSB48's 
ompression fun
tion; i.e., �nd 48
olumns�exa
tly 2 per blo
k�whi
h add up to 0. FSBday 7



Applying Wagner to FSB48Determine the number of lists for a Wagner atta
k on FSB48.
◮ We 
hoose 16 lists to solve this parti
ular 48-sum problem.(16 is the highest power of 2 dividing 48).
◮ Ea
h list entry will be the xor of three 
olumns 
oming from one anda half blo
ks (no overlaps!)Straightforward Wagner
◮ Applying Wagner's atta
k with 16 lists in a straightforward waymeans that we need to have at least 2⌈192/5⌉ entries per list.
◮ By 
lamping away 39 bits in ea
h step we expe
t to get at least one
ollision after one run of the tree algorithm. FSBday 8



List entries
◮ For ea
h list we generate more than twi
e the amount needed for astraightforward atta
k.
◮ Redu
e amount of data by 
lamping away 2 bits ⇒ 238 entries perlist (
lamp 38 bits on ea
h level)
◮ Ultimately we are not interested in the value of the entry; but in the
olumn positions in the matrix that lead to this all-zero value.

◮ Value-only representation
◮ Positions-only representation: keep full positions; if we we need thevalue (or parts of it) it 
an be dynami
ally re
omputed from thepositions.

◮ Note: Unlike storage requirements for values the number of bytes forpositions in
reases with in
reasing levels. FSBday 9



Storing positions
◮ En
ode 
olumn positions of ea
h entry in 40 bits (5 bytes) for the�rst level.
◮ The expe
ted number of entries per list remains the same but thenumber of lists halves; so the total amount of data is the same onea
h level when using dynami
 re
omputation.
◮ Storing 16 lists with 238 entries, ea
h entry en
oded in 5 bytesrequires 20480 GB of storage spa
e.
◮ The Coding and Cryptography Computer Cluster at EindhovenUniversity of Te
hnology only has a total hard disk spa
e of about5440 GB, so we have to adapt our atta
k strategy to this limitation.FSBday 10



Adapt atta
k strategy
◮ Can handle at most 5 · 240/24/5 = 236 entries per list.
◮ A straightforward implementation would use lists of size 236: 
lamp

4 bits during list generation; this leads to 236 values for ea
h of the16 lists.
◮ We expe
t to run the atta
k 256.5 times until we �nd a 
ollision.

FSBday 11



Atta
k in two phasesIdea
◮ First phase: Figure out whi
h 
lamping 
onstants yield 
ollision
◮ Se
ond phase: Compute matrix positions yielding 
ollision
◮ During phase one we do not have to store positions of entries
◮ On ea
h level 
ompress entries to shortest possible representation

◮ Level 0: 5 bytes (positions only)
◮ Level 1: 10 bytes (positions only)
◮ Level 2: 13 bytes (values only)
◮ Level 3: 9 bytes (values only)

◮ Use lists of size 237

◮ Clamp 3 bits through pre
omputation
◮ This leaves 4 bits �un
ontrolled� FSBday 12



Atta
k Strategy
L0,0 L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7

positions onlyvalues only
L0,8 L0,9 L0,10 L0,11 L0,12 L0,13 L0,14 L0,15

L1,0 L1,1 L1,2 L1,3 L1,4 L1,5 L1,6 L1,7

L2,0 L2,1
L2,2store 1664 GB L2,3

L3,0store 1152 GB L3,1

L4,0Final merge
=⇒ 1152 GB + 1664 GB + 2560 GB = 5376 GB FSBday 13



Our Strategy
◮ Continue the 
omputation with di�erent 
lamping 
ontants until

L4,0 
ontains at least one entry
◮ Store the values in L3,0 and L3,1 that yield the 
ollision
◮ Re
ompute L3,0 and L3,1 using positions-only representation to �ndpositions in the matrix
◮ Expe
ted:

◮ 1× Computation of L3,0 (values only)
◮ 1× Computation of L2,2 (values only)
◮ 16.5× Computation of L2,3, L3,1, L4,0 (values only)
◮ 1× Computation of L3,0 (positions only)
◮ 1× Computation of L3,1 (positions only)

FSBday 14



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

FSBday 15



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

◮ If the CPU is too slow we have to write faster 
ode
◮ Determine network throughput: IBM MPI ben
hmark
◮ Determine hard-disk throughput: our own hard-disk ben
hmark

◮ Dire
t I/O, no �lesystem
◮ Sequential and randomized a

ess patterns

FSBday 15



Finding the bottlene
k(s)

 0

 20

 40

 60

 80

 100

 120

210 215 220 225 230

ba
nd

w
id

th
 in

 M
B

yt
e/

s

packet size in bytes

hdd sequential
hdd randomized

mpi

FSBday 15



Finding the bottlene
k(s)
◮ Basi
ally every byte needs to be stored, sent, and loaded.
◮ Possible performan
e bottlene
ks

◮ CPU 
omputation power
◮ Network throughput
◮ Hard-disk throughput

◮ If the CPU is too slow we have to write faster 
ode
◮ Determine network throughput: IBM MPI ben
hmark
◮ Determine hard-disk throughput: our own hard-disk ben
hmark

◮ Dire
t I/O, no �lesystem
◮ Sequential and randomized a

ess patterns

=⇒ Mainly bottlene
ked by hard-disk throughput FSBday 15



Parallelization
◮ Distribute fra
tions of lists to nodes a

ording to some of the bitsrelevant for sorting and merging on the next level
◮ Ea
h node on ea
h level holds two fra
tions of two lists
◮ Ea
h node performs sort-and-merge on its list fra
tions

FSBday 16



Parallelization
L0,00,1 L0,10,1 L0,22,3 L0,32,3 L0,44,5 L0,54,5 L0,66,7 L0,76,7

positions onlyvalues only
L0,80,1,2,3 L0,90,1,2,3 L0,104,5,6,7 L0,114,5,6,7 L0,120,1,2,3 L0,130,1,2,3 L0,144,5,6,7 L0,154,5,6,7

L1,00,1,2,3 L1,10,1,2,3 L1,24,5,6,7 L1,34,5,6,7 L1,40,1,2,3,4,5,6,7 L1,50,1,2,3,4,5,6,7 L1,60,1,2,3,4,5,6,7 L1,70,1,2,3,4,5,6,7
L2,00,1,2,3,4,5,6,7 L2,10,1,2,3,4,5,6,7 L2,20,1,2,3,4,5,6,7 L2,30,1,2,3,4,5,6,7

L3,00,1,2,3,4,5,6,7 L3,10,1,2,3,4,5,6,7
L4,0Final merge FSBday 16



Parallelization
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort,a

ording to 9 bits)
◮ Sort and merge parts independently in memory
◮ Pipeline

◮ Loading from hard disk into memory
◮ Sorting of two parts
◮ Merging of previously sorted parts

◮ Requires 6 parts in memory at the same time (3.75 GB)
FSBday 16



Parallelization
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort,a

ording to 9 bits)
◮ Sort and merge parts independently in memory
◮ Pipeline

◮ Loading from hard disk into memory
◮ Sorting of two parts
◮ Merging of previously sorted parts

◮ Requires 6 parts in memory at the same time (3.75 GB)
◮ Two blo
ks of operations:

◮ Load, Sort, Merge, Send
◮ Re
eive, Presort, Store

FSBday 16



Parallelization
◮ Split fra
tions further into 512 parts of 640 MB ea
h (presort,a

ording to 9 bits)
◮ Sort and merge parts independently in memory
◮ Pipeline

◮ Loading from hard disk into memory
◮ Sorting of two parts
◮ Merging of previously sorted parts

◮ Requires 6 parts in memory at the same time (3.75 GB)
◮ Two blo
ks of operations:

◮ Load, Sort, Merge, Send
◮ Re
eive, Presort, Store

◮ Observe: Bits known through node and presorting do not have to bestored in value-only representation
◮ That's how we get down to 13 and 9 bytes on levels 2 and 3respe
tively FSBday 16



Ales instead of Files
◮ Ea
h node uses a large data partition /dev/sda1
◮ Opened with O_DIRECT (without 
a
hing)
◮ Organize data in 
hunks of 1,198,080 Bytes (�ales�)
◮ This value is a multiple of 9, 13, 40 (entry sizes) and 512 (for DMA)
◮ AleSystem also stores number of elements per part
◮ Throughput with sequential a

ess (during list generation):

∼90 MB/se

◮ Throughput with random a

ess: ∼40 MB/se


FSBday 17



Timing Results
◮ Current ben
hmarks for phase 1:

◮ Computation of list L3,0: ∼ 32 h (on
e)
◮ Computation of list L2,2: ∼ 14 h (on
e)
◮ Computation of list L2,3: ∼ 14 h (exp. 16.5×)
◮ Computation of list L3,1: ∼ 4 h (exp. 16.5×)
◮ Che
k for 
ollision in L3,0 and L3,1: ∼ 3.5 h (exp. 16.5×)

◮ Expe
ted time for phase 1: 32 + 14 + 16.5 · (14 + 4 + 3.5) = 400.7 hor 17 days
◮ Time for phase 2: ∼33 h per half-tree, in total ∼66 h
◮ Expe
ted time in total: ∼19.5 days.

FSBday 18



Timing Results
◮ Current ben
hmarks for phase 1:

◮ Computation of list L3,0: ∼ 32 h (on
e)
◮ Computation of list L2,2: ∼ 14 h (on
e)
◮ Computation of list L2,3: ∼ 14 h (exp. 16.5×)
◮ Computation of list L3,1: ∼ 4 h (exp. 16.5×)
◮ Che
k for 
ollision in L3,0 and L3,1: ∼ 3.5 h (exp. 16.5×)

◮ Expe
ted time for phase 1: 32 + 14 + 16.5 · (14 + 4 + 3.5) = 400.7 hor 17 days
◮ Time for phase 2: ∼33 h per half-tree, in total ∼66 h
◮ Expe
ted time in total: ∼19.5 days.
◮ Some parts of the 
ode might be optimized further
◮ The atta
k is stateful so it is easy to ex
hange 
ode with fasterversion FSBday 18



Further information
Paper: http://eprint.ia
r.org/2009/292Cluster: http://www.win.tue.nl/



/Code: Will be available (publi
 domain)

FSBday 19


	Wagner's generalized birthday attack
	Wagner in memory-restricted environments
	Attacking FSB48
	Our attack strategy
	Implementation
	Results and analysis

