FSBday:

Implementing Wagner's Generalized Birthday Attack against the
round-1 SHA-3 Candidate FSB

Christiane Peters, Peter Schwabe
joint work with Dan Bernstein, Tanja Lange and Ruben Niederhagen

Eindhoven University of Technology
T U TEe"clfd\:\os‘fs: Universiteit
University of Technology
September 10, 2009

SHARCS 2009



TU/ TE?E::‘;;:: Universiteit
Wagner's generalized birthday attack € I rreamton
Given 2~ lists containing B-bit strings.

Generalized birthday problem:
The 2/~ 1-sum problem consists of finding 2°~! elements —exactly one
per list—such that their sum equals 0 (modulo 2).

Wagner (CRYPTO '02)

We can expect a solution to the generalized birthday problem after one
run of an algorithm using time O((i — 1) - 28/%) and lists of size O(25/%).

FSBday 2



T U/ TEelﬁer:E\f:: Universiteit
V\/agner S tree algorlthm e University of Technology

Given 4 lists containing each about 22/% elements which are chosen
uniform at random from {0, 1}5.

» On level 0 take two lists and compare their elements on their least
significant B/3 bits.

Merge: If two elements coincide on those B/3 bits; put the xor of
both elements into a new list. Proceed in the same manner with the

other two lists.

Uniform randomness of the elements = both lists will contain about
28/3 elements.

» On level 1 take the remaining two lists. Compare their elements by
considering the remaining 2B/3 bits.

Expect to get 1 match after the merge step.

FSBday 3



Technische Universiteit
e Eindhoven
University of Technology

Tree algorithm for 2/~ 1 lists

The tree algorithm generalizes to 2¢~ lists as follows:

» Compare lists — always two at a time — by looking at the least
significant B/i bits of elements.

» On level 7 — 2 we are left with two lists whose elements need to be
compared on 2B/i remaining bits.

FSBday a



i TU/e T;;Z:lus‘f:: Universiteit
Precomputation step Oy ofTechlogy

Suppose that there is space for lists of size only 2¢ with ¢ < B/i.
Bernstein (SHARCS '07):

» Generate 2°(B~%) entries and only consider those of which the least
significant B — ic bits are zero.

» Then apply Wagner's algorithm with lists of size 2¢ and clamp away
¢ bits on each level.

Wagner | B/i| B/i| B/i| | B/i|

Bernstein |C|C|C| |B—ic|

FSBday 5



i TU/e T;rc‘:?‘l;‘f:: Universiteit
Precomputation step Oy ofTechlogy

Suppose that there is space for lists of size only 2¢ with ¢ < B/i.
Bernstein (SHARCS '07):

» Generate 2 (B=%¢) entries and only consider those of which the least
significant B — ic bits are zero.

» Then apply Wagner's algorithm with lists of size 2¢ and clamp away
¢ bits on each level.

Generalization:
» The least significant B — ic bits can have an arbitrary value

» Clamping value does not have to be the same on all lists (but: sum
of all clamping values has to be 0).

» If an attack does not produce a collision we simply restart the attack
with different clamping values.

FSBday 5



TU/e TEeI;:?‘los‘f:: Universiteit
Repeating (parts of) the tree algorithm Universty ofTechnology

» When performing the algorithm with smaller lists some bits are left
“uncontrolled” at the end.

» Deal with the lower success probability by repeatedly running the
attack with different clamping values.

» We can apply the same idea of changing clamping values to an
arbitrary merge step of the tree algorithm.

FSBday 6



Target: the compression function of FSByg TU/e

Technische Universiteit
Eindhoven
University of Technology

Given a binary random 192 x 393216 matrix H; number of blocks:

w = 24.

Input: a regular weight-24 bit string of length 393216, i.e., there is
exactly a single 1 in each interval [(i — 1) - 16384, 7 - 16834]1<i<24.

Output: Xor the 48 columns indicated by the input bit string.

192:

214

Goal: Find a collision in FSB,g's compression function; i.e., find 48
columns —exactly 2 per block —which add up to 0.

FSBday 7



Technische Universiteit
- Eindhoven
Applylng Wagner to FSB48 TU/e University of Technology
Determine the number of lists for a Wagner attack on FSByg.

» We choose 16 lists to solve this particular 48-sum problem.
(16 is the highest power of 2 dividing 48).

» Each list entry will be the xor of three columns coming from one and
a half blocks (no overlaps!)

Straightforward Wagner
» Applying Wagner's attack with 16 lists in a straightforward way

means that we need to have at least 2/192/51 entries per list.

» By clamping away 39 bits in each step we expect to get at least one
collision after one run of the tree algorithm.

FSBday 8



Technische Universiteit
. . I U e Eindhoven
LlSt entrles University of Technology

» For each list we generate more than twice the amount needed for a
straightforward attack.

» Reduce amount of data by clamping away 2 bits = 23® entries per
list (clamp 38 bits on each level)

» Ultimately we are not interested in the value of the entry; but in the
column positions in the matrix that lead to this all-zero value.
> Value-only representation
» Positions-only representation: keep full positions; if we we need the
value (or parts of it) it can be dynamically recomputed from the
positions.

» Note: Unlike storage requirements for values the number of bytes for
positions increases with increasing levels.

FSBday 9



Technische Universiteit
- _— Eindhoven
Storlng pOSItIOnS TU/e University of Technology

» Encode column positions of each entry in 40 bits (5 bytes) for the
first level.

» The expected number of entries per list remains the same but the
number of lists halves; so the total amount of data is the same on
each level when using dynamic recomputation.

» Storing 16 lists with 238 entries, each entry encoded in 5 bytes
requires 20480 GB of storage space.

» The Coding and Cryptography Computer Cluster at Eindhoven
University of Technology only has a total hard disk space of about
5440 GB, so we have to adapt our attack strategy to this limitation.

FSBday 10



Technische Universiteit
Eindhoven
Adapt attack Strategy TU/e University of Technology
» Can handle at most 5 - 2%0/2% /5 = 236 entries per list.

» A straightforward implementation would use lists of size 236: clamp

4 bits during list generation; this leads to 235 values for each of the
16 lists.

» We expect to run the attack 256.5 times until we find a collision.

FSBday 11



Technische Universiteit
. Eindhoven
Attack | n tWO phases TU/e University of Technology

Idea

First phase: Figure out which clamping constants yield collision
Second phase: Compute matrix positions yielding collision
During phase one we do not have to store positions of entries

vV v v .Yy

On each level compress entries to shortest possible representation
Level 0: 5 bytes (positions only)

Level 1: 10 bytes (positions only)

Level 2: 13 bytes (values only)

Level 3: 9 bytes (values only)

Yy v VY

> Use lists of size 237
» Clamp 3 bits through precomputation
» This leaves 4 bits “uncontrolled”

FSBday 12



Technische Universiteit
I Eindhoven
Attack Strategy U/ University of Technology

I 1
[Loo [Loa [Loz [Los [Loa [Los [Los [Lor JLos [Los [Loao [Loar [Loaz [Loas [Loaa [Loss |

TARVARYARY

[Loo | L ) [Le ] [Zws ]

B B

Bl B

positions only

Ls2
store 1664 GB

———— e e
1
1
|
1
1
1
1
1
1
1
|
1
1
1

_———————l ]
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1

L3o

store 1152 GB
Lao

Final merge

= 1152 GB + 1664 GB + 2560 GB = 5376 GB

FSBday 13



Technische Universiteit
I Eindhoven
Ou r Strategy U/e University of Technology

v

Continue the computation with different clamping contants until
L4 contains at least one entry

v

Store the values in L3 and L3 ; that yield the collision

v

Recompute L3¢ and L3 ; using positions-only representation to find
positions in the matrix

v

Expected:
» 1x Computation of L3z (values only)
» 1x Computation of Lz (values only)
16.5x Computation of La s, L3 1, La,o (values only)
1x Computation of L3 o (positions only)
1x Computation of L3 ; (positions only)

vYyyvw

FSBday 14



Technische Universiteit
. . Eindhoven
Flndlng the bot‘tleneck(s) TU/e University of Technology

» Basically every byte needs to be stored, sent, and loaded.
» Possible performance bottlenecks

» CPU computation power
> Network throughput
» Hard-disk throughput

FSBday 15



Technische Universiteit
. . Eindhoven
Flndlng the bottleneck(s) TU/e University of Technology

» Basically every byte needs to be stored, sent, and loaded.
» Possible performance bottlenecks
» CPU computation power
> Network throughput
» Hard-disk throughput
» If the CPU is too slow we have to write faster code
» Determine network throughput: IBM MPI benchmark
» Determine hard-disk throughput: our own hard-disk benchmark

> Direct 1/0O, no filesystem
> Sequential and randomized access patterns

FSBday 15



Technische Universiteit
Eindhoven
University of Technology

Finding the bottleneck(s)

120 T
hdd sequential —+—
% hdd randomized -
X mpi -
.X -
——
" 4
E >
) . P
= - e
£ x
= 4
3 .
g
o '>< X
/></'
,X/
x E
L L
220 225 230

packet size in bytes

FSBday 15



Technische Universiteit
. . Eindhoven
Flndlng the bottleneck(s) TU/e University of Technology

» Basically every byte needs to be stored, sent, and loaded.
» Possible performance bottlenecks
» CPU computation power
> Network throughput
» Hard-disk throughput
» If the CPU is too slow we have to write faster code
» Determine network throughput: IBM MPI benchmark
» Determine hard-disk throughput: our own hard-disk benchmark

> Direct 1/0O, no filesystem
> Sequential and randomized access patterns

— Mainly bottlenecked by hard-disk throughput

FSBday 15



Technische Universiteit
. . I U e Eindhoven
Pa ra”ellzatlon University of Technology

» Distribute fractions of lists to nodes according to some of the bits
relevant for sorting and merging on the next level

» Each node on each level holds two fractions of two lists

» Each node performs sort-and-merge on its list fractions

FSBday 16



Technische Universiteit
. . I U Eindhoven
Pa ra”ellzatlon University of Technology

Loo |Lox |[Loz |Los |Loa |Los |Los Ln 7 Los |Loos |Loao Ln 1 [Loaz |Loas [Loaa [Loas
0,1 0,1 23 23 45 4,5 6,7 01,2,3(0,1,2,3 4567 4,5,6,7/0,1,2,3|0,1,2,3|4,5,6,7(4,567
1 |
| 1
1 |
Lo Lia L Lis : Lis Lig
01,23 0123 4,56,7 4,5,6,7 1 0,1,2,3,4,5,6 0,1,2,3,45,6,74/0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
1
1

positions only
values only

Lo
0,1,2,3,4,56,

0,1,2 3,4,5,6, 0,1’,2,3,4,5‘6,7

Lso Laa
0,123,456, 01234567

FSBday 16



T U Technische Universiteit
. . e Eindhoven
Para”ellzatlon University of Technology

v

Split fractions further into 512 parts of 640 MB each (presort,
according to 9 bits)

v

Sort and merge parts independently in memory

v

Pipeline
> Loading from hard disk into memory
> Sorting of two parts
» Merging of previously sorted parts

v

Requires 6 parts in memory at the same time (3.75 GB)

FSBday 16



T U Technische Universiteit
. . e Eindhoven
Para”ellzatlon University of Technology

v

Split fractions further into 512 parts of 640 MB each (presort,
according to 9 bits)

v

Sort and merge parts independently in memory

v

Pipeline
> Loading from hard disk into memory
> Sorting of two parts
» Merging of previously sorted parts

v

Requires 6 parts in memory at the same time (3.75 GB)

v

Two blocks of operations:

> Load, Sort, Merge, Send
> Receive, Presort, Store

FSBday 16



T U Technische Universiteit
. . e Eindhoven
Para”ellzatlon University of Technology

» Split fractions further into 512 parts of 640 MB each (presort,
according to 9 bits)
» Sort and merge parts independently in memory
» Pipeline
> Loading from hard disk into memory
> Sorting of two parts
» Merging of previously sorted parts
> Requires 6 parts in memory at the same time (3.75 GB)
» Two blocks of operations:
> Load, Sort, Merge, Send
> Receive, Presort, Store
» Observe: Bits known through node and presorting do not have to be
stored in value-only representation

» That's how we get down to 13 and 9 bytes on levels 2 and 3
respectively

FSBday 16



Technische Universiteit
. . Eindhoven
Ales instead of Files TU/ € e orrechotons

Each node uses a large data partition /dev/sdal

Opened with 0_DIRECT (without caching)

Organize data in chunks of 1,198,080 Bytes (“ales”)

This value is a multiple of 9, 13, 40 (entry sizes) and 512 (for DMA)
AleSystem also stores number of elements per part

vV v.v v v Yy

Throughput with sequential access (during list generation):
~90 MB/sec

» Throughput with random access: ~40 MB/sec

FSBday 17



Technische Universiteit
N N I U e Eindhoven
Tlmlng Results University of Technology

» Current benchmarks for phase 1:
» Computation of list L3 o: ~ 32 h (once)
» Computation of list L22: ~ 14 h (once)
» Computation of list Lo 3: ~ 14 h (exp. 16.5x)
» Computation of list Lz 1: ~ 4 h (exp. 16.5%)
» Check for collision in L3¢ and Ls1: ~ 3.5 h (exp. 16.5x%)
> Expected time for phase 1: 32414+ 16.5- (14 + 4+ 3.5) = 400.7 h

or 17 days
Time for phase 2: ~33 h per half-tree, in total ~66 h
Expected time in total: ~19.5 days.

v

v

FSBday 18



Technische Universiteit
N N I U e Eindhoven
Tlmlng Results University of Technology

v

Current benchmarks for phase 1:
» Computation of list L3 o: ~ 32 h (once)
Computation of list La2: ~ 14 h (once)
Computation of list Lz s: ~ 14 h (exp. 16.5x)
Computation of list L3 1: ~ 4 h (exp. 16.5x)
Check for collision in L3,o and Ls;1: ~ 3.5 h (exp. 16.5x)
» Expected time for phase 1: 32+ 14+ 16.5- (14 + 4+ 3.5) = 400.7 h
or 17 days

Time for phase 2: ~33 h per half-tree, in total ~66 h

vy v vy

Expected time in total: ~19.5 days.
Some parts of the code might be optimized further

vV v . vvY

The attack is stateful so it is easy to exchange code with faster
version

FSBday 18



Technische Universiteit
. . Eindhoven
Further information TU / Omversyof Technology

Paper: http://eprint.iacr.org/2009/292
Cluster: http://www.win.tue.nl/cccc/

Code: Will be available (public domain)

FSBday 19



	Wagner's generalized birthday attack
	Wagner in memory-restricted environments
	Attacking FSB48
	Our attack strategy
	Implementation
	Results and analysis

