
6 years of NIST PQC – looking back and ahead

Peter Schwabe

September 29, 2022

Part I – looking back

This talk is biased

• Cryptographic engineering point of view
• Looking back at 6 years of NIST PQC:

• What went well

(in work by other people)

• What went not so well

(in “our submissions”)

1

Part I – looking back

This talk is biased.

• Cryptographic engineering point of view
• Looking back at 6 years of NIST PQC:

• What went well

(in work by other people)

• What went not so well

(in “our submissions”)

1

Part I – looking back

This talk is biased – after all, NIST PQC is a competition.

• Cryptographic engineering point of view
• Looking back at 6 years of NIST PQC:

• What went well

(in work by other people)

• What went not so well

(in “our submissions”)

1

Part I – looking back

This talk is biased – after all, NIST PQC is a competition.

• Cryptographic engineering point of view

• Looking back at 6 years of NIST PQC:
• What went well

(in work by other people)

• What went not so well

(in “our submissions”)

1

Part I – looking back

This talk is biased – after all, NIST PQC is a competition.

• Cryptographic engineering point of view
• Looking back at 6 years of NIST PQC:

• What went well

(in work by other people)

• What went not so well

(in “our submissions”)

1

Part I – looking back

This talk is biased – after all, NIST PQC is a competition.

• Cryptographic engineering point of view
• Looking back at 6 years of NIST PQC:

• What went well (in work by other people)
• What went not so well (in “our submissions”)

1

Our submissions

CRYSTALS-Kyber
Roberto Avanzi
Joppe Bos
Jintai Ding
Léo Ducas
Eike Kiltz
Tancrède Lepoint
Vadim Lyubashevsky
John M. Schanck
Peter Schwabe
Gregor Seiler
Damien Stehle

CRYSTALS-Dilithium
Léo Ducas
Eike Kiltz
Tancrède Lepoint
Vadim Lyubashevsky
Peter Schwabe
Gregor Seiler
Damien Stehlé
Shi Bai

SPHINCS+

Jean-Philippe Aumasson
Daniel J. Bernstein
Ward Beullens
Christoph Dobraunig
Maria Eichlseder
Scott Fluhrer
Stefan-Lukas Gazdag
Andreas Hülsing
Panos Kampanakis
Stefan Kölbl
Tanja Lange
Martin M. Lauridsen
Florian Mendel
Ruben Niederhagen
Christian Rechberger
Joost Rijneveld
Peter Schwabe
Bas Westerbaan 2

1. Designing

“A complete written specification of the algorithms shall be included, consisting of all
necessary mathematical operations, equations, tables, diagrams, and parameters that are
needed to implement the algorithms. The document shall include design rationale and an
explanation for all the important design decisions that are made”

—Dustin Moody, February 24, 2016 (PQCRYPTO 2016)

3

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – Exhibit A

Dilithium – v3.0 vs. v3.1
• Message hash only 384 bits

• 192 bits of sec. against collisions

• Not sufficient for NIST level 5

5

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM − SPR (Distinct-function multi-target second preimage

resistance) of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM − SPR (Distinct-function multi-target second preimage

resistance) of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM − SPR (Distinct-function multi-target second preimage

resistance) of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Two questions

1. Will the schemes selected now be widely used?

2. Will those schemes survive in the long run?

7

2. Proving

“Submitters are not required to provide a proof of security, although such proofs will be
considered if they are available.”

—NIST PQC, Call for Proposals

8

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform

• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform

• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform

• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – so many failure modes

• Proof is wrong

• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct

• Theorem is also wrong
• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme

• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

3. Implementing

“NISTPQC, despite being an important and timely project, has produced the largest regression
ever in the quality of cryptographic software. This will not be easy to fix.”

—Daniel J. Bernstein, October 5, 2018

12

3. Implementing – Exhibit A

Dilithium commit on Dec. 28, 2017
• Bug in Dilithium sampler

• Two consecutive coefficients are equal

• Allows key recovery

• Reported by Peter Pessl on Dec. 27, 2017

13

3. Implementing – Exhibit B

PQClean
• Joint work with Matthias Kannwischer, Joost Rijneveld, John Schanck, Douglas Stebila,

Goutam Tamvada, Thom Wiggers

• Test harness for PQC implementations
• Integrate reference implementations

• Run through test harness
• “clean up”

14

3. Implementing – Exhibit B

Flaw KEMs Sigs Flaw KEMs Sigs

Memory safety 3 4 Endianness assumptions 7 2
Signed integer overflow 3 1 Platform-specific behavior 4 0
Alignment assumptions 4 4 Variable-Length Arrays 4 1
Other Undefined Behavior 1 1 Compiler extensions 5 2
Dead code 3 4 Integer sizes 6 3
Global state 2 1 Non-constant time 4 0
Licensing unclear 3 1

14

3. Implementing – Exhibit B

“In almost every scheme we identified “unclean” code, ranging from missing casts to
memory safety problems and other forms of undefined behavior.”

—https://eprint.iacr.org/2022/337

14

https://eprint.iacr.org/2022/337

3. Implementing – Exhibit C

15

3. Implementing – Exhibit C

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15

3. Implementing – Exhibit C

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15

3. Implementing – Exhibit C

15

4. Attacking

“The idea is that participants put their algorithms into the ring, and then we all spend a few
years beating on each other’s submissions.”

—Bruce Schneier, August 8, 2022

16

4. Attacking – Guessed Once

def recover_bit(ct, bit):
assert bit < len(ct) // 4000
ts = [struct.unpack('BB', ct[i:i+2]) for i in range(4000*bit, 4000*(bit+1), 2)]
xs, ys = [a for a, b in ts if b == 1], [a for a, b in ts if b == 2]
return sum(xs) / len(xs) >= sum(ys) / len(ys)

def decrypt(ct):
res = sum(recover_bit(ct, b) << b for b in range(len(ct) // 4000))
return int.to_bytes(res, len(ct) // 4000 // 8, 'little')

—Lorenz Panny, December 21, 2017

17

4. Attacking in 2022

ia.cr/2022/975

Yet, full break without any “warning”

18

4. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

18

4. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

18

4. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

18

4. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

18

4. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

18

4. Attacking – even more attacks!

19

5. Communicating

“I don’t know if you’re familiar with this website, twitter.com? If you like crypto drama, this is
where you go. Except if you go to the pqc-forum, which is also. . . generally. . . it’s even better”.

—Bor de Kock, August 17, 2022

https://www.youtube.com/watch?v=kXcYy8LOI9s, starting at 20:22.

20

https://www.youtube.com/watch?v=kXcYy8LOI9s

5. Communicating

“I don’t know if you’re familiar with this website, twitter.com? If you like crypto drama, this is
where you go. Except if you go to the pqc-forum, which is also. . . generally. . . it’s even better”.

—Bor de Kock, August 17, 2022

https://www.youtube.com/watch?v=kXcYy8LOI9s, starting at 20:22.

20

https://www.youtube.com/watch?v=kXcYy8LOI9s

5. Communicating – pqc-forum

21

5. Communicating – pqc-forum

“Follow the ”Rule of 1” and the ”Rule of n”: When you speak, make 1 point and then let others
speak, and when in a group of ”n” people, speak ”1/nth” of the time.”

—Aspiration Participants:Guidelines

https://facilitation.aspirationtech.org/index.php?title=Participants:Guidelines

21

https://facilitation.aspirationtech.org/index.php?title=Participants:Guidelines

5. Communicating – pqc-forum

Download all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I have 2805 mails (first one from Nov. 2, 2016)

21

5. Communicating – pqc-forum

Download almost all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I have 2805 mails (first one from Nov. 2, 2016)

21

5. Communicating – pqc-forum

Download almost all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I have 2805 mails (first one from Nov. 2, 2016)

21

5. Communicating – pqc-forum

for i in mails/*;do
FROM=$(grep ^From: $i | head -n 1 | sed "s/From:\ //" | sed "s/.*<\([^>]*\)>/\1/")
if ["$FROM" = "pqc-forum@list.nist.gov"]; then

FROM=$(grep ^X-Original-From: $i | head -n 1 | \
sed "s/X-Original-From:\ //" | sed "s/.*<\([^>]*\)>/\1/")

fi
echo $FROM

done | sort | uniq -c | sort -n

• 369 sender addresses

• Sometimes multiple addresses for one person

• 131 addresses sent just one mail

• 275 addresses sent at most 5 mails

21

5. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. address2 146
3. address3 113
4. address4 106
5. address5 100
6. address6 81
7. address7 69
8. address8 68
9. address9 50

10. address10 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

21

5. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. address10 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

21

5. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. peter@cryptojedi.org 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

21

5. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. peter@cryptojedi.org 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

21

5. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. peter@cryptojedi.org 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

21

Part II – looking ahead

• More designing, proving, implementing, attacking, communicating in rounds 4, 5, 6,. . .

• Additional scrutiny of selected algorithms

• Standardization and deployment of selected algorithms

22

Part II – looking ahead

• More designing, proving, implementing, attacking, communicating in rounds 4, 5, 6,. . .

• Additional scrutiny of selected algorithms

• Standardization and deployment of selected algorithms

22

High-assurance PQC

Formosa Crypto

• Effort to formally verify crypto
• Currently three main projects:

• EasyCrypt proof assistant
• jasmin programming language
• libjade (PQ-)crpyto library

• Core community of ≈ 30–40 people

• Discussion forum with >100 people

23

The toolchain and workflow

24

Programming in jasmin – “assembly in the head”

• Syntax is very C like
• Compilation is much more predictable:

• Generally: 1 line in jasmin → 1 line in asm
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers, syntactically correct code may fail to compile!

• Compiler is formally proven to preserve semantics

• Compiler is formally proven to preserve constant-time property

• Separate compiler run to ensure memory safety (statically!)

25

Programming in jasmin – “assembly in the head”

• Syntax is very C like
• Compilation is much more predictable:

• Generally: 1 line in jasmin → 1 line in asm
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers, syntactically correct code may fail to compile!

• Compiler is formally proven to preserve semantics

• Compiler is formally proven to preserve constant-time property

• Separate compiler run to ensure memory safety (statically!)

25

(Speculative) constant-time

Guaranteed constant-time code
• Information-flow type system, distinguish high (secret) and low (public) data

• Prevent branching and memory indexing on secret data

• Compilation is proven to preserve this property!

Guaranteed Spectre v1 protection
• Extend type system: “transient” (public, but may be secret during misspeculation)

• Keep predicate to track misspeculation

• Mask transient data with predicate

• Approach is Selective Speculative Load Hardening (selSLH)

• Performance overhead for crypto: <1%

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Swarn Priya, Peter Schwabe, Lucas Tabary-Maujean: Typing High-Speed Cryptography against
Spectre v1. https://eprint.iacr.org/2022/1270

26

https://eprint.iacr.org/2022/1270

(Speculative) constant-time

Guaranteed constant-time code
• Information-flow type system, distinguish high (secret) and low (public) data

• Prevent branching and memory indexing on secret data

• Compilation is proven to preserve this property!

Guaranteed Spectre v1 protection
• Extend type system: “transient” (public, but may be secret during misspeculation)

• Keep predicate to track misspeculation

• Mask transient data with predicate

• Approach is Selective Speculative Load Hardening (selSLH)

• Performance overhead for crypto: <1%

Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire, Vincent Laporte, Tiago
Oliveira, Swarn Priya, Peter Schwabe, Lucas Tabary-Maujean: Typing High-Speed Cryptography against
Spectre v1. https://eprint.iacr.org/2022/1270 26

https://eprint.iacr.org/2022/1270

Formally verified Kyber (WIP)

27

Formally verified Kyber (WIP)

27

Formally verified Kyber (WIP)

27

Formally verified Kyber (WIP)

• Connect to EasyCrypt IND-CPA proof of HMLWE.CPAPKE-Core EC model

• Connect to EasyCrypt IND-CCA proof of HMLWE.CCAKEM EC model

Joint work with José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Andreas Hülsing, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco,
Miguel Quaresma, Antoine Séré, and Pierre-Yves Strub

27

What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

• we could heavily reduce “noise” in discussions;

. . . and we would probably not have had a single submission.

28

What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

• we could heavily reduce “noise” in discussions;

. . . and we would probably not have had a single submission.

28

What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

• we could heavily reduce “noise” in discussions;

. . . and we would probably not have had a single submission.

28

What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

• we could heavily reduce “noise” in discussions;

. . . and we would probably not have had a single submission.

28

What if. . . ?

Had NIST required computer-verified software and proofs,

• we would have had way fewer bugs in PQC software;

• we would have much higher confidence in all proofs;

• attacks could be much more focused;

• we could heavily reduce “noise” in discussions;

. . . and we would probably not have had a single submission.

28

Interested? Get involved!

https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/

29

https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

