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Crypto today
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Crypto today

5 building blocks for a “secure channel”
Symmetric crypto

e Block or stream cipher (e.g., AES, ChaCha20)

e Authenticator (e.g., HMAC, GMAC, Poly1305)
e Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

e Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)
e Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

e All widely deployed asymmetric crypto relies on

o the hardness of factoring, or
e the hardness of (elliptic-curve) discrete logarithms



... Shor, 1996

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer*

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size. e.g.. the number of digits of the
integer to be factored.



Post-quantum crypto

Definition
Post-quantum crypto is asymmetric crypto that's not based on factoring
or DLP.
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The NIST competition

Count of Problem Category Column Labels |

Row Labels ﬂ Key Exchange Signature Grand Total
? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80

Qa4 kY Q2 [

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.



The NIST competition

Status today

e 69 submissions accepted as “complete and proper”
e Several already broken

e 3 withdrawn



Learning with errors (LWE)

e Given uniform A € ZSXZ
e Given “noise distribution” x

e Given samples As + e, with e + x



Learning with errors (LWE)

Given uniform A € ZZXZ

e Given “noise distribution” x

Given samples As + e, with e «+

Search version: find s

e Decision version: distinguish from uniform random
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e Find nonzero x € Z¢, s.t.:
e Ax=0¢€Zk
o x| <B



Short integer solution (SIS)

e Given uniform A € Z{**
e Find nonzero x € Z¢, s.t.:
e Ax=0¢€Zk
o x| <B
e Needs 8 < g, otherwise trivial



Using structured lattices

e Problem with LWE/SIS-based cryptosystems: public-key size

e Idea to solve this: allow structured matrix A:
e Ring-LWE: work in Z4[X]/(X" +1); n a power of 2, g typically prime
e NTRU: work in Zq[X]/(X" — 1); n prime, g a power of 2
e NTRU Prime: work in Zq[X]/(X" — X — 1); q prime, n prime
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e Problem with LWE/SIS-based cryptosystems: public-key size
e Idea to solve this: allow structured matrix A:

e Ring-LWE: work in Z4[X]/(X" +1); n a power of 2, g typically prime
e NTRU: work in Zq[X]/(X" — 1); n prime, g a power of 2
e NTRU Prime: work in Zq[X]/(X" — X — 1); q prime, n prime

e Perform arithmetic on polynomials instead of vectors/matrices
e Particularly efficient Z4[X]/(X" 4+ 1), with n =2" and 2n | (g — 1)

e Reason: efficient NTT-based multiplication:
f-g=NTT YNTT(f) o NTT(g))

e Problem with these highly structured instances of LWE/SIS:

e Scaling security levels via n: requires re-optimizing code
e Strong structure in LWE instances may enable attacks



CRYSTALS - use module lattices

e In CRYSTALS: use matrices and vectors of small dimension k x ¢
over Zq[X]/ (X% + 1)
e Scale security levels by varying k:

void polyvec_ntt(polyvec *r) {
int 1i;
for(i=0;i<KYBER_K;i++)
poly_ntt (&r->vec[i]);
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CRYSTALS - use module lattices

e In CRYSTALS: use matrices and vectors of small dimension k x ¢
over Zq[X]/ (X% + 1)
e Scale security levels by varying k:

void polyvec_ntt(polyvec *r) {
int 1i;
for(i=0;i<KYBER_K;i++)
poly_ntt (&r->vec[i]);

e Breaks some of the structure in LWE/SIS
Naturally gives us dimension 768

Achieves similar performance as Ring-LWE-based systems
e Important for performance: sample uniformly in NTT domain
For Kyber use g = 7681, for Dilithium g = 8380417
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Kyber: The KEM

joint work with

Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé



The design of Kyber

e Inspired by NewHope, can see it as successor:

e Against-all-authority approach for generating A
e Centered binomial noise (no discrete Gaussians)
e Conservative parameters and analysis

e Easy and efficient to implement

10



The design of Kyber

e Inspired by NewHope, can see it as successor:
e Against-all-authority approach for generating A
e Centered binomial noise (no discrete Gaussians)
e Conservative parameters and analysis
e Easy and efficient to implement
e |Improvements:
e Module-LWE instead of Ring-LWE
e CCA-secure instead of CPA-secure (now also adopted by NewHope)
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Kyber.CPAPKE (“noisy ElGamal”)

Gen()

s,e< x
t«— As +e
pk=1t ,sk=s

Enc(pk, m € {0, 1}2%°)

r,e; — X

u— ATr+e;
t'r

c=u

Dec(sk, c)
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Kyber.CPAPKE (“noisy ElGamal”)

Gen()
p {0’1}256
A «— XOF(p)
s,e < x 056
b As+ e Enc(pk, m € {0,1}°°°)
pk = (t,p),sk =s
A < XOF(p)
r,e;, & <X

u < Compress(A'r + ey, d,)
v < Compress(t"r+ e+ [2] - m,d,)

Dec(sk, c) c=(uv)
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Kyber.CPAPKE (“noisy ElIGamal’)

Gen()
p {0’1}256
A «— XOF(p)
s,e < X
t < Compress(As + e, d;) Enc(pk, m € {0,1}*%°)
pk = (t,p), sk =s t := Decompress(t, d;)
A < XOF(p)
r,ej,e <— X
u < Compress(A'r + ey, d,)
v < Compress(t"r+ e+ [2] - m,d,)
c=(u,v)
Dec(sk, c)

u := Decompress(u, d,,)
v := Decompress(v, d,)
m = Compress(v —s"u, 1)

11



A point we missed. ..

e When compressing the public key, v is not an MLWE sample
e t = Decompress(Compress(As + e, d;)), d;) is not uniform

e This was pointed out by Jan Pieter D'Anvers
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A point we missed. ..

e When compressing the public key, v is not an MLWE sample

e t = Decompress(Compress(As + e, d;)), d;) is not uniform

This was pointed out by Jan Pieter D’Anvers

Possible fix: re-randomize after decompression

Not easy/efficient to do with the current compression

Can simply drop bits
e Easy and efficient to re-randomize

e Introduces more “deterministic noise”

Doesn't lead to an actual attack

e Compression of v hides almost all differences
e On average, 4% of coeffs are different w and w/o compression of t
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Kyber security
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Kyber security

Tight reduction from MLWE in the ROM (if we didn't compress pk)
Non-tight reduction in the QROM
Tight reduction in the QROM with non-standard assumption

Failure probability of < 27140

Interesting questions:

e How much of a problem are a few failures?
e How much can an attacker exploit Grover to produce failures?

Three different parameter sets submitted:
e Kyber512: 102 bits of post-quantum security
e Kyber768: 161 bits of post-quantum security
e Kyber1024: 218 bits of post-quantum security

Security estimates are based on “core-SVP hardness” (see NewHope
paper)

13



Kyber performance

Kyber512

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 1632 gen: 141872 gen: 55160
pk: 736 enc: 205468 enc: 75680
ct: 800 dec: 246040 dec: 74428

e Cycle counts on one core, without TurboBoost and HyperThreading
e Comparison: X25519 gen: 90668 cycles, enc/dec: 138963
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Kyber performance

Kyber768

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 2400 gen: 243004 gen: 85472
pk: 1088 enc: 332616 enc: 112660
ct: 1152  dec: 394424  dec: 108904

e Cycle counts on one core, without TurboBoost and HyperThreading
e Comparison: X25519 gen: 90668 cycles, enc/dec: 138963

14



Kyber performance

Kyber1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

e Cycle counts on one core, without TurboBoost and HyperThreading

e Comparison: X25519 gen: 90668 cycles, enc/dec: 138963
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Kyber performance

Kyber1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

e Cycle counts on one core, without TurboBoost and HyperThreading
e Comparison: X25519 gen: 90668 cycles, enc/dec: 138963
e However, only 32 bytes for X25519 pk and ct

14
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Dilithium: The signature scheme

joint work with

Léo Ducas, Eike Kiltz, Tancréde Lepoint,
Vadim Lyubashevsky, Gregor Seiler, Damien Stehlé



The design of Dilithium

e Use “Fiat-Shamir with aborts” (Lyubashevsky 2009)

e Can think of Dilithium as instantiation of Bai-Gailbraith signatures
(2013)
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The design of Dilithium

e Use “Fiat-Shamir with aborts” (Lyubashevsky 2009)

e Can think of Dilithium as instantiation of Bai-Gailbraith signatures
(2013)

e Avoid Gaussian sampling, use uniform noise
e Reason: easy to implement efficiently

e Optimize for (public-key + signature) size

16



Fiat-Shamir with aborts (“noisy Schnorr”)

Gen()
Sign(sk, m)
S1,Sp < 577
t< As; +so
pk = (p7 t), sk = (P, S1, 52) y < 571—1
Wi Ay
c € Bgog + H(M,Wl)
zZ—y+csy
Verif(pk, m, o)
w, Az — ct 7= 6

Verify that ¢ = H (M, w})
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Fiat-Shamir with aborts (“noisy Schnorr”)

Gen()
p + {0,1}256
A «— XOF(p) Sign(sk, m)
S1,Sp < 577
t < Asi + s A « XOF(p)
pk = (p7 t)’Sk - (P, 51552) y 571_1
Wi Ay
c € Bgy + H(M,Wl)
zZ<y+csy
Verif(pk, m, o)
A — XOF(p)
Wi Az — ct o =(z0¢)

Verify that ¢ = H (M, w})
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Fiat-Shamir with aborts (“noisy Schnorr”)

Gen()
p {0, 1}256
A < XOF(p)
S1,Sp < 577
t<« As; +s5
pk = (/)7 t)’Sk - (P, 51552)

Verif(pk, m, o)
A « XOF(p)
w) + HighBits(Az — ct, 27,)
Verify that ||z|lcc <71 —
Verify that ¢ = H (M, w})

Sign(sk, m)

A < XOF(p)
y—S,1
w; < HighBits(Ay, 272)
c € Bgo + H(M,Wl)
zZ<y+csy

o= (zc)

17



Fiat-Shamir with aborts (“noisy Schnorr”)

Gen()
p {0,125
A « XOF(p)
S1,Sp < 577
t<« As; +s5
pk = (p7 t)’Sk - (P, 51552)

Verif(pk, m, o)
A « XOF(p)
w) + HighBits(Az — ct, 27,)
Verify that ||z|lcc <71 —
Verify that ¢ = H (M, w})

Sign(sk, m)

Repeat:

A < XOF(p)
y—S,1
w; < HighBits(Ay, 272)
c € Bgo + H(M,Wl)
zZ<y+csy
RejSample(z)
RejSample(Ay — cs;)

o= (z,c)

17



Rejection sampling

e Attacker knows that coefficients of y are in {—y; +1,...,71 -1}
e What if a coefficient of z =y + cs; is close to the border?

e Answer: attacker learns something about s;!
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Rejection sampling

e Attacker knows that coefficients of y are in {—y; +1,...,71 -1}
e What if a coefficient of z =y + cs; is close to the border?

e Answer: attacker learns something about s;!

e Solution: reject if any coefficient of z is larger than v; — 8

e Obvious safe value for 5: 60 -7

e Similar: restart if |LowBits(Ay — ¢s2,272)||cc > 72 —

e This second rejection is also required for correctness

18



Compressing the public key

e During verification, compute w} <— HighBits(Az — ct, 27,)
e This does not really need the low bits of t

e Only requires the carries of ct into the high bits
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Compressing the public key

e During verification, compute w} <— HighBits(Az — ct, 27,)
e This does not really need the low bits of t

e Only requires the carries of ct into the high bits

e Idea: compress public key by only including the high bits

e Signature needs to include carries of ct into high bits

e Interesting when public-key size matters:

e factor-2.5 size reduction of the public key
e increase signature size by ~4%

e Public-key size matters, for example, in certificates
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Dilithium security

e Non-tight ROM reduction from MLWE and MSIS
e Tight QROM reduction from MLWE, MSIS, and SelfTargetMSIS
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Dilithium security

Non-tight ROM reduction from MLWE and MSIS
Tight QROM reduction from MLWE, MSIS, and SelfTargetMSIS
Choose 3 slightly smaller than 607

e Requires careful analysis, no concern in practice
e Drastically reduces number of repetitions

e Four parameter sets:

Dilithium-weak: 53 bits of post-quantum security
Dilithium-medium: 91 bits of post-quantum security

Dilithium-recommended: 125 bits of post-quantum security
Dilithium-very-high: 158 bits of post-quantum security

e Again, use core-SVP hardness of MLWE/MSIS

20



Dilithium performance

Dilithium-1024x768 (medium)

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 2800 gen: 269K gen: 156K
pk: 1184 sign: 1285K  sign: 493K
sig: 2044  verify: 296K  verify: 150K

e Comparison with Ed25519:

e Cycles for signing: 61212
e Cycles for verification: 182812
e Signature bytes: 64

21



Dilithium performance

Dilithium-1280x1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 3504 gen: 382K gen: 225K
pk: 1472  sign: 1817K  sign: 673K
sig: 2701 verify: 395K verify: 207K

e Comparison with Ed25519:

e Cycles for signing: 61212
e Cycles for verification: 182812
e Signature bytes: 64

21



Dilithium performance

Dilithium-1536x1280

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)

sk: 3856 gen: 512K  gen: 292K
pk: 1760 sign: 1677K  sign: 711K
sig: 3366 verify: 548K  verify: 288K

e Comparison with Ed25519:

e Cycles for signing: 61212
e Cycles for verification: 182812
e Signature bytes: 64

21



My personal view on post-quantum crypto

Encryption and KEMs

e If you don’t care about public-key size: use McEliece
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My personal view on post-quantum crypto

Encryption and KEMs

e If you don’t care about public-key size: use McEliece
e If you do care about public-key size: use Kyber768 or NewHope
e Combine with pre-quantum crypto, e.g., X25519

Signatures

e If you can, use forward-secure stateful hash-based signatures
(XMSS-SHA3)

e Elseif you can, use (large, slow) stateless hash-based signatures
(SPHINCS+-SHA3)

e Else use Dilithium-recommended plus Ed25519

22



Resources online

e Personal website: https://cryptojedi.org
e CRYSTALS website: https://pq-crystals.org
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