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Introduction to high-speed
cryptography



The Enigma

» Encryption device used
by the German troops in
WWII

» Developed by Scherbius,
patented in 1928

» Variants with different
number of rotors

Source: http://en.wikipedia.org/wiki/File:
Kriegsmarine_Enigma.png, CC-by-sa-3.0
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The Bombes

» Computing devices in
Bletchley Park (UK)

» Used by the English to
break the Enigma
ciphers

» Large influence on the
U-boat war

Source: http://en.wikipedia.org/wiki/File:
TuringBombeBletchleyPark. jpg, GNU FDL 1.2
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W
The Lorenz cipher machine %\ r\){

» Used by German army
for high-level
communication from
~1942

» Extension to a Lorenz
teleprinter

» Used a stream cipher

Source:
http://en.wikipedia.org/wiki/File:Lorenz-SZ42-2. jpg,
public domain
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The Colossus

» First electronic digital
information processing
machine

» Used in Bletchley Park

to break the Lorenz
cipher from 1944

Source: http://en.wikipedia.org/wiki/File:Colossus.jpg,

public domain
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Computing and Cryptology %@ﬁy

» All these machines can be seen as early “computers”

» The Bombes were developed by a team around Alan Turing, who is
sometimes called “the inventor of the computer”
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» Computers were built for cryptography, i.e. encryption (Enigma,
Lorenz machine) ...
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Computing and Cryptology %‘%ﬁ%

» All these machines can be seen as early “computers”

» The Bombes were developed by a team around Alan Turing, who is
sometimes called “the inventor of the computer”

» Computers were built for cryptography, i.e. encryption (Enigma,
Lorenz machine) ...

» ... or for cryptanalysis, i.e. breaking encryptions (Bombes,
Colossus)

» Still today dedicated hardware is developed for encryption:

» Various VIA processors feature the “PadLock Engine”, hardware for
the “Advanced Encryption Standard” (AES), hash algorithms, and
more

» Intel Processors since Westmere have built-in hardware support for
AES (AES-NI instructions)

» Even more common on embedded microprocessors to have hardware
support for crypto
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» Reason for hardware support: Speed! (crypto needs to be fast)
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encryption

High-Speed Cryptography

8



Computing and Cryptology Il %@f\y

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

High-Speed Cryptography

8



Computing and Cryptology Il %@ﬁy

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

» Many servers spend most of their computation on encryption, faster
crypto = fewer servers, lower power bill, higher profit

High-Speed Cryptography 8



Computing and Cryptology Il %@ﬁy

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

» Many servers spend most of their computation on encryption, faster
crypto = fewer servers, lower power bill, higher profit

» In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

High-Speed Cryptography 8



. A
Computing and Cryptology Il %‘%ﬁ%

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

» Many servers spend most of their computation on encryption, faster
crypto = fewer servers, lower power bill, higher profit

» In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

» Obviously not all cryptographic algorithms supported by all
processors in hardware

» Two effects:

High-Speed Cryptography 8



. A
Computing and Cryptology Il %‘%ﬁ%

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

» Many servers spend most of their computation on encryption, faster
crypto = fewer servers, lower power bill, higher profit

» In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

» Obviously not all cryptographic algorithms supported by all
processors in hardware

» Two effects:

» Cryptographic algorithms are designed to be fast in software

High-Speed Cryptography 8



. A
Computing and Cryptology Il %‘%ﬁ%

» Reason for hardware support: Speed! (crypto needs to be fast)

» Users don't want to experience a slowdown from, e.g., harddisk
encryption

» Faster harddisk encryption on laptops saves battery

» Many servers spend most of their computation on encryption, faster
crypto = fewer servers, lower power bill, higher profit

» In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

» Obviously not all cryptographic algorithms supported by all
processors in hardware

» Two effects:

» Cryptographic algorithms are designed to be fast in software
» Huge demand for high-speed software implementations of

cryptography
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Design for high-speed %@f’\y

» In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

» Why did they not choose, e.g., Serpent? Let's see what NIST says:
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In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

» Why did they not choose, e.g., Serpent? Let's see what NIST says:

» “Serpent appears to have a high security margin." (“Rijndael appears
to have an adequate security margin.”)

> “Serpent is well suited to restricted-space environments”
» “[Hardware] Efficiency is generally very good”

> “Serpent is generally the slowest of the finalists in software speed for
encryption and decryption”

» Similar for currently running SHA-3 competition: software speed one
of the most important selection criteria

High-Speed Cryptography °



High-speed software implementations %‘%

» Very common to implement algorithms in assembly
» A 20% speedup is often worth a publication

» Workshop entirely on this topic: “SPEED — Software Performance
Enhancement for Encryption and Decryption”
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High-speed software implementations %‘%

» Very common to implement algorithms in assembly
» A 20% speedup is often worth a publication

» Workshop entirely on this topic: “SPEED — Software Performance
Enhancement for Encryption and Decryption”

Definition
The term high-speed cryptography means the design and implementation
of secure and fast cryptographic software for off-the-shelf computers.
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What high-speed crypto is not %;%K)

(at least not in this talk)

Design of cryptographic primitives targeting high performance
Implementing crypto in hardware
Making crypto faster by choosing low-security functions

Making crypto faster by low-security implementations

High-Speed Cryptography
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» High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)
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Writing secure and fast cryptographic software

High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)
Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)
Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)
Careful optimization on the assembly level

> Fast software

» Secure software
Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography
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Secure software implementations %‘ /)

» Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure
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» Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

» Example 1:

if (secretbit)
£0O;

else
g(O);

» This piece of code takes a different amount of time, depending on
the value of secretbit

» Opens the door for a timing attack: Attacker measures the time,
draws conclusions about secret data (e.g., the key)
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Secure software implementations %‘ff’)
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Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

Example 1:

if (secretbit)
£0O;
else
g0
This piece of code takes a different amount of time, depending on
the value of secretbit

Opens the door for a timing attack: Attacker measures the time,
draws conclusions about secret data (e.g., the key)

Example 2:
x = lookuptable[secret_position];

This code takes different amount of time, depending on whether the
table entry at secure_position is in cache or not

High-Speed Cryptography
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Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

Example 1:

if (secretbit)
£0O;
else
g0
This piece of code takes a different amount of time, depending on
the value of secretbit

Opens the door for a timing attack: Attacker measures the time,
draws conclusions about secret data (e.g., the key)

Example 2:
x = lookuptable[secret_position];

This code takes different amount of time, depending on whether the
table entry at secure_position is in cache or not

Again: The attacker can influence the cache, measure time. ..

High-Speed Cryptography
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The security impact of a new
cryptographic library
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Crypto software state of the art %\%ﬁ W

v

Well studied and understood cryptographic algorithms (AES,
SHA-256, RSA-2048)

Breaking these algorithms considered infeasible

v

v

Various implementations available in public cryptographic libraries
(e.g., OpenSSL)

Common best practice: Use these libraries

v
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Crypto software state of the art % ‘%ﬁ )4

» Well studied and understood cryptographic algorithms (AES,
SHA-256, RSA-2048)

» Breaking these algorithms considered infeasible

» Various implementations available in public cryptographic libraries
(e.g., OpenSSL)

» Common best practice: Use these libraries

» Cryptography is still a disaster, many complete failures of
confidentiality and integrity

High-Speed Cryptography 15
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The NaCl library %‘%ﬁ%

» We designed and implemented a new cryptographic library: NaCl
» Stands for “Networking and Cryptography library”, pronounced “salt”

» Acknowledgements: Code contributions from Matthew Dempsky
(Mochi Media), Niels Duif (TU Eindhoven), Emilia Kasper (KU

Leuven, now Google), Adam Langley (Google), Bo-Yin Yang
(Academia Sinica)

High-Speed Cryptography 16
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Goal of NaCl %‘%ﬁ%

» Most of Internet traffic is not cryptographically protected
» Main goal of NaCl: Change this!
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Goal of NaCl

Most of Internet traffic is not cryptographically protected
Main goal of NaCl: Change this!
Alice has a message m for Bob

Use Bob's public key and Alice's private key to compute
authenticated ciphertext ¢

Send ¢ to Bob

vV v v v

v
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vV v v v

v

v

Most of Internet traffic is not cryptographically protected
Main goal of NaCl: Change this!
Alice has a message m for Bob

Use Bob's public key and Alice's private key to compute
authenticated ciphertext ¢

Send ¢ to Bob

Bob uses Alice’s public key and his private key to verify and recover
m

High-Speed Cryptography 17



Alice using a typical cryptographic library

vV vV vV VvV VvV VvV VY

Generate random AES key

Use AES key to encrypt packet

Hash encrypted packet

Read RSA private key from wire format
Use key to sign hash

Read Bob'’s public key from wire format
Use key to encrypt AES key, signature etc.

Convert to wire format

High-Speed Cryptography
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Alice using a typical cryptographic library %‘%

vV V. vV vV vV vV Vv VvY

Generate random AES key

Use AES key to encrypt packet

Hash encrypted packet

Read RSA private key from wire format
Use key to sign hash

Read Bob'’s public key from wire format
Use key to encrypt AES key, signature etc.
Convert to wire format

Plus more code: allocate storage, handle errors etc.

High-Speed Cryptography
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Alice using NaCl %;%*\)9'

¢ = crypto_box(m,n,sk,pk);

High-Speed Cryptography 19



Alice using NaCl %;%ﬁ))

¢ = crypto_box(m,n,sk,pk);

32-byte private key sk
32-byte public key pk
24-byte nonce n

vV v . v Y

message m
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32-byte public key pk
24-byte nonce n

message m

vV v . v v Yy

c is 16 bytes longer than m
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¢ = crypto_box(m,n,sk,pk);

32-byte private key sk
32-byte public key pk
24-byte nonce n
message m

c is 16 bytes longer than m

vV v v v v Y

All objects are C++ std: :string variables represented in wire
format, ready for storage/transmission
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Alice using NaCl %‘%ﬁ%

¢ = crypto_box(m,n,sk,pk);

32-byte private key sk
32-byte public key pk
24-byte nonce n
message m

c is 16 bytes longer than m

vV v v v v Y

All objects are C++ std: :string variables represented in wire
format, ready for storage/transmission

v

C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Bob using NaCl %;%K)?'

m = crypto_box_open(c,n,pk,sk);

High-Speed Cryptography 20



Bob using NaCl %;%&)9'

m = crypto_box_open(c,n,pk,sk);

» Initial key-pair generation:

pk = crypto_box_keypair (&sk) ;

High-Speed Cryptography 20



Signatures in NaCl %;%&)9'

» Can (instead) use signatures for public messages:
pk = crypto_sign_keypair(&sk) ;

» 64-byte private key sk

» 32-byte public key pk

High-Speed Cryptography 21



Signatures in NaCl %;%&)9'

v

Can (instead) use signatures for public messages:

pk = crypto_sign_keypair(&sk) ;

v

64-byte private key sk
32-byte public key pk
Signing:

v

v

sm = crypto_sign(m,sk);
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Signatures in NaCl %;%&)9'

v

Can (instead) use signatures for public messages:

pk = crypto_sign_keypair(&sk) ;

v

64-byte private key sk
32-byte public key pk

v

v

Signing:
sm = crypto_sign(m,sk);

Verification

v

m = crypto_sign_open(sm,pk);

High-Speed Cryptography 21



No secret load addresses %@f\y

» 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

» Attack needs a process on the same CPU, but without privileges
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v
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v
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» 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)
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Most cryptographic libraries still use lookup tables, but add
“countermeasures”

v

Not confidence-inspiring, likely to be breakable
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No secret load addresses %‘%ﬁ%

» 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

Attack needs a process on the same CPU, but without privileges
Almost all AES implementations use fast lookup tables
Highly vulnerable to cache-timing attacks

vV v.vvY

Most cryptographic libraries still use lookup tables, but add
“countermeasures”

» Not confidence-inspiring, likely to be breakable

» NaCl systematically avoids all loads from addresses that depend on
secret data

» ctgrind (2010 by Langley): tool to validate this automatically

High-Speed Cryptography 22



No secret branch conditions %;%ﬁ)

» 2011 paper by Brumley, Tuveri: minutes to steal another machine’s
OpenSSL ECDSA key

» Attack exploits timing variation from secret branch conditions

» Most cryptographic libraries have many small-scale variations in
timing, e.g. from memcmp

» NaCl systematically avoids all branch conditions that depend on
secret data

High-Speed Cryptography
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No padding oracles %;%ﬁ))

» 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext

> Attack observes server responses to ~ 10° variants of forged
ciphertext
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v

1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext
Attack observes server responses to ~ 10° variants of forged
ciphertext

SSL first inverts RSA, then checks for “PKCS padding”

Server reponses reveal pattern of PKCS forgeries, pattern reveals
plaintext

v

v
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» 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext

> Attack observes server responses to ~ 10° variants of forged
ciphertext

» SSL first inverts RSA, then checks for “PKCS padding”

» Server reponses reveal pattern of PKCS forgeries, pattern reveals
plaintext

» Typical defense: Try to hide differences between padding checks and
subsequent integrity checks

» Hard to get this right: 2009 paper by Albrecht, Paterson, Watson
recovered some SSH plaintext

» NaCl does not decrypt unless message is authenticated

» Verification rejects forgeries in constant time

High-Speed Cryptography 24



Centralizing randomness % @*’\V

» Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

> Attacker could just try all 32768 possible keys
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» Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

> Attacker could just try all 32768 possible keys

» Huge effort to blacklist all insecure keys, generate and deploy new
keys

» Problem was: Debian developer had removed a subtle line of
OpenSSL randomness-generating code

» NaCl retrieves all randomness from /dev/urandom, the OS
random-number generator

» Reviewing this code is much more tractable than reviewing RNG
code in every security library

High-Speed Cryptography 25



Avoiding unnecessary randomness %f)

» ECDSA signatures require new randomness for each signature
» Sony ignored this requirement for PS3 code signing

» 2010 presentation by Bushing, Marcan, Segher, Sven: Complete
break of the PS3 security system
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Avoiding unnecessary randomness %‘%ﬁ%

» ECDSA signatures require new randomness for each signature
» Sony ignored this requirement for PS3 code signing

» 2010 presentation by Bushing, Marcan, Segher, Sven: Complete
break of the PS3 security system

NaCl has deterministic crypto_box and crypto_sign
Randomness is only required for keypair functions
Eliminates this kind of disaster

vV v . v v

Also simplifies testing

High-Speed Cryptography 26



Avoiding pure crypto failures %;2)&)9'

» In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

» Such certificates can be used to impersonate any https website
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» In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

» Such certificates can be used to impersonate any https website

» Already in 1996 Preneel and Dobbertin called for MD5 to be
scrapped
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Avoiding pure crypto failures %‘%ﬁ%

» In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

» Such certificates can be used to impersonate any https website

» Already in 1996 Preneel and Dobbertin called for MD5 to be
scrapped

» NaCl pays attention to cryptanalysis and makes very conservative
choices of cryptographic primitives

High-Speed Cryptography 27
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» Crypto performance problems lead to users reducing security levels
or giving up on crypto
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» Crypto performance problems lead to users reducing security levels
or giving up on crypto
» Example 1: Google SSL uses RSA-1024
> Analysis in 2003 concluded that RSA-1024 was breakable
» Shamir-Tromer estimated 1 year, ~ 107 USD.
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Example 1: Google SSL uses RSA-1024
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» Crypto performance problems lead to users reducing security levels
or giving up on crypto

Analysis in 2003 concluded that RSA-1024 was breakable

Shamir-Tromer estimated 1 year, == 107 USD.

Example 2: Tor anonymizer uses RSA-1024

High-Speed Cryptography
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» Crypto performance problems lead to users reducing security levels
or giving up on crypto

Example 1: Google SSL uses RSA-1024

Analysis in 2003 concluded that RSA-1024 was breakable
Shamir-Tromer estimated 1 year, == 107 USD.

Example 2: Tor anonymizer uses RSA-1024

Example 3: DNSSEC uses RSA-1024 “tradeoff between the risk of
key compromise and performance”

Example 4: https://sourceforge.net/account is proteced by
SSL, but

https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

» NaCl has no low-security options:

>

>

crypto_box always encrypts and authenticates
no RSA-1024, not even RSA-2048
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» NaCl is exceptionally fast, much faster than other libraries

> Keeps up with the network
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» NaCl is exceptionally fast, much faster than other libraries
> Keeps up with the network

» Operations per second on an AMD Phenom Il X6 1100 T (164 €)
crypto_box: More than 80000

crypto_box_open: More than 80000

crypto_sign_open: More than 70000

crypto_sign: More than 180000
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NaCl is exceptionally fast, much faster than other libraries

v

Keeps up with the network
Operations per second on an AMD Phenom Il X6 1100 T (164 €)
» crypto_box: More than 80000
» crypto_box_open: More than 80000
» crypto_sign_open: More than 70000
» crypto_sign: More than 180000

v

v

80000 1500-byte packets/second fill up a 1Gbps link
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» Many packets to the same public key can gain speed: Split
crypto_box into crypto_box_beforenm and
crypto_box_afternm

» Perform operations depending only on the keys sk and pk only once
(in crypto_box_beforenm)
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» Many packets to the same public key can gain speed: Split
crypto_box into crypto_box_beforenm and
crypto_box_afternm

» Perform operations depending only on the keys sk and pk only once
(in crypto_box_beforenm)

» Batch verification for signatures: double verification speed for a
batch of 64 valid signatures
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NaCl Website: http://nacl.cr.yp.to
All code is in the public domain: Use it any way you want!
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NaCl Website: http://nacl.cr.yp.to
All code is in the public domain: Use it any way you want!

Paper “ The security impact of a new cryptographic library'
will be online soon at
http://cryptojedi.org/papers/#coolnacl
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