
High-Speed Cryptography

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Tanja Lange

October 24, 2011

Graduate Seminar



Part I

Introduction to high-speed

cryptography

High-Speed Cryptography 2



The Enigma

I Encryption device used
by the German troops in
WWII

I Developed by Scherbius,
patented in 1928

I Variants with different
number of rotors

Source: http://en.wikipedia.org/wiki/File:
Kriegsmarine_Enigma.png, CC-by-sa-3.0

High-Speed Cryptography 3

http://en.wikipedia.org/wiki/File:Kriegsmarine_Enigma.png
http://en.wikipedia.org/wiki/File:Kriegsmarine_Enigma.png


The Bombes

I Computing devices in
Bletchley Park (UK)

I Used by the English to
break the Enigma
ciphers

I Large influence on the
U-boat war

Source: http://en.wikipedia.org/wiki/File:
TuringBombeBletchleyPark.jpg, GNU FDL 1.2

High-Speed Cryptography 4

http://en.wikipedia.org/wiki/File:TuringBombeBletchleyPark.jpg
http://en.wikipedia.org/wiki/File:TuringBombeBletchleyPark.jpg


The Lorenz cipher machine

I Used by German army
for high-level
communication from
∼1942

I Extension to a Lorenz
teleprinter

I Used a stream cipher

Source:
http://en.wikipedia.org/wiki/File:Lorenz-SZ42-2.jpg,
public domain

High-Speed Cryptography 5

http://en.wikipedia.org/wiki/File:Lorenz-SZ42-2.jpg


The Colossus

I First electronic digital
information processing
machine

I Used in Bletchley Park
to break the Lorenz
cipher from 1944

Source: http://en.wikipedia.org/wiki/File:Colossus.jpg,
public domain

High-Speed Cryptography 6

http://en.wikipedia.org/wiki/File:Colossus.jpg


Computing and Cryptology

I All these machines can be seen as early “computers”
I The Bombes were developed by a team around Alan Turing, who is

sometimes called “the inventor of the computer”

I Computers were built for cryptography, i.e. encryption (Enigma,
Lorenz machine) . . .

I . . . or for cryptanalysis, i.e. breaking encryptions (Bombes,
Colossus)

I Still today dedicated hardware is developed for encryption:
I Various VIA processors feature the �PadLock Engine�, hardware for

the �Advanced Encryption Standard� (AES), hash algorithms, and
more

I Intel Processors since Westmere have built-in hardware support for
AES (AES-NI instructions)

I Even more common on embedded microprocessors to have hardware
support for crypto

High-Speed Cryptography 7



Computing and Cryptology

I All these machines can be seen as early “computers”
I The Bombes were developed by a team around Alan Turing, who is

sometimes called “the inventor of the computer”
I Computers were built for cryptography, i.e. encryption (Enigma,

Lorenz machine) . . .

I . . . or for cryptanalysis, i.e. breaking encryptions (Bombes,
Colossus)

I Still today dedicated hardware is developed for encryption:
I Various VIA processors feature the �PadLock Engine�, hardware for

the �Advanced Encryption Standard� (AES), hash algorithms, and
more

I Intel Processors since Westmere have built-in hardware support for
AES (AES-NI instructions)

I Even more common on embedded microprocessors to have hardware
support for crypto

High-Speed Cryptography 7



Computing and Cryptology

I All these machines can be seen as early “computers”
I The Bombes were developed by a team around Alan Turing, who is

sometimes called “the inventor of the computer”
I Computers were built for cryptography, i.e. encryption (Enigma,

Lorenz machine) . . .
I . . . or for cryptanalysis, i.e. breaking encryptions (Bombes,

Colossus)

I Still today dedicated hardware is developed for encryption:
I Various VIA processors feature the �PadLock Engine�, hardware for

the �Advanced Encryption Standard� (AES), hash algorithms, and
more

I Intel Processors since Westmere have built-in hardware support for
AES (AES-NI instructions)

I Even more common on embedded microprocessors to have hardware
support for crypto

High-Speed Cryptography 7



Computing and Cryptology

I All these machines can be seen as early “computers”
I The Bombes were developed by a team around Alan Turing, who is

sometimes called “the inventor of the computer”
I Computers were built for cryptography, i.e. encryption (Enigma,

Lorenz machine) . . .
I . . . or for cryptanalysis, i.e. breaking encryptions (Bombes,

Colossus)
I Still today dedicated hardware is developed for encryption:

I Various VIA processors feature the �PadLock Engine�, hardware for
the �Advanced Encryption Standard� (AES), hash algorithms, and
more

I Intel Processors since Westmere have built-in hardware support for
AES (AES-NI instructions)

I Even more common on embedded microprocessors to have hardware
support for crypto

High-Speed Cryptography 7



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)

I Users don’t want to experience a slowdown from, e.g., harddisk
encryption

I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often
I Obviously not all cryptographic algorithms supported by all

processors in hardware
I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption

I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often
I Obviously not all cryptographic algorithms supported by all

processors in hardware
I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery

I Many servers spend most of their computation on encryption, faster
crypto ⇒ fewer servers, lower power bill, higher profit

I In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

I Obviously not all cryptographic algorithms supported by all
processors in hardware

I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit

I In principle this is true for all algorithms; cryptographic algorithms
are “small”, typically executed very often

I Obviously not all cryptographic algorithms supported by all
processors in hardware

I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often

I Obviously not all cryptographic algorithms supported by all
processors in hardware

I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often
I Obviously not all cryptographic algorithms supported by all

processors in hardware
I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often
I Obviously not all cryptographic algorithms supported by all

processors in hardware
I Two effects:

I Cryptographic algorithms are designed to be fast in software

I Huge demand for high-speed software implementations of
cryptography

High-Speed Cryptography 8



Computing and Cryptology II

I Reason for hardware support: Speed! (crypto needs to be fast)
I Users don’t want to experience a slowdown from, e.g., harddisk

encryption
I Faster harddisk encryption on laptops saves battery
I Many servers spend most of their computation on encryption, faster

crypto ⇒ fewer servers, lower power bill, higher profit
I In principle this is true for all algorithms; cryptographic algorithms

are “small”, typically executed very often
I Obviously not all cryptographic algorithms supported by all

processors in hardware
I Two effects:

I Cryptographic algorithms are designed to be fast in software
I Huge demand for high-speed software implementations of

cryptography

High-Speed Cryptography 8



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:

I “Serpent appears to have a high security margin.” (“Rijndael appears
to have an adequate security margin.”)

I “Serpent is well suited to restricted-space environments”
I “[Hardware] Efficiency is generally very good”
I “Serpent is generally the slowest of the finalists in software speed for

encryption and decryption”
I Similar for currently running SHA-3 competition: software speed one

of the most important selection criteria

High-Speed Cryptography 9



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:
I “Serpent appears to have a high security margin.” (“Rijndael appears

to have an adequate security margin.”)

I “Serpent is well suited to restricted-space environments”
I “[Hardware] Efficiency is generally very good”
I “Serpent is generally the slowest of the finalists in software speed for

encryption and decryption”
I Similar for currently running SHA-3 competition: software speed one

of the most important selection criteria

High-Speed Cryptography 9



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:
I “Serpent appears to have a high security margin.” (“Rijndael appears

to have an adequate security margin.”)
I “Serpent is well suited to restricted-space environments”

I “[Hardware] Efficiency is generally very good”
I “Serpent is generally the slowest of the finalists in software speed for

encryption and decryption”
I Similar for currently running SHA-3 competition: software speed one

of the most important selection criteria

High-Speed Cryptography 9



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:
I “Serpent appears to have a high security margin.” (“Rijndael appears

to have an adequate security margin.”)
I “Serpent is well suited to restricted-space environments”
I “[Hardware] Efficiency is generally very good”

I “Serpent is generally the slowest of the finalists in software speed for
encryption and decryption”

I Similar for currently running SHA-3 competition: software speed one
of the most important selection criteria

High-Speed Cryptography 9



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:
I “Serpent appears to have a high security margin.” (“Rijndael appears

to have an adequate security margin.”)
I “Serpent is well suited to restricted-space environments”
I “[Hardware] Efficiency is generally very good”
I “Serpent is generally the slowest of the finalists in software speed for

encryption and decryption”

I Similar for currently running SHA-3 competition: software speed one
of the most important selection criteria

High-Speed Cryptography 9



Design for high-speed

I In 2000 NIST standardized Rijndael as AES, selection was between 5
algorithms

I Why did they not choose, e.g., Serpent? Let’s see what NIST says:
I “Serpent appears to have a high security margin.” (“Rijndael appears

to have an adequate security margin.”)
I “Serpent is well suited to restricted-space environments”
I “[Hardware] Efficiency is generally very good”
I “Serpent is generally the slowest of the finalists in software speed for

encryption and decryption”
I Similar for currently running SHA-3 competition: software speed one

of the most important selection criteria

High-Speed Cryptography 9



High-speed software implementations

I Very common to implement algorithms in assembly
I A 20% speedup is often worth a publication
I Workshop entirely on this topic: “SPEED – Software Performance

Enhancement for Encryption and Decryption”

De�nition
The term high-speed cryptography means the design and implementation
of secure and fast cryptographic software for off-the-shelf computers.

High-Speed Cryptography 10



High-speed software implementations

I Very common to implement algorithms in assembly
I A 20% speedup is often worth a publication
I Workshop entirely on this topic: “SPEED – Software Performance

Enhancement for Encryption and Decryption”

De�nition
The term high-speed cryptography means the design and implementation
of secure and fast cryptographic software for off-the-shelf computers.

High-Speed Cryptography 10



What high-speed crypto is not
(at least not in this talk)

I Design of cryptographic primitives targeting high performance
I Implementing crypto in hardware
I Making crypto faster by choosing low-security functions
I Making crypto faster by low-security implementations

High-Speed Cryptography 11



Writing secure and fast cryptographic software

I High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)

I Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)

I Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)

I Careful optimization on the assembly level
I Fast software
I Secure software

I Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography 12



Writing secure and fast cryptographic software

I High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)

I Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)

I Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)

I Careful optimization on the assembly level
I Fast software
I Secure software

I Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography 12



Writing secure and fast cryptographic software

I High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)

I Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)

I Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)

I Careful optimization on the assembly level
I Fast software
I Secure software

I Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography 12



Writing secure and fast cryptographic software

I High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)

I Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)

I Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)

I Careful optimization on the assembly level
I Fast software
I Secure software

I Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography 12



Writing secure and fast cryptographic software

I High-level parameter choices (mathematical structures, e.g., finite
fields, elliptic curves)

I Choice of high-level algorithms (e.g., scalar multiplication,
exponentiation)

I Representation of structures and low-level algorithms (e.g.,
representation of big integers, modular multiplication algorithm,
bitslicing technique)

I Careful optimization on the assembly level
I Fast software
I Secure software

I Considerations of subtle interactions between these levels (e.g., a
certain set of high-level parameters may only be “good” for certain
microarchitectures)

High-Speed Cryptography 12



Secure software implementations

I Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

I Example 1:
if(secretbit)

f();
else

g();
I This piece of code takes a different amount of time, depending on

the value of secretbit
I Opens the door for a timing attack: Attacker measures the time,

draws conclusions about secret data (e.g., the key)
I Example 2:

x = lookuptable[secret_position];
I This code takes different amount of time, depending on whether the

table entry at secure_position is in cache or not
I Again: The attacker can influence the cache, measure time. . .

High-Speed Cryptography 13



Secure software implementations

I Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

I Example 1:
if(secretbit)

f();
else

g();
I This piece of code takes a different amount of time, depending on

the value of secretbit
I Opens the door for a timing attack: Attacker measures the time,

draws conclusions about secret data (e.g., the key)

I Example 2:
x = lookuptable[secret_position];

I This code takes different amount of time, depending on whether the
table entry at secure_position is in cache or not

I Again: The attacker can influence the cache, measure time. . .

High-Speed Cryptography 13



Secure software implementations

I Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

I Example 1:
if(secretbit)

f();
else

g();
I This piece of code takes a different amount of time, depending on

the value of secretbit
I Opens the door for a timing attack: Attacker measures the time,

draws conclusions about secret data (e.g., the key)
I Example 2:

x = lookuptable[secret_position];

I This code takes different amount of time, depending on whether the
table entry at secure_position is in cache or not

I Again: The attacker can influence the cache, measure time. . .

High-Speed Cryptography 13



Secure software implementations

I Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

I Example 1:
if(secretbit)

f();
else

g();
I This piece of code takes a different amount of time, depending on

the value of secretbit
I Opens the door for a timing attack: Attacker measures the time,

draws conclusions about secret data (e.g., the key)
I Example 2:

x = lookuptable[secret_position];
I This code takes different amount of time, depending on whether the

table entry at secure_position is in cache or not

I Again: The attacker can influence the cache, measure time. . .

High-Speed Cryptography 13



Secure software implementations

I Just because a cryptographic function is considered secure, an
implementation of this function can still be insecure

I Example 1:
if(secretbit)

f();
else

g();
I This piece of code takes a different amount of time, depending on

the value of secretbit
I Opens the door for a timing attack: Attacker measures the time,

draws conclusions about secret data (e.g., the key)
I Example 2:

x = lookuptable[secret_position];
I This code takes different amount of time, depending on whether the

table entry at secure_position is in cache or not
I Again: The attacker can influence the cache, measure time. . .

High-Speed Cryptography 13



Part II

The security impact of a new

cryptographic library

High-Speed Cryptography 14



Crypto software state of the art

I Well studied and understood cryptographic algorithms (AES,
SHA-256, RSA-2048)

I Breaking these algorithms considered infeasible
I Various implementations available in public cryptographic libraries

(e.g., OpenSSL)
I Common best practice: Use these libraries

I Cryptography is still a disaster, many complete failures of
confidentiality and integrity

High-Speed Cryptography 15



Crypto software state of the art

I Well studied and understood cryptographic algorithms (AES,
SHA-256, RSA-2048)

I Breaking these algorithms considered infeasible
I Various implementations available in public cryptographic libraries

(e.g., OpenSSL)
I Common best practice: Use these libraries
I Cryptography is still a disaster, many complete failures of

confidentiality and integrity

High-Speed Cryptography 15



The NaCl library

I We designed and implemented a new cryptographic library: NaCl
I Stands for “Networking and Cryptography library”, pronounced “salt”
I Acknowledgements: Code contributions from Matthew Dempsky

(Mochi Media), Niels Duif (TU Eindhoven), Emilia Käsper (KU
Leuven, now Google), Adam Langley (Google), Bo-Yin Yang
(Academia Sinica)

High-Speed Cryptography 16



Goal of NaCl

I Most of Internet traffic is not cryptographically protected
I Main goal of NaCl: Change this!

I Alice has a message m for Bob
I Use Bob’s public key and Alice’s private key to compute

authenticated ciphertext c
I Send c to Bob
I Bob uses Alice’s public key and his private key to verify and recover

m

High-Speed Cryptography 17



Goal of NaCl

I Most of Internet traffic is not cryptographically protected
I Main goal of NaCl: Change this!
I Alice has a message m for Bob
I Use Bob’s public key and Alice’s private key to compute

authenticated ciphertext c
I Send c to Bob

I Bob uses Alice’s public key and his private key to verify and recover
m

High-Speed Cryptography 17



Goal of NaCl

I Most of Internet traffic is not cryptographically protected
I Main goal of NaCl: Change this!
I Alice has a message m for Bob
I Use Bob’s public key and Alice’s private key to compute

authenticated ciphertext c
I Send c to Bob
I Bob uses Alice’s public key and his private key to verify and recover

m

High-Speed Cryptography 17



Alice using a typical cryptographic library

I Generate random AES key
I Use AES key to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s public key from wire format
I Use key to encrypt AES key, signature etc.
I Convert to wire format

I Plus more code: allocate storage, handle errors etc.

High-Speed Cryptography 18



Alice using a typical cryptographic library

I Generate random AES key
I Use AES key to encrypt packet
I Hash encrypted packet
I Read RSA private key from wire format
I Use key to sign hash
I Read Bob’s public key from wire format
I Use key to encrypt AES key, signature etc.
I Convert to wire format
I Plus more code: allocate storage, handle errors etc.

High-Speed Cryptography 18



Alice using NaCl

c = crypto_box(m,n,sk,pk);

I 32-byte private key sk
I 32-byte public key pk
I 24-byte nonce n
I message m
I c is 16 bytes longer than m
I All objects are C++ std::string variables represented in wire

format, ready for storage/transmission
I C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Alice using NaCl

c = crypto_box(m,n,sk,pk);

I 32-byte private key sk
I 32-byte public key pk
I 24-byte nonce n
I message m

I c is 16 bytes longer than m
I All objects are C++ std::string variables represented in wire

format, ready for storage/transmission
I C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Alice using NaCl

c = crypto_box(m,n,sk,pk);

I 32-byte private key sk
I 32-byte public key pk
I 24-byte nonce n
I message m
I c is 16 bytes longer than m

I All objects are C++ std::string variables represented in wire
format, ready for storage/transmission

I C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Alice using NaCl

c = crypto_box(m,n,sk,pk);

I 32-byte private key sk
I 32-byte public key pk
I 24-byte nonce n
I message m
I c is 16 bytes longer than m
I All objects are C++ std::string variables represented in wire

format, ready for storage/transmission

I C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Alice using NaCl

c = crypto_box(m,n,sk,pk);

I 32-byte private key sk
I 32-byte public key pk
I 24-byte nonce n
I message m
I c is 16 bytes longer than m
I All objects are C++ std::string variables represented in wire

format, ready for storage/transmission
I C NaCl: Similar, using pointers; no memory allocation, no failures

High-Speed Cryptography 19



Bob using NaCl

m = crypto_box_open(c,n,pk,sk);

I Initial key-pair generation:

pk = crypto_box_keypair(&sk);

High-Speed Cryptography 20



Bob using NaCl

m = crypto_box_open(c,n,pk,sk);

I Initial key-pair generation:

pk = crypto_box_keypair(&sk);

High-Speed Cryptography 20



Signatures in NaCl

I Can (instead) use signatures for public messages:
pk = crypto_sign_keypair(&sk);

I 64-byte private key sk
I 32-byte public key pk

I Signing:
sm = crypto_sign(m,sk);

I Verification
m = crypto_sign_open(sm,pk);

High-Speed Cryptography 21



Signatures in NaCl

I Can (instead) use signatures for public messages:
pk = crypto_sign_keypair(&sk);

I 64-byte private key sk
I 32-byte public key pk
I Signing:

sm = crypto_sign(m,sk);

I Verification
m = crypto_sign_open(sm,pk);

High-Speed Cryptography 21



Signatures in NaCl

I Can (instead) use signatures for public messages:
pk = crypto_sign_keypair(&sk);

I 64-byte private key sk
I 32-byte public key pk
I Signing:

sm = crypto_sign(m,sk);
I Verification

m = crypto_sign_open(sm,pk);

High-Speed Cryptography 21



No secret load addresses

I 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

I Attack needs a process on the same CPU, but without privileges

I Almost all AES implementations use fast lookup tables
I Highly vulnerable to cache-timing attacks
I Most cryptographic libraries still use lookup tables, but add

“countermeasures”
I Not confidence-inspiring, likely to be breakable
I NaCl systematically avoids all loads from addresses that depend on

secret data
I ctgrind (2010 by Langley): tool to validate this automatically

High-Speed Cryptography 22



No secret load addresses

I 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

I Attack needs a process on the same CPU, but without privileges
I Almost all AES implementations use fast lookup tables
I Highly vulnerable to cache-timing attacks

I Most cryptographic libraries still use lookup tables, but add
“countermeasures”

I Not confidence-inspiring, likely to be breakable
I NaCl systematically avoids all loads from addresses that depend on

secret data
I ctgrind (2010 by Langley): tool to validate this automatically

High-Speed Cryptography 22



No secret load addresses

I 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

I Attack needs a process on the same CPU, but without privileges
I Almost all AES implementations use fast lookup tables
I Highly vulnerable to cache-timing attacks
I Most cryptographic libraries still use lookup tables, but add

“countermeasures”
I Not confidence-inspiring, likely to be breakable

I NaCl systematically avoids all loads from addresses that depend on
secret data

I ctgrind (2010 by Langley): tool to validate this automatically

High-Speed Cryptography 22



No secret load addresses

I 2005 paper by Osvik, Shamir, Tromer: 65 ms to steal Linux AES key
used for hard-disk encryption (dm-crypt)

I Attack needs a process on the same CPU, but without privileges
I Almost all AES implementations use fast lookup tables
I Highly vulnerable to cache-timing attacks
I Most cryptographic libraries still use lookup tables, but add

“countermeasures”
I Not confidence-inspiring, likely to be breakable
I NaCl systematically avoids all loads from addresses that depend on

secret data
I ctgrind (2010 by Langley): tool to validate this automatically

High-Speed Cryptography 22



No secret branch conditions

I 2011 paper by Brumley, Tuveri: minutes to steal another machine’s
OpenSSL ECDSA key

I Attack exploits timing variation from secret branch conditions
I Most cryptographic libraries have many small-scale variations in

timing, e.g. from memcmp
I NaCl systematically avoids all branch conditions that depend on

secret data

High-Speed Cryptography 23



No padding oracles

I 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext
I Attack observes server responses to ≈ 106 variants of forged

ciphertext

I SSL first inverts RSA, then checks for “PKCS padding”
I Server reponses reveal pattern of PKCS forgeries, pattern reveals

plaintext
I Typical defense: Try to hide differences between padding checks and

subsequent integrity checks
I Hard to get this right: 2009 paper by Albrecht, Paterson, Watson

recovered some SSH plaintext
I NaCl does not decrypt unless message is authenticated
I Verification rejects forgeries in constant time

High-Speed Cryptography 24



No padding oracles

I 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext
I Attack observes server responses to ≈ 106 variants of forged

ciphertext
I SSL first inverts RSA, then checks for “PKCS padding”
I Server reponses reveal pattern of PKCS forgeries, pattern reveals

plaintext

I Typical defense: Try to hide differences between padding checks and
subsequent integrity checks

I Hard to get this right: 2009 paper by Albrecht, Paterson, Watson
recovered some SSH plaintext

I NaCl does not decrypt unless message is authenticated
I Verification rejects forgeries in constant time

High-Speed Cryptography 24



No padding oracles

I 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext
I Attack observes server responses to ≈ 106 variants of forged

ciphertext
I SSL first inverts RSA, then checks for “PKCS padding”
I Server reponses reveal pattern of PKCS forgeries, pattern reveals

plaintext
I Typical defense: Try to hide differences between padding checks and

subsequent integrity checks
I Hard to get this right: 2009 paper by Albrecht, Paterson, Watson

recovered some SSH plaintext

I NaCl does not decrypt unless message is authenticated
I Verification rejects forgeries in constant time

High-Speed Cryptography 24



No padding oracles

I 1998 paper by Bleichenbacher: Decrypt SSL RSA ciphertext
I Attack observes server responses to ≈ 106 variants of forged

ciphertext
I SSL first inverts RSA, then checks for “PKCS padding”
I Server reponses reveal pattern of PKCS forgeries, pattern reveals

plaintext
I Typical defense: Try to hide differences between padding checks and

subsequent integrity checks
I Hard to get this right: 2009 paper by Albrecht, Paterson, Watson

recovered some SSH plaintext
I NaCl does not decrypt unless message is authenticated
I Verification rejects forgeries in constant time

High-Speed Cryptography 24



Centralizing randomness

I Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

I Attacker could just try all 32768 possible keys

I Huge effort to blacklist all insecure keys, generate and deploy new
keys

I Problem was: Debian developer had removed a subtle line of
OpenSSL randomness-generating code

I NaCl retrieves all randomness from /dev/urandom, the OS
random-number generator

I Reviewing this code is much more tractable than reviewing RNG
code in every security library

High-Speed Cryptography 25



Centralizing randomness

I Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

I Attacker could just try all 32768 possible keys
I Huge effort to blacklist all insecure keys, generate and deploy new

keys

I Problem was: Debian developer had removed a subtle line of
OpenSSL randomness-generating code

I NaCl retrieves all randomness from /dev/urandom, the OS
random-number generator

I Reviewing this code is much more tractable than reviewing RNG
code in every security library

High-Speed Cryptography 25



Centralizing randomness

I Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

I Attacker could just try all 32768 possible keys
I Huge effort to blacklist all insecure keys, generate and deploy new

keys
I Problem was: Debian developer had removed a subtle line of

OpenSSL randomness-generating code

I NaCl retrieves all randomness from /dev/urandom, the OS
random-number generator

I Reviewing this code is much more tractable than reviewing RNG
code in every security library

High-Speed Cryptography 25



Centralizing randomness

I Observation by Bello (2008): Debian/Ubuntu OpenSSL keys had
only 15 bits of entropy for 1.5 years

I Attacker could just try all 32768 possible keys
I Huge effort to blacklist all insecure keys, generate and deploy new

keys
I Problem was: Debian developer had removed a subtle line of

OpenSSL randomness-generating code
I NaCl retrieves all randomness from /dev/urandom, the OS

random-number generator
I Reviewing this code is much more tractable than reviewing RNG

code in every security library

High-Speed Cryptography 25



Avoiding unnecessary randomness

I ECDSA signatures require new randomness for each signature
I Sony ignored this requirement for PS3 code signing
I 2010 presentation by Bushing, Marcan, Segher, Sven: Complete

break of the PS3 security system

I NaCl has deterministic crypto_box and crypto_sign
I Randomness is only required for keypair functions
I Eliminates this kind of disaster
I Also simplifies testing

High-Speed Cryptography 26



Avoiding unnecessary randomness

I ECDSA signatures require new randomness for each signature
I Sony ignored this requirement for PS3 code signing
I 2010 presentation by Bushing, Marcan, Segher, Sven: Complete

break of the PS3 security system
I NaCl has deterministic crypto_box and crypto_sign
I Randomness is only required for keypair functions

I Eliminates this kind of disaster
I Also simplifies testing

High-Speed Cryptography 26



Avoiding unnecessary randomness

I ECDSA signatures require new randomness for each signature
I Sony ignored this requirement for PS3 code signing
I 2010 presentation by Bushing, Marcan, Segher, Sven: Complete

break of the PS3 security system
I NaCl has deterministic crypto_box and crypto_sign
I Randomness is only required for keypair functions
I Eliminates this kind of disaster
I Also simplifies testing

High-Speed Cryptography 26



Avoiding pure crypto failures

I In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

I Such certificates can be used to impersonate any https website

I Already in 1996 Preneel and Dobbertin called for MD5 to be
scrapped

I NaCl pays attention to cryptanalysis and makes very conservative
choices of cryptographic primitives

High-Speed Cryptography 27



Avoiding pure crypto failures

I In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

I Such certificates can be used to impersonate any https website
I Already in 1996 Preneel and Dobbertin called for MD5 to be

scrapped

I NaCl pays attention to cryptanalysis and makes very conservative
choices of cryptographic primitives

High-Speed Cryptography 27



Avoiding pure crypto failures

I In 2008 Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik, de
Weger exploited MD5 weakness to create a rogue CA certificate

I Such certificates can be used to impersonate any https website
I Already in 1996 Preneel and Dobbertin called for MD5 to be

scrapped
I NaCl pays attention to cryptanalysis and makes very conservative

choices of cryptographic primitives

High-Speed Cryptography 27



Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.
I Example 2: Tor anonymizer uses RSA-1024
I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of

key compromise and performance�
I Example 4: https://sourceforge.net/account is proteced by

SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:

I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.

I Example 2: Tor anonymizer uses RSA-1024
I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of

key compromise and performance�
I Example 4: https://sourceforge.net/account is proteced by

SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:

I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.
I Example 2: Tor anonymizer uses RSA-1024

I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of
key compromise and performance�

I Example 4: https://sourceforge.net/account is proteced by
SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:

I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.
I Example 2: Tor anonymizer uses RSA-1024
I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of

key compromise and performance�

I Example 4: https://sourceforge.net/account is proteced by
SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:

I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.
I Example 2: Tor anonymizer uses RSA-1024
I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of

key compromise and performance�
I Example 4: https://sourceforge.net/account is proteced by

SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:

I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


Speed

I Crypto performance problems lead to users reducing security levels
or giving up on crypto

I Example 1: Google SSL uses RSA-1024
I Analysis in 2003 concluded that RSA-1024 was breakable
I Shamir-Tromer estimated 1 year, ≈ 107 USD.
I Example 2: Tor anonymizer uses RSA-1024
I Example 3: DNSSEC uses RSA-1024 �tradeo� between the risk of

key compromise and performance�
I Example 4: https://sourceforge.net/account is proteced by

SSL, but
https://sourceforge.net/develop redirects to
http://sourceforge.net/develop, turning of cryptography

I NaCl has no low-security options:
I crypto_box always encrypts and authenticates
I no RSA-1024, not even RSA-2048

High-Speed Cryptography 28

https://sourceforge.net/account
https://sourceforge.net/develop
http://sourceforge.net/develop


NaCl speed

I NaCl is exceptionally fast, much faster than other libraries
I Keeps up with the network

I Operations per second on an AMD Phenom II X6 1100 T (164 e)
I crypto_box: More than 80000
I crypto_box_open: More than 80000
I crypto_sign_open: More than 70000
I crypto_sign: More than 180000

I 80000 1500-byte packets/second fill up a 1Gbps link

High-Speed Cryptography 29



NaCl speed

I NaCl is exceptionally fast, much faster than other libraries
I Keeps up with the network
I Operations per second on an AMD Phenom II X6 1100 T (164 e)

I crypto_box: More than 80000
I crypto_box_open: More than 80000
I crypto_sign_open: More than 70000
I crypto_sign: More than 180000

I 80000 1500-byte packets/second fill up a 1Gbps link

High-Speed Cryptography 29



NaCl speed

I NaCl is exceptionally fast, much faster than other libraries
I Keeps up with the network
I Operations per second on an AMD Phenom II X6 1100 T (164 e)

I crypto_box: More than 80000
I crypto_box_open: More than 80000
I crypto_sign_open: More than 70000
I crypto_sign: More than 180000

I 80000 1500-byte packets/second fill up a 1Gbps link

High-Speed Cryptography 29



Even more NaCl speed

I Many packets to the same public key can gain speed: Split
crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Perform operations depending only on the keys sk and pk only once
(in crypto_box_beforenm)

I Batch verification for signatures: double verification speed for a
batch of 64 valid signatures

High-Speed Cryptography 30



Even more NaCl speed

I Many packets to the same public key can gain speed: Split
crypto_box into crypto_box_beforenm and
crypto_box_afternm

I Perform operations depending only on the keys sk and pk only once
(in crypto_box_beforenm)

I Batch verification for signatures: double verification speed for a
batch of 64 valid signatures

High-Speed Cryptography 30



More information

NaCl Website: http://nacl.cr.yp.to
All code is in the public domain: Use it any way you want!

Paper �The security impact of a new cryptographic library�
will be online soon at
http://cryptojedi.org/papers/#coolnacl

High-Speed Cryptography 31

http://nacl.cr.yp.to
http://cryptojedi.org/papers/#coolnacl


More information

NaCl Website: http://nacl.cr.yp.to
All code is in the public domain: Use it any way you want!

Paper �The security impact of a new cryptographic library�
will be online soon at
http://cryptojedi.org/papers/#coolnacl

High-Speed Cryptography 31

http://nacl.cr.yp.to
http://cryptojedi.org/papers/#coolnacl

