
Post-quantum crypto on ARM Cortex-M

Peter Schwabe

peter@cryptojedi.org

https://cryptojedi.org

January 23, 2019

mailto:peter@cryptojedi.org
https://cryptojedi.org

PQCRYPTO

• Project funded by EU in Horizon 2020.

• Running from March 2015 until February 2018

• 11 partners from academia and industry, TU/e was coordinator

• 22 submissions to NIST PQC project

1

PQCRYPTO – WP1

• Find post-quantum secure cryptosystems suitable for small devices in

power and memory requirements (e.g. smart cards with 8-bit or

16-bit or 32-bit architectures, with different amounts of RAM)

• Develop efficient implementations of these systems.

• Main challenge: memory, e.g.,

• McEliece (code-based encryption): ≈ 1 MB public key

• GUI (MQ-based signatures) ≈ 2 MB public key

• SPHINCS+: 8–50 KB signatures

• Additional challenges:

• Computational complexity

• Implementation security

2

PQCRYPTO – WP1

• Find post-quantum secure cryptosystems suitable for small devices in

power and memory requirements (e.g. smart cards with 8-bit or

16-bit or 32-bit architectures, with different amounts of RAM)

• Develop efficient implementations of these systems.

• Main challenge: memory, e.g.,

• McEliece (code-based encryption): ≈ 1 MB public key

• GUI (MQ-based signatures) ≈ 2 MB public key

• SPHINCS+: 8–50 KB signatures

• Additional challenges:

• Computational complexity

• Implementation security

2

PQCRYPTO – WP1

• Find post-quantum secure cryptosystems suitable for small devices in

power and memory requirements (e.g. smart cards with 8-bit or

16-bit or 32-bit architectures, with different amounts of RAM)

• Develop efficient implementations of these systems.

• Main challenge: memory, e.g.,

• McEliece (code-based encryption): ≈ 1 MB public key

• GUI (MQ-based signatures) ≈ 2 MB public key

• SPHINCS+: 8–50 KB signatures

• Additional challenges:

• Computational complexity

• Implementation security

2

Primary target platform

• ARM Cortex-M4 on

STM32F4-Discovery board

• 192KB RAM, 1MB Flash

(ROM)

• Available for <20 Euros from

various vendors (e.g., Amazon,

RS Components, Conrad)

3

pqm4

• Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Library and testing/benchmarking framework

• Easy to add schemes using NIST API

• Optimized SHA3 shared across primitives

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

4

pqm4

• Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

• Library and testing/benchmarking framework

• Easy to add schemes using NIST API

• Optimized SHA3 shared across primitives

• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):

python3 testvectors.py

• Run speed and stack benchmarks:

python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:

python3 test.py newhope1024cca sphincs-shake256-128s

4

Initial pqm4 results KEM/PKE

BIG QUAKE ?

BIKE ?

Classic McEliece 7

CRYSTALS-Kyber 3

DAGS ?

FrodoKEM 3

KINDI 3

NewHope 3

NTRU-HRSS-KEM 3

NTRU Prime 3

Post-quantum RSA-Encryption 7

Ramstake 7(?)

SABER 3

SIKE 3

5

Initial pqm4 results signatures

CRYSTALS-Dilithium 3

GUI 7

LUOV ?

MQDSS 7(?)

Picnic 7

Post-quantum RSA-Signature 7

qTESLA 3

Rainbow ? (probably no)

SPHINCS+ 3

6

From PQCRYPTO to EPOQUE

• Since October 2018 working on ERC project

Engineering post-quantum cryptography – EPOQUE

• WP1: Secure implementations of post-quantum crypto

• Build on results of PQCRYPTO, e.g., extend pqm4:

• Include more optimized implementations

• Include implementations with SCA protection

• First paper of EPOQUE:

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe. Faster

multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC

candidates.

• Speed up 5 lattice-based KEMs

7

https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#latticem4

From PQCRYPTO to EPOQUE

• Since October 2018 working on ERC project

Engineering post-quantum cryptography – EPOQUE

• WP1: Secure implementations of post-quantum crypto

• Build on results of PQCRYPTO, e.g., extend pqm4:

• Include more optimized implementations

• Include implementations with SCA protection

• First paper of EPOQUE:

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe. Faster

multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC

candidates.

• Speed up 5 lattice-based KEMs

7

https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#latticem4
https://cryptojedi.org/papers/#latticem4

Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x]/f

8

Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x]/f

8

Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ
• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x]/f

8

Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x]/f

9

Learning with rounding (LWR)

• Given uniform A ∈ Zk×`
q

• Given samples dAscp, with p < q

• Search version: find s

• Decision version: distinguish from uniform random

• Structured lattices: work in Zq[x]/f

9

Lattice-based KEMs – the basic idea

Alice (server) Bob (client)

s, e
$← χ s′, e′

$← χ

b←as + e
b−−−−→ u←as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s

Bob has v′ = bs′ = ass′ + es′

• Secret and noise s, s′, e, e′ are small

• t and t′ are approximately the same

10

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

Lattice-based KEMs submitted to NIST

• 22 NIST submissions are lattice-based KEMs

• Large design space with many tradeoffs:

• LWE vs. LWR

• LWE vs. Ring-LWE vs. Module-LWE

• Prime q vs. power-of-two q

• Prime n vs. power-of-two n

• NTRU vs. LPR (“quotient” vs. “product”)

• “Encryption-based” vs. “Reconciliation based”

• Decryption failures vs. no failures

• Passive vs. active security

• . . .

11

5 lattice-based KEMs

• RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

• All rely on arithmetic in Z2m [x]/f

• 11 ≤ m ≤ 14

• 256 ≤ n = deg(f) ≤ 1024

• Why optimize those 5 KEMs?

• Have to start somewhere. . .

• Joost and I are co-submitters of NTRU-HRSS

• It seemed like NTRU-HRSS could be faster than Round5

• Only Saber has been optimized on Cortex-M4 before (CHES 2018)

• How to optimize those 5 KEMs?

• Faster multiplication of polynomials with n coefficients over Z2m [x]

12

5 lattice-based KEMs

• RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

• All rely on arithmetic in Z2m [x]/f

• 11 ≤ m ≤ 14

• 256 ≤ n = deg(f) ≤ 1024

• Why optimize those 5 KEMs?

• Have to start somewhere. . .

• Joost and I are co-submitters of NTRU-HRSS

• It seemed like NTRU-HRSS could be faster than Round5

• Only Saber has been optimized on Cortex-M4 before (CHES 2018)

• How to optimize those 5 KEMs?

• Faster multiplication of polynomials with n coefficients over Z2m [x]

12

5 lattice-based KEMs

• RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi

• All rely on arithmetic in Z2m [x]/f

• 11 ≤ m ≤ 14

• 256 ≤ n = deg(f) ≤ 1024

• Why optimize those 5 KEMs?

• Have to start somewhere. . .

• Joost and I are co-submitters of NTRU-HRSS

• It seemed like NTRU-HRSS could be faster than Round5

• Only Saber has been optimized on Cortex-M4 before (CHES 2018)

• How to optimize those 5 KEMs?

• Faster multiplication of polynomials with n coefficients over Z2m [x]

12

Polynomial multiplication

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

13

Polynomial multiplication

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

13

Polynomial multiplication

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

13

Polynomial multiplication

• Represent coefficients as 16-bit integers

• No modular reductions required, 216 is a multiple of q = 2m

• Schoolbook multiplication takes n2 integer muls, (n − 1)2 adds

• Can do better using Karatsuba:

(a` + X kah) · (b` + X kbh)

= a`b` + X k(a`bh + ahb`) + X nahbh

= a`b` + X k((a` + ah)(b` + bh)− a`b` − ahbh) + X nahbh

• Recursive application yields complexity Θ(nlog2 3)

• Generalization: Toom-Cook

• Toom-3: split into 5 multiplications of 1/3 size

• Toom-4: split into 7 multiplications of 1/4 size

• Approach: Evaluate, multiply, interpolate

13

Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

14

Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

14

Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

14

Initial observations

• Karatsuba/Toom is asymptotically faster, but isn’t for “small”

polynomials

• Toom-3 needs division by 2, loses 1 bit of precision

• Toom-4 needs division by 8, loses 3 bits of precision

• This limits recursive application when using 16-bit integers

• Can use Toom-4 only for q ≤ 213

• Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):

• Optimize Saber, q = 213, n = 256

• Use Toom-4 + two levels of Karatsuba

• Optimized 16-coefficient schoolbook multiplication

• Is this the best approach? How about other values of q and n?

14

15

Our approach

• Generate optimized assembly for Karatsuba/Toom

• Use Python scripts, receive as input n and q

• Hand-optimize “small” schoolbook multiplications

• Benchmark different options, pick fastest

16

Fast schoolbook multiplication

• ARMv7E-M supports SMUAD(X) and SMLAD(X)

• All in one clock cycle

• Perfect for polynomial multiplication

instruction semantics

smuad Ra, Rb, Rc Ra← RbL · RcL + RbH · RcH
smuadx Ra, Rb, Rc Ra← RbL · RcH + RbH · RcL
smlad Ra, Rb, Rc, Rd Ra← RbL · RcL + RbH · RcH + Rd

smladx Ra, Rb, Rc, Rd Ra← RbL · RcH + RbH · RcL + Rd

Slide credit to Matthias Kannwischer

17

Fast schoolbook multiplication [N=2]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• 3 multiplications instead of 4

Slide credit to Matthias Kannwischer

18

Fast schoolbook multiplication [N=2]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1SM
U

A
D

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• 3 multiplications instead of 4

Slide credit to Matthias Kannwischer

18

Fast schoolbook multiplication [N=4]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• 10 multiplications instead of 16

Slide credit to Matthias Kannwischer

19

Fast schoolbook multiplication [N=4]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1SM
U

A
D

a1b1 a0b1SM
U

A
D

a5b2 a4b2 a3b2 a2b2SM
U

A
D

a1b2 a0b2SM
LA

D

a5b3 a4b3 a3b3 a2b3SM
U

A
D

a1b3 a0b3SM
LA

D

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• 10 multiplications instead of 16

Slide credit to Matthias Kannwischer

19

Fast schoolbook multiplication [N=6]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• 21 multiplications instead of 36

Slide credit to Matthias Kannwischer

20

Fast schoolbook multiplication [N=6]

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1SM
U

A
D

a3b1 a2b1SM
U

A
D

a1b1 a0b1SM
U

A
D

a5b2 a4b2SM
U

A
D

a3b2 a2b2SM
LA

D

a1b2 a0b2SM
LA

D

a5b3 a4b3SM
U

A
D

a3b3 a2b3SM
LA

D

a1b3 a0b3SM
LA

D

a5b4 a4b4SM
U

A
D

a3b4 a2b4SM
LA

D

a1b4 a0b4SM
LA

D

a5b5 a4b5SM
U

A
D

a3b5 a2b5SM
LA

D

a1b5 a0b5SM
LA

D

• 21 multiplications instead of 36

Slide credit to Matthias Kannwischer

20

Fast schoolbook multiplication [N=12]

a11b0 a10b0 a9b0 a8b0 a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a11b1 a10b1 a9b1 a8b1 a7b1 a6b1 a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a11b2 a10b2 a9b2 a8b2 a7b2 a6b2 a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a11b3 a10b3 a9b3 a8b3 a7b3 a6b3 a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a11b4 a10b4 a9b4 a8b4 a7b4 a6b4 a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a11b5 a10b5 a9b5 a8b5 a7b5 a6b5 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

a11b6 a10b6 a9b6 a8b6 a7b6 a6b6 a5b6 a4b6 a3b6 a2b6 a1b6 a0b6

a11b7 a10b7 a9b7 a8b7 a7b7 a6b7 a5b7 a4b7 a3b7 a2b7 a1b7 a0b7

a11b8 a10b8 a9b8 a8b8 a7b8 a6b8 a5b8 a4b8 a3b8 a2b8 a1b8 a0b8

a11b9 a10b9 a9b9 a8b9 a7b9 a6b9 a5b9 a4b9 a3b9 a2b9 a1b9 a0b9

a11b10a10b10a9b10 a8b10 a7b10 a6b10 a5b10 a4b10 a3b10 a2b10 a1b10 a0b10

a11b11a10b11a9b11 a8b11 a7b11 a6b11 a5b11 a4b11 a3b11 a2b11 a1b11 a0b11

• How many can we fit in registers?

• 16 registers minus SP and PC → we fit 24 coefficients

• 78 multiplications instead of 144

Slide credit to Matthias Kannwischer

21

Fast schoolbook multiplication [N=12]

a11b0 a10b0 a9b0 a8b0 a7b0 a6b0 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a11b1 a10b1S
M
U
A
D

a9b1 a8b1S
M
U
A
D

a7b1 a6b1S
M
U
A
D

a5b1 a4b1S
M
U
A
D

a3b1 a2b1S
M
U
A
D

a1b1 a0b1S
M
U
A
D

a11b2 a10b2S
M
U
A
D

a9b2 a8b2S
M
L
A
D

a7b2 a6b2S
M
L
A
D

a5b2 a4b2S
M
L
A
D

a3b2 a2b2S
M
L
A
D

a1b2 a0b2S
M
L
A
D

a11b3 a10b3S
M
U
A
D

a9b3 a8b3S
M
L
A
D

a7b3 a6b3S
M
L
A
D

a5b3 a4b3S
M
L
A
D

a3b3 a2b3S
M
L
A
D

a1b3 a0b3S
M
L
A
D

a11b4 a10b4S
M
U
A
D

a9b4 a8b4S
M
L
A
D

a7b4 a6b4S
M
L
A
D

a5b4 a4b4S
M
L
A
D

a3b4 a2b4S
M
L
A
D

a1b4 a0b4S
M
L
A
D

a11b5 a10b5S
M
U
A
D

a9b5 a8b5S
M
L
A
D

a7b5 a6b5S
M
L
A
D

a5b5 a4b5S
M
L
A
D

a3b5 a2b5S
M
L
A
D

a1b5 a0b5S
M
L
A
D

a11b6 a10b6S
M
U
A
D

a9b6 a8b6S
M
L
A
D

a7b6 a6b6S
M
L
A
D

a5b6 a4b6S
M
L
A
D

a3b6 a2b6S
M
L
A
D

a1b6 a0b6S
M
L
A
D

a11b7 a10b7S
M
U
A
D

a9b7 a8b7S
M
L
A
D

a7b7 a6b7S
M
L
A
D

a5b7 a4b7S
M
L
A
D

a3b7 a2b7S
M
L
A
D

a1b7 a0b7S
M
L
A
D

a11b8 a10b8S
M
U
A
D

a9b8 a8b8S
M
L
A
D

a7b8 a6b8S
M
L
A
D

a5b8 a4b8S
M
L
A
D

a3b8 a2b8S
M
L
A
D

a1b8 a0b8S
M
L
A
D

a11b9 a10b9S
M
U
A
D

a9b9 a8b9S
M
L
A
D

a7b9 a6b9S
M
L
A
D

a5b9 a4b9S
M
L
A
D

a3b9 a2b9S
M
L
A
D

a1b9 a0b9S
M
L
A
D

a11b10a10b10S
M
U
A
D

a9b10 a8b10S
M
L
A
D

a7b10 a6b10S
M
L
A
D

a5b10 a4b10S
M
L
A
D

a3b10 a2b10S
M
L
A
D

a1b10 a0b10S
M
L
A
D

a11b11a10b11S
M
U
A
D

a9b11 a8b11S
M
L
A
D

a7b11 a6b11S
M
L
A
D

a5b11 a4b11S
M
L
A
D

a3b11 a2b11S
M
L
A
D

a1b11 a0b11S
M
L
A
D

• How many can we fit in registers?

• 16 registers minus SP and PC → we fit 24 coefficients

• 78 multiplications instead of 144

Slide credit to Matthias Kannwischer

21

Fast schoolbook multiplication [N=24]

• We want to merge all, but not enough registers

Slide credit to Matthias Kannwischer

22

Fast schoolbook multiplication [N=24]

• We want to merge all, but not enough registers

Slide credit to Matthias Kannwischer

22

Fast schoolbook multiplication [N=24]

• Instead we perform 4 times 12x12

Slide credit to Matthias Kannwischer

23

Fast schoolbook multiplication [N=36]

• Or 9 times 12x12

Slide credit to Matthias Kannwischer

24

Fast schoolbook multiplication: Reduce repacks

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• R0 = a1|a0,R1 = a3|a2,R2 = a5|a4
• R3 = b1|b0,R4 = b3|b2,R5 = b5|b4

Slide credit to Matthias Kannwischer

25

Fast schoolbook multiplication: Reduce repacks

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• R0 = a1|a0,R1 = a3|a2,R2 = a5|a4
• R3 = b1|b0,R4 = b3|b2,R5 = b5|b4
• For even columns we need to repack b

Slide credit to Matthias Kannwischer

25

Fast schoolbook multiplication: Reduce repacks

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• R0 = a1|a0,R1 = a3|a2,R2 = a5|a4
• R3 = b1|b0,R4 = b3|b2,R5 = b5|b4
• First do odd columns

Slide credit to Matthias Kannwischer

25

Fast schoolbook multiplication: Reduce repacks

a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

• R0 = a1|a0,R1 = a3|a2,R2 = a5|a4
• Then repack to R3 = b2|b1,R4 = b4|b3 and do even columns

Slide credit to Matthias Kannwischer

25

Multiplication results

approach “small” cycles stack

Saber

(n = 256, q = 213)

Karatsuba only 16 41 121 2 020

Toom-3 11 41 225 3 480

Toom-4 16 39 124 3 800

Toom-4 + Toom-3 - - -

Kindi-256-3-4-2

(n = 256, q = 214)

Karatsuba only 16 41 121 2 020

Toom-3 11 41 225 3 480

Toom-4 - - -

Toom-4 + Toom-3 - - -

NTRU-HRSS

(n = 701, q = 213)

Karatsuba only 11 230 132 5 676

Toom-3 15 217 436 9 384

Toom-4 11 182 129 10 596

Toom-4 + Toom-3 - - -

NTRU-KEM-743

(n = 743, q = 211)

Karatsuba only 12 247 489 6 012

Toom-3 16 219 061 9 920

Toom-4 12 196 940 11 208

Toom-4 + Toom-3 16 197 227 12 152

RLizard-1024

(n = 1024,

q = 211)

Karatsuba only 16 400 810 8 188

Toom-3 11 360 589 13 756

Toom-4 16 313 744 15 344

Toom-4 + Toom-3 11 315 788 16 816
26

Anything else to do?

• Integrate with fast SHA-3/SHAKE implementation

• Add fast SHA-512 implementation (C as fast as asm!)

• Between 69% and 92% of cycles spent in mul+hash

NISTPQC code quality. . .

• Fix misunderstandings of NIST API

• Remove all dynamic memory allocations

• Fix some obvious timing leakages

• More work required, for many NIST submissions!

27

Anything else to do?

• Integrate with fast SHA-3/SHAKE implementation

• Add fast SHA-512 implementation (C as fast as asm!)

• Between 69% and 92% of cycles spent in mul+hash

NISTPQC code quality. . .

• Fix misunderstandings of NIST API

• Remove all dynamic memory allocations

• Fix some obvious timing leakages

• More work required, for many NIST submissions!

27

KEM results

implementation clock cycles stack usage

Saber

Reference

K: 6 530k K: 12 616

E: 8 684k E: 14 896

D: 10 581k D: 15 992

[KBSV18]

K: 1 147k K: 13 883

E: 1 444k E: 16 667

D: 1 543k D: 17 763

This work

K: 949k K: 13 248

E: 1 232k E: 15 528

D: 1 260k D: 16 624

Kindi-256-3-4-2

Reference

K: 21 794k K: 59 864

E: 28 176k E: 71 000

D: 37 129k D: 84 096

This work

K: 1 010k K: 44 264

E: 1 365k E: 55 392

D: 1 563k D: 64 376

28

KEM results

implementation clock cycles stack usage

NTRU-HRSS

Reference

K: 205 156k K: 10 020

E: 5 166k E: 8 956

D: 15 067k D: 10 204

This work

K: 161 790k K: 23 396

E: 432k E: 19 492

D: 863k D: 22 140

NTRU-KEM-743

Reference

K: 59 815k K: 14 148

E: 7 540k E: 13 372

D: 14 229k D: 18 036

This work

K: 5 663k K: 25 320

E: 1 655k E: 23 808

D: 1 904k D: 28 472

RLizard-1024

Reference

K: 26 423k K: 4 272

E: 32 156k E: 10 532

D: 53 181k D: 12 636

This work

K: 537k K: 27 720

E: 1 358k E: 33 328

D: 1 740k D: 35 448

29

Coming back to NISTPQC code quality

• Great about NISTPQC: we actually have implementations!

• Bad about NISTPQC: we have lots of terrible implementations. . .

• Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation

2. Do what you actually want to do

• Examples of what you actually want to do:

• Use in libraries (e.g., liboqs or libpqcrypto)

• Benchmark (e.g., SUPERCOP)

• Evaluate on embedded platforms (e.g., pqm4)

• Use in higher-level protocols (e.g., OQS)

• Idea: collect “clean” implementations once

30

Coming back to NISTPQC code quality

• Great about NISTPQC: we actually have implementations!

• Bad about NISTPQC: we have lots of terrible implementations. . .

• Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation

2. Do what you actually want to do

• Examples of what you actually want to do:

• Use in libraries (e.g., liboqs or libpqcrypto)

• Benchmark (e.g., SUPERCOP)

• Evaluate on embedded platforms (e.g., pqm4)

• Use in higher-level protocols (e.g., OQS)

• Idea: collect “clean” implementations once

30

Coming back to NISTPQC code quality

• Great about NISTPQC: we actually have implementations!

• Bad about NISTPQC: we have lots of terrible implementations. . .

• Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation

2. Do what you actually want to do

• Examples of what you actually want to do:

• Use in libraries (e.g., liboqs or libpqcrypto)

• Benchmark (e.g., SUPERCOP)

• Evaluate on embedded platforms (e.g., pqm4)

• Use in higher-level protocols (e.g., OQS)

• Idea: collect “clean” implementations once

30

Coming back to NISTPQC code quality

• Great about NISTPQC: we actually have implementations!

• Bad about NISTPQC: we have lots of terrible implementations. . .

• Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation

2. Do what you actually want to do

• Examples of what you actually want to do:

• Use in libraries (e.g., liboqs or libpqcrypto)

• Benchmark (e.g., SUPERCOP)

• Evaluate on embedded platforms (e.g., pqm4)

• Use in higher-level protocols (e.g., OQS)

• Idea: collect “clean” implementations once

30

Coming back to NISTPQC code quality

• Great about NISTPQC: we actually have implementations!

• Bad about NISTPQC: we have lots of terrible implementations. . .

• Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation

2. Do what you actually want to do

• Examples of what you actually want to do:

• Use in libraries (e.g., liboqs or libpqcrypto)

• Benchmark (e.g., SUPERCOP)

• Evaluate on embedded platforms (e.g., pqm4)

• Use in higher-level protocols (e.g., OQS)

• Idea: collect “clean” implementations once

30

PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: eventually have all round-2 candidates in there

• Start with clean C implementations

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

• At the moment still setting up CI

• Hope to be done soon, then PRs very welcome!

31

PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: eventually have all round-2 candidates in there

• Start with clean C implementations

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

• At the moment still setting up CI

• Hope to be done soon, then PRs very welcome!

31

PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: eventually have all round-2 candidates in there

• Start with clean C implementations

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

• At the moment still setting up CI

• Hope to be done soon, then PRs very welcome!

31

PQClean

• Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

Thom Wiggers

• GitHub repo with extensive CI to ensure “clean” implementations

• Goal: eventually have all round-2 candidates in there

• Start with clean C implementations

• Longer-term, if there is interest:

• implementations with architecture-specific optimizations?

• implementations in other languages?

• At the moment still setting up CI

• Hope to be done soon, then PRs very welcome!

31

The definition of “clean”

Automatically checked by CI

• Code is valid C99

• Passes functional tests

• API functions do not write outside provided buffers

• Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang

• Consistent test vectors across runs

• Consistent test vectors on big-endian and little-endian machines

• Consistent test vectors on 32-bit and 64-bit machines

• No errors/warnings reported by valgrind

• No errors/warnings reported by address sanitizer

• Only dependencies:

• fips202.c

• sha2.c

• aes.c

• randombytes.c

32

The definition of “clean”

Automatically checked by CI

• Code is valid C99

• Passes functional tests

• API functions do not write outside provided buffers

• Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang

• Consistent test vectors across runs

• Consistent test vectors on big-endian and little-endian machines

• Consistent test vectors on 32-bit and 64-bit machines

• No errors/warnings reported by valgrind

• No errors/warnings reported by address sanitizer

• Only dependencies:

• fips202.c

• sha2.c

• aes.c

• randombytes.c 32

The definition of “clean” ctd.

Automatically checked by CI

• API functions return 0 on success, negative on failure (WIP!)

• 0 on success

• Negative on failure (currently: partially)

• No dynamic memory allocations

• No branching on secret data (dynamically checked using valgrind)

• No access to secret memory locations (dynamically checked using

valgrind)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• Builds under Linux, MacOS, and Windows

• All exported symbols are namespaced with PQCLEAN_SCHEMENAME_

• Each implementation comes with license and meta information in

META.yml

33

The definition of “clean” ctd.

Automatically checked by CI

• API functions return 0 on success, negative on failure (WIP!)

• 0 on success

• Negative on failure (currently: partially)

• No dynamic memory allocations

• No branching on secret data (dynamically checked using valgrind)

• No access to secret memory locations (dynamically checked using

valgrind)

• Separate subdirectories (without symlinks) for each parameter set of

each scheme

• Builds under Linux, MacOS, and Windows

• All exported symbols are namespaced with PQCLEAN_SCHEMENAME_

• Each implementation comes with license and meta information in

META.yml

33

The definition of “clean”

Manually checked

• #ifdefs only for header encapsulation

• No stringification macros

• Output-parameter pointers in functions are on the left

• const arguments are labeled as const

• All exported symbols are namespaced inplace

• All integer types are of fixed size, using stdint.h types (including

uint8_t instead of unsigned char)

• Integers used for indexing are of type size_t

• Variable declarations at the beginning (except in

for (size_t i=...))

34

Resources online

• pqm4 library and benchmarking suite:

https://github.com/mupq/pqm4

• Code of Z2m [x] multiplication paper, including scripts:

https://github.com/mupq/polymul-z2mx-m4

• Z2m [x] multiplication paper:

https://cryptojedi.org/papers/#latticem4

• PQClean repository:

https://github.com/PQClean/PQClean

35

https://github.com/mupq/pqm4
https://github.com/mupq/polymul-z2mx-m4
https://cryptojedi.org/papers/#latticem4
https://github.com/PQClean/PQClean

