Breaking ECC2K-130 on Cell processors and GPUs

Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng,
Gauthier van Damme, Giacomo de Meulenaer,

Luis Julian Dominguez Perez, Junfeng Fan, Tim Giineysu,
Frank Giirkaynak, Thorsten Kleinjung, Tanja Lange, Nele Mentens,
Ruben Niederhagen, Christof Paar, Francesco Regazzoni,
Peter Schwabe, Leif Uhsadel, Anthony Van Herrewege, Bo-Yin Yang

April 14, 2010

Workshop on Computer Security and Cryptography
CRM Montréal



How hard is the ECDLP?

The ECDLP
Given an elliptic curve E over a finite field F, and two points P € E(F,)

and Q € (P), find k such that Q = [k]P.

Breaking ECC2K-130 on Cell processors and GPUs 2



How hard is the ECDLP?

The ECDLP
Given an elliptic curve E over a finite field F, and two points P € E(F,)

and Q € (P), find k such that Q = [k]P.

» Standard answer: Solving ECDLP takes O(y/n), where n = [(P)|

» Reason: best known algorithm for most elliptic curves if n is prime:
Pollard’s rho algorithm, running time: O(y/n)

Breaking ECC2K-130 on Cell processors and GPUs 2



How hard is the ECDLP?

The ECDLP

Given an elliptic curve E over a finite field F, and two points P € E(F,)
and Q € (P), find k such that Q = [k]P.

» Standard answer: Solving ECDLP takes O(y/n), where n = [(P)|

» Reason: best known algorithm for most elliptic curves if n is prime:
Pollard’s rho algorithm, running time: O(y/n)

» Problem: O-notation hides all constant factors and lower-order terms

Breaking ECC2K-130 on Cell processors and GPUs 2



How hard is the ECDLP?

The ECDLP
Given an elliptic curve E over a finite field F, and two points P € E(F,)
and Q € (P), find k such that Q = [k]P.

» Standard answer: Solving ECDLP takes O(y/n), where n = [(P)|

» Reason: best known algorithm for most elliptic curves if n is prime:
Pollard’s rho algorithm, running time: O(y/n)

» Problem: O-notation hides all constant factors and lower-order terms

Question in this talk

Given an elliptic curve F and two points P and Q as above and given a
number of computers (or FPGAs, or ASICs, or money), how much time
does it take to solve the specific ECDLP?

Breaking ECC2K-130 on Cell processors and GPUs 2



The Certicom challenges

1997: Certicom announces several ECDLP prizes:

The Challenge is to compute the ECC private keys from the
given list of ECC public keys and associated system parameters.
This is the type of problem facing an adversary who wishes to
completely defeat an elliptic curve cryptosystem.

Objectives:

1. To increase the cryptographic community’s understanding
and appreciation of the difficulty of the ECDLP.

[-]

6. To encourage and stimulate research in computational and
algorithmic number theory and, in particular, the study of the
ECDLP.

Breaking ECC2K-130 on Cell processors and GPUs



Three levels of challenges

Level-0 challenges — exercises
Challenges of 79 bits, 89 bits, and 97 bits (size of E(F,)).

Level-0 challenges have all been solved

Level-1 challenges
Challenges of 109 bits, and 131 bits.

109-bit challenges have all been solved, 131-bit challenges have all not
been solved, yet.

Level-2 challenges
Challenges of 163 bits, 191 bits, 239 bits, and 359 bits.

Level-2 challenges have all not been solved, yet.

Breaking ECC2K-130 on Cell processors and GPUs 4



The “next” open challenge: ECC2K-130

ECC2K-130

Elliptic curve E is the Koblitz curve y? + zy = 23 4+ 1 over

Fois1 = Folz] /(283 4+ 282 + 22 + 2+ 1)

Point P of order 680564733841876926932320129493409985129 = 2129,
Point Q in (P)

Find k € Z such that Q = [k]P

Claimed hardness of ECC2K-130

The 131-bit Level | challenges are expected to be infeasible
against realistic software and hardware attacks, unless of
course, a new algorithm for the ECDLP is discovered.

(from Certicom'’s description of the challenges, mid-2009)

Breaking ECC2K-130 on Cell processors and GPUs



The “next” open challenge: ECC2K-130

ECC2K-130

Elliptic curve E is the Koblitz curve y? + zy = 23 4+ 1 over

Fois1 = Folz] /(283 4+ 282 + 22 + 2+ 1)

Point P of order 680564733841876926932320129493409985129 = 2129,
Point Q in (P)

Find k € Z such that Q = [k]P

Claimed hardness of ECC2K-130

The 131-bit Level | challenges are expected to be infeasible
against realistic software and hardware attacks, unless of
course, a new algorithm for the ECDLP is discovered.

(from Certicom'’s description of the challenges, mid-2009)

The attacker
Currently 12 research institutes from (slightly extended) ECRYPT,
European network of excellence in cryptography

Breaking ECC2K-130 on Cell processors and GPUs



Pollard rho iteration function and distinguished points

Distinguished points
We call a point R = (g, yr) distinguished, if HW(xg) (the Hamming
weight of x g in normal-basis representation) is < 34.

[teration function
Our iteration function is

Ri+1 = f(Rz) = Uj(Rq;) + RZ‘,
where ¢ is the Frobenius endomorphism and

j = ((HW(zg;)/2) (mod 8)) + 3.

Breaking ECC2K-130 on Cell processors and GPUs



Computing the iteration function

Ri+1 = f(Rl) = Gj(Ri) + Ri,

v

One elliptic curve addition

v

One application of o7

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130 on Cell processors and GPUs



Computing the iteration function

Ri+1 = f(Rl) = Gj(Ri) + Ri,

v

One elliptic curve addition

» we use affine coordinates
> 2 multiplications, 1 squaring, 6 additions and 1 inversion

v

One application of o7

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130 on Cell processors and GPUs



Computing the iteration function

Ri+1 = f(Rl) = O'j(Ri) + Ri,

v

One elliptic curve addition

» we use affine coordinates
> 2 multiplications, 1 squaring, 6 additions and 1 inversion

v

One application of o7
» Two computations of the form 22" for3<m <10 (m-squaring)

v

One conversion to normal-basis representation

v

One Hamming-weight computation

Breaking ECC2K-130 on Cell processors and GPUs



Computing the iteration function

Ri+1 = f(Rl) = O'j(Ri) + Ri,

» One elliptic curve addition

» we use affine coordinates

> 2 multiplications, 1 squaring, 6 additions and 1 inversion
» One application of ¢/

» Two computations of the form 22" for3<m <10 (m-squaring)
» One conversion to normal-basis representation
» One Hamming-weight computation
» Inversions can be batched and performed using Montgomery's trick
» For large batch: Trade one inversion for 3 multiplications

Breaking ECC2K-130 on Cell processors and GPUs



Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

The technique of bitslicing
» Bernstein set new software speed records for batched binary-field
arithmetic using bitslicing (CRYPTO 2009)
» Elements of 131 can be represented as a sequence of 131 bits

» Instead of putting these 131 bits in, e.g., two 128-bit registers, put
them in 131 registers, one register per bit

» Perform arithmetic by simulating a hardware implementation using
bit-logical instructions such as AND and XOR

» Inefficient for one field operation, but can process 128 batched
operations in parallel (for 128-bit registers)

> Use spills to the stack to overcome lack of registers

Breaking ECC2K-130 on Cell processors and GPUs



Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

s bitslicing really better?

| 2

>

Bernstein's record was on the Intel Core 2, the Cell is different

Cell SPU: Only 1 bit-logical operation per cycle (Core 2: 3
operations per cycle)

Cell SPU: 128 128-bit registers (Core 2: 16 128-bit registers)

Cell SPU can do one load or store per bit operation (Core 2: 1 load
per 3 bit operations)

Cell SPU has to fit all code and active data set in only 256 KB of
local storage. Bitslicing requires more memory (because of the high
level of parallelism)

Breaking ECC2K-130 on Cell processors and GPUs

9



Implementing the iteration function
on the Cell Broadband Engine (Playstation 3)

s bitslicing really better?

| 2

>

Bernstein's record was on the Intel Core 2, the Cell is different

Cell SPU: Only 1 bit-logical operation per cycle (Core 2: 3
operations per cycle)

Cell SPU: 128 128-bit registers (Core 2: 16 128-bit registers)

Cell SPU can do one load or store per bit operation (Core 2: 1 load
per 3 bit operations)

Cell SPU has to fit all code and active data set in only 256 KB of
local storage. Bitslicing requires more memory (because of the high
level of parallelism)

Decision: Let’s figure out what’s best by implementing both, bitsliced
and non-bitsliced, independently by two groups.

Breaking ECC2K-130 on Cell processors and GPUs

9



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs

10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)
> 03 Aug: 1735 (non-bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)
> 13 Aug: 1389 (bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)

> 10 Aug: 1587 (bitsliced)

> 13 Aug: 1389 (bitsliced
> 19 Aug: 1426 (non-bitsliced) ug (bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

> 31 Jul: 2565 (non-bitsliced)

> 03 Aug: 1735 (non-bitsliced) > 06 Aug: 6488 (bitsliced)
> 10 Aug: 1587 (bitsliced)
> 13 Aug: 1389 (bitsliced

> 19 Aug: 1426 (non-bitsliced) ue (bitsliced)

> 19 Aug: 1293 (non-bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)

v

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)
05 Sep: 1051 (bitsliced)

v
v

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

v
v

06 Aug: 6488 (bitsliced)
10 Aug: 1587 (bitsliced)
13 Aug: 1389 (bitsliced)

v

v
v

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

v
v

30 Aug: 1180 (bitsliced)
05 Sep: 1051 (bitsliced)
07 Sep: 1047 (bitsliced)

v
v

v

Breaking ECC2K-130 on Cell processors and GPUs 10



Cycles per iteration on each SPU

vy

vyy

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:
07 Sep:

vvyyvyy

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047

956

~_~ e~
~— — —

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:

vvyyvyy

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Sep:
07 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047

956

~_~ e~
~— — —

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:
07 Sep:

vVvyVvyyypy

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Oct:
12 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:

vVvyVvyVvyVvyy

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Sep:
07 Oct:
12 Oct:
13 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047
956
903
871

—~
~—

P
— N N

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:

vVVvyVvYyVvyVYyYYyvyy

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Sep:
07 Oct:
12 Oct:
13 Oct:
14 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)
871 (bitsliced)
844 (bitsliced)

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

05 Sep:
07 Sep:

VVVYyVYVYVYVYY

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:

07 Oct:
12 Oct:
13 Oct:
14 Oct:
15 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced
bitsliced

1180
1051
1047
956
903
871
844
789

—~
~—

P
— N N N e N N

10



Cycles per iteration on each SPU

vy

vyy

v

31 Jul: 2565 (non-bitsliced)
03 Aug: 1735 (non-bitsliced)

19 Aug: 1426 (non-bitsliced)
19 Aug: 1293 (non-bitsliced)
04 Sep: 1157 (non-bitsliced)

We surrender!

> 06 Aug:
10 Aug:
13 Aug:

vy

VVvVyVvVyVYyVYVYVYYVYYyY

Breaking ECC2K-130 on Cell processors and GPUs

30 Aug:
05 Sep:
07 Sep:
07 Oct:
12 Oct:
13 Oct:
14 Oct:
15 Oct:
29 Oct:

6488 (bitsliced)
1587 (bitsliced)
1389 (bitsliced)

1180 (bitsliced)
1051 (bitsliced)
1047 (bitsliced)
956 (bitsliced)
903 (bitsliced)
871 (bitsliced)
844 (bitsliced)
789 (bitsliced)
749 (bitsliced)

10



What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

v

Start with C++ implementation for the Core 2 (by Bernstein)
Port to C (6488 cycles)

Reimplement speed-critical parts in ghasm (high-level assembly
language)

v

v

v

Most important: degree-130 polynomial multiplication

Breaking ECC2K-130 on Cell processors and GPUs

11



What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

v

v

v

v

Start with C++ implementation for the Core 2 (by Bernstein)
Port to C (6488 cycles)

Reimplement speed-critical parts in ghasm (high-level assembly
language)

Most important: degree-130 polynomial multiplication

>

vy Yy VY VvV VvYYy

Minimal number of bit operations: 11961 (binary.cr.yp.to)
Turn this into C code: doesn’'t compile

Decision: Sacrifice some bit operations

2 levels of Karatsuba

Fast degree-32 polynomial multiplication (1286 bit operations)
Write scheduler to obtain code running in 1303 cycles (qhasm)
In total: 14503 cycles for degree-130 polynomial multiplication

Breaking ECC2K-130 on Cell processors and GPUs

11



What happened from 08/06 to 09/077

From 6488 cycles to 1047 cycles

» Start with C4++ implementation for the Core 2 (by Bernstein)
> Port to C (6488 cycles)

» Reimplement speed-critical parts in ghasm (high-level assembly
language)

» Most important: degree-130 polynomial multiplication

> Minimal number of bit operations: 11961 (binary.cr.yp.to)
Turn this into C code: doesn’'t compile
Decision: Sacrifice some bit operations
2 levels of Karatsuba
Fast degree-32 polynomial multiplication (1286 bit operations)
Write scheduler to obtain code running in 1303 cycles (qhasm)
In total: 14503 cycles for degree-130 polynomial multiplication

vy Yy VY VvV VvYYy

» Also implement Hamming-weight computation, squarings,
conditional squarings, polynomial reduction in ghasm

Breaking ECC2K-130 on Cell processors and GPUs

11



What happened from 09/07 to 10/157

From 1047 cycles to 789 cycles

» Start with polynomial-basis representation of elements
» How about normal-basis representation?
» Advantages:

> m-squarings are just rotations
» Conversion to normal-basis is free

» Disadvantage: Multiplications are slower

Breaking ECC2K-130 on Cell processors and GPUs

12



What happened from 09/07 to 10/157

From 1047 cycles to 789 cycles

>

Start with polynomial-basis representation of elements

» How about normal-basis representation?

» Advantages:

> m-squarings are just rotations
» Conversion to normal-basis is free

» Disadvantage: Multiplications are slower

Shokrollahi et al.: Efficient conversion from type-2 normal basis to
polynomial basis and back (WAIFI 2007), improvements by
Bernstein and Lange

Use this conversion, apply polynomial multiplication, apply inverse
conversion

Conversion (of course) also implemented in ghasm

Overhead for conversions is more than compensated by savings in
m-squarings and basis conversion

Breaking ECC2K-130 on Cell processors and GPUs

12



What happened from 10/15 to 10/297

From 789 cycles to 749 cycles

» Only 256 KB of local storage (LS): Batch size for Montgomery
inversions of 14

> ldea: swap the active set of data between LS and main memory
» Has to be done explicitly using DMA transfers

» Transfers can be interleaved with computations = almost no
overhead

> Increase Montgomery batch size to 512

Breaking ECC2K-130 on Cell processors and GPUs

13



NVIDIA GPUs

» Graphics Processing Units (GPUs) are highly parallel processors
» GTX 285 has 30 “multiprocessors” (cores), GTX 295 ~ 2x GTX 285

» Each of these multiprocessors typically executes 8 instructions on
32-bit numbers per cycle, running at 1242 MHz

» Latencies are hidden by running many (e.g. 192) threads per
multiprocessor

» Use GPUs for general-purpose computations through CUDA toolkit
» Language extensions for C to support highly-parallel structure

Breaking ECC2K-130 on Cell processors and GPUs

14



A straight-forward approach

Use bitslicing

Implement parallel version of operations in CUDA

Respect special structure of hardware (e.g., size of shared memory)
Benchmark performance and find bottlenecks

vV v v v Y

Reimplement slow functions in assembly

Breaking ECC2K-130 on Cell processors and GPUs

15



A straight-forward approach

vV v.v v v .Y

Use bitslicing

Implement parallel version of operations in CUDA

Respect special structure of hardware (e.g., size of shared memory)
Benchmark performance and find bottlenecks

Reimplement slow functions in assembly

Problem 1: There are no functions, all code must be inline

Breaking ECC2K-130 on Cell processors and GPUs

15



A straight-forward approach

vV vV.v v v v .Y

Use bitslicing

Implement parallel version of operations in CUDA

Respect special structure of hardware (e.g., size of shared memory)
Benchmark performance and find bottlenecks

Reimplement slow functions in assembly

Problem 1: There are no functions, all code must be inline

Problem 2: There is no (official) assembler for GPUs

Breaking ECC2K-130 on Cell processors and GPUs

15



Implementing the iteration function
On NVIDIA GPUs

» Started with a CUDA implementation
» Compile and benchmark the code (both extremely slow!)

» Problem: CUDA compiler nvce has problems with register allocation
in large kernels

Breaking ECC2K-130 on Cell processors and GPUs 16



Implementing the iteration function
On NVIDIA GPUs

» Started with a CUDA implementation
» Compile and benchmark the code (both extremely slow!)

» Problem: CUDA compiler nvce has problems with register allocation
in large kernels

> Idea: Use cudasm (Reverse-engineered assembler by Wladimir J. van
der Laan for NVIDIA GPUs)

» Combine with register allocator of ghasm

» New programming language: ghasm-cudasm

Breaking ECC2K-130 on Cell processors and GPUs

16



Implementing the iteration function
On NVIDIA GPUs

» Started with a CUDA implementation

vV v v v Y

Compile and benchmark the code (both extremely slow!)

Problem: CUDA compiler nvcc has problems with register allocation
in large kernels

Idea: Use cudasm (Reverse-engineered assembler by Wladimir J. van
der Laan for NVIDIA GPUs)

Combine with register allocator of ghasm

New programming language: ghasm-cudasm

Write the whole kernel (iteration function) in ghasm-cudasm
Early version had 125,824 lines of assembly code

Now at 1379 cycles per iteration (with smaller code)

Breaking ECC2K-130 on Cell processors and GPUs

16



Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards

Breaking ECC2K-130 on Cell processors and GPUs

17



Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards, or
» 3039 3-GHz Core 2 CPUs, or
» 615 XC355000 FPGAs.

Breaking ECC2K-130 on Cell processors and GPUs 17



Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards, or
» 3039 3-GHz Core 2 CPUs, or
» 615 XC355000 FPGAs.
That's what Certicom calls infeasible?

Breaking ECC2K-130 on Cell processors and GPUs

17



Results

Breaking ECC2K-130 in one year takes:
> 2462 Cell CPUs (Playstation 3), or
» 1262 NVIDIA GTX 295 graphic cards, or
» 3039 3-GHz Core 2 CPUs, or
» 615 XC355000 FPGAs.
That's what Certicom calls infeasible?

The 109-bit Level | challenges are feasible using a very large
network of computers, and have now been solved. The 131-bit
Level I challenges will be require significantly more work, but
may be within reach.

(from Certicom’s description of the challenges, updated November 10,
2009)

Breaking ECC2K-130 on Cell processors and GPUs

17



ECC2K-130 online

Progress of the attack: http://ecc-challenge.info
News: https://twitter.com/ECCchallenge

Breaking ECC2K-130 on Cell processors and GPUs

18


http://ecc-challenge.info
https://twitter.com/ECCchallenge
http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2010/077/
http://eprint.iacr.org/2010/069/

ECC2K-130 online

Progress of the attack: http://ecc-challenge.info
News: https://twitter.com/ECCchallenge

Papers

Breaking ECC2K-130:
http://eprint.iacr.org/2009/541/
ECC2K-130 on Cell CPUs (Africacrypt 2010):
http://eprint.iacr.org/2010/077/

Type-Il Optimal Polynomial Bases (WAIFI 2010):
http://eprint.iacr.org/2010/069/

. more on FPGAs and GPUs soon

Breaking ECC2K-130 on Cell processors and GPUs 18


http://ecc-challenge.info
https://twitter.com/ECCchallenge
http://eprint.iacr.org/2009/541/
http://eprint.iacr.org/2010/077/
http://eprint.iacr.org/2010/069/

