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So many NIST candidates and one thing they all
have in common. . . they all need a hash function.

What can we do with just a hash function?
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second input, producing the same output



Hash-based signatures

- Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
- Collision resistance: Hard two find two inputs that produce the
same output
- Preimage resistance: Given the output, it's hard to find the input
-+ 2nd preimage resistance: Given input and output, it's hard to find a
second input, producing the same output
- Collision resistance is stronger assumption than (2nd) preimage
resistance

- Ideally, don't want to rely on collision resistance
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Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing
- Sendo=r

Verification
+ Check thath(r) =p
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Security of this scheme

+ Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

+ Proof game:

+ Assume oracle A that computes forgery, given public key pk
- Getinputy, use oracle to compute x, s.t., h(x) =y

- Idea: use public-key pk = y, oracle will compute forgery x

< L.oorwillit?

+ Problem: y is not an output of h

+ What if A can distinguish legit pk from random?

+ Need additional property of h: undetectability

- From now on assume that all our hash functions are undetectable
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Signatures for 1-bit messages

Key generation
- Generate 256-bit random values (rg, r1) = s (secret key)
» Compute (h(ro), h(r1)) = (po,p1) = p (public key)
Signing
- Signature formessageb =0: 0 =y
- Signature formessageb =10 =r,

Verification
Check that h(o) = pp
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Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance

+ Proof game:

- Assume oracle A that computes forgery, given public key pk
- Getinput y, use “public key” (h(ro),y) or (y,h(ry))

- A asks for signature on either 0 or 1

- If you can, answer with preimage, otherwise fail (abort)

- Now A returns preimage, i.e., preimage of y

+ Reduction only works with 1/2 probability
+ We get a tightness loss of 1/2
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Key generation
+ Generate 256-bit random values s = (ro.0,70.1 - - -, 1255.0, [255.1)

+ Compute p = (h(ro,0),(ro,1), - - h(ress,0),h(ress,1)) =
(P0,0,P0,15 - - -+ P255,0,P255,1)
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One-time signatures for 256-bit messages

Key generation
+ Generate 256-bit random values s = (ro.0,70.1 - - -, 1255.0, [255.1)

+ Compute p = (h(ro,0),(ro,1), - - h(ress,0),h(ress,1)) =
(P0,0,P0,15 - - -+ P255,0,P255,1)

Signing
- Signature for message (by, . . ., bass):
o= (00,...,0255) = (fo,b07~--7f255,b255)
Verification

+ Check that h(og) = po b,

+ Check that h(0'255) = p255,b255



Security of this scheme

- Same idea as before, replace one p; , in the public key by
challenge y

- Fail if signing needs the preimage of y

- In forgery, attacker has to flip at least one bit in m

+ Chance of 1/256 that attacker flips the bit with the challenge
+ Overall tightness loss of 1/512
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Winternitz OTS (basic idea)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use h"(r) intead of h(r) (“hash chains”)

Key generation
- Generate 256-bit random values ry, . . ., rg3 (Secret key)
* CompLJte (pO; 000 ap63) = (h15(r0)7 oo 7h15(r63) (DUbllc key)

Signing
+ Chop 256 bit message into 64 chunks of 4 bits m = (Mo, ..., Mg3)
o Compute o = (0‘0, ey 0’63) = (hmo (r()), .. 7hm63 (f@g))
Verification

+ Check that Po = ht5—mo (O’O)7 ...,Pe3 = ht5—Mes (0'63)



Winternitz OTS (basic idea, ctd.)

h h h
h(ro) h(r1) h(res)
h h
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in exchange
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Winternitz OTS (making it secure)

+ Once you signed, say, m = (8,my, ..., Mg3), can easily forge
signatureonm = (9,Mx, ..., Mg3)

+ |dea: introduce checksum, force attacker to “go down” some chain
in exchange

+ Compute ¢ = 960 — .2, m; € {0,....,960}

+ Write ¢ in radix 16, obtain ¢y, ¢y, Ca

- Compute hash chains for ¢y, ¢y, ¢, as well

+ When increasing one of the mj’s, one of the c;'s decreases
- In total obtain 67 hash chains, signatures have 2144 bytes
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WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

- Lots of tradeoffs between speed and size

+ w = 16 yields = 2.1 KB signatures
- W = 256 yields ~ 1.1 KB signatures
+ However, w = 256 makes signing and verification ~ 8 x slower

- Verification recovers (and compares) the full public key
- Can publish h(pk) instead of pk
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From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge

+ Proof needs to go the other way round

- Given forgery oracle, need to compute preimage for some given x

- Can again place preimage challenge anywhere inside the chains
+ Problem: two ways for oracle to forge:

+ compute preimage (solve challenge)

- find different chain that collides further up

- Forgery gives us either preimage or collision

- Idea (Hulsing, 2013): control one input in that collision, get 2nd
preimage!

* Replace h(r) by h(r & b) for “bitmask” b

+ Include bitmasks in public key

+ Reduction can now choose inputs to hash function
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How about the message hash?

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
+ Requires collision-resistant hash-function h
+ |dea: randomize before feeding minto h
+ Pick random r
- Compute h(r | m)
+ Send r as part of the signature

+ Make deterministic: r < PRF(s, m) for secret s
- Signature scheme is now collision resilient
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Merkle Trees

| Auth for j = 001 |

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

- Merkle, 1979: Leverage one-time signatures to multiple messages
+ Binary hash tree on top of OTS public keys



Merkle Trees

’ Auth fori = 001 ‘

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

+ Use OTS keys sequentially
+ SIG = (I, sign(M, Xj), Vi, Auth)
- Signer needs to remember current index (= stateful scheme)



Merkle security

+ Informally:
+ requires EUF-CMA-secure OTS
- requires collision-resistant hash in the tree

- Can apply bitmask trick to get rid of collision-resistance
assumption
+ Merkle signatures are stateful
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Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses ©(2") memory
- Better approach, call TreenasH for each leaf, left to right:
function TrReenasH(stack, leaf node N)
while stack.peek() is on the same level as N do
neighbor «+ stack.pop()
N+ H(neighbor||N)
end while
stack.push(N)
end function

- After going through all leaves, root will be on the top of the stack

+ Memory requirement: h + 1 hashes



State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?
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State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key

- Can recompute tree every time: very slow signing

+ Obvious tradeoff: remember last authentication path

-+ Most of the time can reuse most nodes

+ Signing speed now depends largely on index

- |dea: balance computations, store nodes required for future
signatures

- Best known algorithm (again allowing tradeoffs): BDS traversal
Buchmann, Dahmen, Schneider, 2008: Merkle tree traversal
revisited
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.420.4170&rep=repl&type=pdf


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
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Stateful signatures: downside

- Secret key changes with every signature
- Going back to previous secret key is security disaster
+ Huge problem in many contexts:

+ Backups

+ VM Snapshots

+ Load balancing

+ APl is incompatible!

20
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Stateful signatures: advantage

- Remember forward secrecy?: old ciphertexts remain secure after
key compromise

- Signature forward security: old signatures remain valid after key
compromise

- Need “timestamp” baked into signature

- Secret key has to evolve to disable signing “in the past”
+ For Hash-based signatures:

+ generate OTS secret keys as s; = h(sj_1)
+ store only next valid OTS secret key
+ Need to keep hashes of old public keys

- After key compromise publish index of compromised key

- Signatures with lower index remain valid

21
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Multi-tree constructions

+ Remember that KeyGen has to compute the

- Infeasible for very large trees C Oy O

- |dea: generate all secret keys h,{ A
pseudo-randomly

+ Use PRF on secret seed with position in the

tree
- Use hierarchy of trees, connected via

one-time signatures hldI A

- Key generation computes only the top tree =
+ Many more size-speed tradeoffs

22
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Tanja Lange

Ruben Niederhagen
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The SPHINCS approach

- Use a “hyper-tree” of total

height h ;
- Parameter d > 1, such that .
d|h .
» Each (Merkle) tree has height h,({ @
h/d
+ (h/d)-ary certification tree e >
- A
< 95 >

24



The SPHINCS approach

Oy >
+ Pick index (pseudo-)randomly h’{ A
+ Messages signed with o

few-time signature scheme

- Significantly reduce total tree

height :
> [REgURE hldI A

Pr[r-times Coll] - Pr[Forgery o
after r signatures] = negl(n) =
IogtI
< 95 >

25
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The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature
+ |dea in HORS:
- use much bigger secret key
+ reveal only small portion
+ sign hash g(m); attacker does not control output of g
- attacker won't have enough secret-key to forge
+ Example parameters:
+ Generate sk = (ro, ..., l416)
-+ Compute public key (h(ro), ..., h(ry16))
+ Sign 512-bit hash g(m) = (go, - .-, gs1)
« Eachgi€o0,...,2'
+ Signature is (rggs - - -, lgs1)
- Signature reveals 32 out of 65536 secret-key values
- Even after, say, 5 signatures, attacker does not know enough secret
key to forge with non-negligible probability

26
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The HORST few-time signature scheme

+ Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

+ |dea:

+ build hash-tree on top of public-key chunks
- use root of tree as new public key (32 bytes)
« include authentication paths in signature

- Signature size (naive):

32-32+432-16 - 32 = 17408 Bytes

- Signature size (somewhat optimized): 13312 Bytes

27
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SPHINCS-256

+ Designed for 128 bits of post-quantum security

« Support up to 2°° signatures

- 12 trees of height 5 each

+ n = 256 bit hashes in WOTS and HORST

+ Winternitz paramter w = 16

- HORST with 216 expanded-secret-key chunks (total: 2 MB)
- m = 512 bit message hash (BLAKE-512)

+ ChaCha12 as PRG

28



Cost of SPHINCS-256 signing

+ Three main components:
+ PRG for HORST secret-key expansion to 2 MB
+ Hashing in WOTS and HORS public-key generation:
F:{0,1}**% — {0,1}2%¢
- Hashing in trees (mainly HORST public-key):
H:{0,1}%*2 — {0,1}2%¢

+ Overall: 451 456 invocations of F, 91 251 invocations of H
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« Qverall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
+ Construction in SPHINCS-256:
* F(My) = Chopys(m(Ma]|C))
* H(M:[|Mz2) = Chopase (m(m(Mh]|C) @ (M=][0%9)))
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Cost of SPHINCS-256 signing

+ Three main components:
+ PRG for HORST secret-key expansion to 2 MB
+ Hashing in WOTS and HORS public-key generation:
F:{0,1}2%¢ — {0,1}%¢
- Hashing in trees (mainly HORST public-key):
H:{0,1}**% — {0,1}*°
« Qverall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
+ Construction in SPHINCS-256:
+ F(My) = Chop,sq(m(Mi]|C))
* H(M:[|Mz2) = Chopase (m(m(Mh]|C) @ (M=][0%9)))
+ Use fast ChaCha12 permutation for =
- All building blocks (PRG, message hash, H, F) built from very
similar permutations
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes

+ =~ 40 KB signature
+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key
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+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key

High-speed implementation
+ Target Intel Haswell with 256-bit AVX2 vector instructions

-+ Use 8x parallel hashing, vectorize on high level
+ ~ 1.6 cycles/byte for Hand F
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes

+ =~ 40 KB signature
+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key

High-speed implementation
+ Target Intel Haswell with 256-bit AVX2 vector instructions
-+ Use 8x parallel hashing, vectorize on high level
+ ~ 1.6 cycles/byte for Hand F

SPHINCS-256 speed

- Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)
+ Verification: < 1.5 Mio. Haswell cycles
+ Keygen: < 3.3 Mio. Haswell cycles
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From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls
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- win if output matches any of the challenges
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challenges
- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

- |dea: use different hash function for each call

- Use address in the tree to pick hash function

+ Proposed in 2016 by Hulsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)
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+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls

- Think of it as attacker solving one out of many 2nd preimage
challenges

- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

- |dea: use different hash function for each call

- Use address in the tree to pick hash function

+ Proposed in 2016 by Hulsing, Rijneveld, and Song

- First adopted in XMSS (see RFC 8391)

+ Merge with random bitmasks into tweakable hash function

- NIST proposal: tweakable hash from SHA-256, SHAKE-256, or
Haraka
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From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
+ d <« h(r,m)
+ sign digest d with FTS
+ include i in signature
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From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
+ d <« h(r,m)
+ sign digest d with FTS
+ include i in signature
+ SPHINCS™:
* 1<+ PRF(s,m)
« (i,d) < h(r,m),
- sign digest d with FTS
+ include rin signature

+ Verifier can check that d and i belong together
« Attacker cannot pick d and i independently

- Additionally: Improvements to FTS (FORS)
+ Use multiple smaller trees instead of one big tree
- Per signature, reveal one secret-key leaf per tree
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Know more?

https://sphincs.org


https://sphincs.org

