
Hash-based signatures – from Lamport to
SPHINCS+

Peter Schwabe
November 18, 2020



NIST PQC candidates

So many NIST candidates and one thing they all
have in common. . .

they all need a hash function.

What can we do with just a hash function?
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Hash-based signatures

• Hash functions map long strings to fixed-length strings
• Standard properties required from a cryptographic hash function:

• Collision resistance: Hard two find two inputs that produce the
same output

• Preimage resistance: Given the output, it’s hard to find the input
• 2nd preimage resistance: Given input and output, it’s hard to find a

second input, producing the same output

• Collision resistance is stronger assumption than (2nd) preimage
resistance

• Ideally, don’t want to rely on collision resistance
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Signatures for 0-bit messages

Key generation
• Generate 256-bit random value r (secret key)

• Compute p = h(r) (public key)

Signing
• Send σ = r

Verification
• Check that h(r) = p
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Security of this scheme

• Clearly an attacker who can invert h can break the scheme

• Can we reduce from preimage-resistance to unforgeability?

• Proof game:
• Assume oracle A that computes forgery, given public key pk
• Get input y, use oracle to compute x, s.t., h(x) = y
• Idea: use public-key pk = y, oracle will compute forgery x

• . . . or will it?

• Problem: y is not an output of h

• What if A can distinguish legit pk from random?

• Need additional property of h: undetectability

• From now on assume that all our hash functions are undetectable
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Signatures for 1-bit messages

Key generation
• Generate 256-bit random values (r0, r1) = s (secret key)

• Compute (h(r0), h(r1)) = (p0, p1) = p (public key)

Signing
• Signature for message b = 0: σ = r0
• Signature for message b = 1: σ = r1

Verification
Check that h(σ) = pb
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Security of this scheme

• Same idea as for 0-bit messages: reduce from preimage
resistance

• Proof game:
• Assume oracle A that computes forgery, given public key pk
• Get input y, use “public key” (h(r0), y) or (y, h(r1))

• A asks for signature on either 0 or 1
• If you can, answer with preimage, otherwise fail (abort)
• Now A returns preimage, i.e., preimage of y

• Reduction only works with 1/2 probability

• We get a tightness loss of 1/2
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One-time signatures for 256-bit messages

Key generation
• Generate 256-bit random values s = (r0,0, r0,1 . . . , r255,0, r255,1)

• Compute p = (h(r0,0), h(r0,1), . . . , h(r255,0), h(r255,1)) =
(p0,0, p0,1, . . . , p255,0, p255,1)

Signing
• Signature for message (b0, . . . , b255):
σ = (σ0, . . . , σ255) = (r0,b0 ,…, r255,b255)

Verification
• Check that h(σ0) = p0,b0
• . . .

• Check that h(σ255) = p255,b255
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Security of this scheme

• Same idea as before, replace one pj,b in the public key by
challenge y

• Fail if signing needs the preimage of y

• In forgery, attacker has to flip at least one bit in m

• Chance of 1/256 that attacker flips the bit with the challenge

• Overall tightness loss of 1/512
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Winternitz OTS (basic idea)

• Lamport signatures are rather large (8KB)
• Can we tradeoff speed for size?
• Idea: use hw(r) intead of h(r) (“hash chains”)

Key generation
• Generate 256-bit random values r0, . . . , r63 (secret key)

• Compute (p0, . . . , p63) = (h15(r0), . . . , h15(r63) (public key)

Signing
• Chop 256 bit message into 64 chunks of 4 bits m = (m0, . . . ,m63)

• Compute σ = (σ0, . . . , σ63) = (hm0(r0), . . . , hm63(r63))

Verification
• Check that p0 = h15−m0(σ0), . . . , p63 = h15−m63(σ63)
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Winternitz OTS (basic idea, ctd.)
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Winternitz OTS (making it secure)

• Once you signed, say, m = (8,m1, . . . ,m63), can easily forge
signature on m = (9,m1, . . . ,m63)

• Idea: introduce checksum, force attacker to “go down” some chain
in exchange

• Compute c = 960−
∑63

i=0mi ∈ {0, . . . , 960}
• Write c in radix 16, obtain c0, c1, c2
• Compute hash chains for c0, c1, c2 as well

• When increasing one of the mi’s, one of the ci’s decreases

• In total obtain 67 hash chains, signatures have 2144 bytes
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WOTS notes

• The value w = 16 (15 hashes per chain) is tunable

• Can also use, e.g., 256 (chop message into bytes)

• Lots of tradeoffs between speed and size
• w = 16 yields ≈ 2.1KB signatures
• w = 256 yields ≈ 1.1KB signatures
• However, w = 256 makes signing and verification ≈ 8× slower

• Verification recovers (and compares) the full public key

• Can publish h(pk) instead of pk
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From WOTS to WOTS+

• An attacker who can compute preimages can go backwards in
chains

• Problem: hard to prove that this is the only way to forge

• Proof needs to go the other way round
• Given forgery oracle, need to compute preimage for some given x
• Can again place preimage challenge anywhere inside the chains
• Problem: two ways for oracle to forge:

• compute preimage (solve challenge)
• find different chain that collides further up

• Forgery gives us either preimage or collision
• Idea (Hülsing, 2013): control one input in that collision, get 2nd

preimage!
• Replace h(r) by h(r⊕ b) for “bitmask” b
• Include bitmasks in public key
• Reduction can now choose inputs to hash function
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How about the message hash?

• What if we want to sign messages longer than 256 bits?

• Simple answer: sign h(m)

• Requires collision-resistant hash-function h

• Idea: randomize before feeding m into h
• Pick random r
• Compute h(r | m)

• Send r as part of the signature

• Make deterministic: r← PRF(s,m) for secret s

• Signature scheme is now collision resilient

14
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Merkle Trees
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Auth for i = 001

• Merkle, 1979: Leverage one-time signatures to multiple messages

• Binary hash tree on top of OTS public keys
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• Use OTS keys sequentially

• SIG = (i, sign(M,Xi),Yi,Auth)
• Signer needs to remember current index (⇒ stateful scheme)
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Merkle security

• Informally:
• requires EUF-CMA-secure OTS
• requires collision-resistant hash in the tree

• Can apply bitmask trick to get rid of collision-resistance
assumption

• Merkle signatures are stateful
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Keygen memory usage

• Keygen needs to compute the whole tree from leaves to root

• Naive implementation uses Θ(2h) memory

• Better approach, call treehash for each leaf, left to right:
function treehash(stack, leaf node N)

while stack.peek() is on the same level as N do
neighbor← stack.pop()
N← H(neighbor||N)

end while
stack.push(N)

end function

• After going through all leaves, root will be on the top of the stack

• Memory requirement: h+ 1 hashes
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State size vs. signing speed

• KeyGen needs to compute the whole tree, but how about signing?

• Can simply remember the tree from KeyGen: large secret key

• Can recompute tree every time: very slow signing

• Obvious tradeoff: remember last authentication path

• Most of the time can reuse most nodes

• Signing speed now depends largely on index

• Idea: balance computations, store nodes required for future
signatures

• Best known algorithm (again allowing tradeoffs): BDS traversal
Buchmann, Dahmen, Schneider, 2008: Merkle tree traversal
revisited
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.420.4170&rep=rep1&type=pdf

19
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Stateful signatures: downside

• Secret key changes with every signature

• Going back to previous secret key is security disaster

• Huge problem in many contexts:
• Backups
• VM Snapshots
• Load balancing
• API is incompatible!
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Stateful signatures: advantage

• Remember forward secrecy?: old ciphertexts remain secure after
key compromise

• Signature forward security: old signatures remain valid after key
compromise

• Need “timestamp” baked into signature

• Secret key has to evolve to disable signing “in the past”
• For Hash-based signatures:

• generate OTS secret keys as si = h(si−1)

• store only next valid OTS secret key
• Need to keep hashes of old public keys

• After key compromise publish index of compromised key

• Signatures with lower index remain valid
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Multi-tree constructions

• Remember that KeyGen has to compute the
whole tree

• Infeasible for very large trees

• Idea: generate all secret keys
pseudo-randomly

• Use PRF on secret seed with position in the
tree

• Use hierarchy of trees, connected via
one-time signatures

• Key generation computes only the top tree

• Many more size-speed tradeoffs
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The SPHINCS approach

• Use a “hyper-tree” of total
height h

• Parameter d ≥ 1, such that
d | h

• Each (Merkle) tree has height
h/d

• (h/d)-ary certification tree
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σ
W,d-1

h/d

TREE
d-2

σ
W,d-2

TREE
0

σ
W,0

FTS

σ
H

h/d

h/d

log t
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The SPHINCS approach

• Pick index (pseudo-)randomly

• Messages signed with
few-time signature scheme

• Significantly reduce total tree
height

• Require
Pr[r-times Coll] · Pr[Forgery
after r signatures] = negl(n)
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The HORS few-time signature scheme

• Lamport signatures reveal half of the secret key with each
signature

• Idea in HORS:
• use much bigger secret key
• reveal only small portion
• sign hash g(m); attacker does not control output of g
• attacker won’t have enough secret-key to forge

• Example parameters:
• Generate sk = (r0, . . . , r216)
• Compute public key (h(r0), . . . , h(r216))

• Sign 512-bit hash g(m) = (g0, . . . , g31)
• Each gi ∈ 0, . . . , 216

• Signature is (rg0 , . . . , rg31)
• Signature reveals 32 out of 65536 secret-key values
• Even after, say, 5 signatures, attacker does not know enough secret

key to forge with non-negligible probability
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The HORST few-time signature scheme

• Problem with HORS: 2MB public key

• public key becomes part of signature in complete construction!

• Idea:
• build hash-tree on top of public-key chunks
• use root of tree as new public key (32 bytes)
• include authentication paths in signature

• Signature size (naïve):

32 · 32 + 32 · 16 · 32 = 17408Bytes

• Signature size (somewhat optimized): 13312 Bytes
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SPHINCS-256

• Designed for 128 bits of post-quantum security

• Support up to 250 signatures

• 12 trees of height 5 each

• n = 256 bit hashes in WOTS and HORST

• Winternitz paramter w = 16

• HORST with 216 expanded-secret-key chunks (total: 2 MB)

• m = 512 bit message hash (BLAKE-512)

• ChaCha12 as PRG
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Cost of SPHINCS-256 signing

• Three main components:
• PRG for HORST secret-key expansion to 2 MB
• Hashing in WOTS and HORS public-key generation:
F : {0, 1}256 → {0, 1}256

• Hashing in trees (mainly HORST public-key):
H : {0, 1}512 → {0, 1}256

• Overall: 451 456 invocations of F, 91 251 invocations of H

• Full hash function would be overkill for F and H
• Construction in SPHINCS-256:

• F(M1) = Chop256(π(M1||C))
• H(M1||M2) = Chop256(π(π(M1||C)⊕ (M2||0256)))

• Use fast ChaCha12 permutation for π

• All building blocks (PRG, message hash, H, F) built from very
similar permutations
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes
• ≈ 40KB signature

• ≈ 1KB public key (mainly bitmasks)

• ≈ 1KB private key

High-speed implementation
• Target Intel Haswell with 256-bit AVX2 vector instructions

• Use 8× parallel hashing, vectorize on high level

• ≈ 1.6 cycles/byte for H and F

SPHINCS-256 speed
• Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)

• Verification: < 1.5 Mio. Haswell cycles

• Keygen: < 3.3 Mio. Haswell cycles
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From SPHINCS to SPHINCS+, part I

• Remember tightness loss from many hash calls
• SPHINCS and SPHINCS+ have many hash calls

• Think of it as attacker solving one out of many 2nd preimage
challenges

• Trivial (pre-quantum) attack:
• try all inputs of appropriate size
• win if output matches any of the challenges

• Idea: use different hash function for each call
• Use address in the tree to pick hash function
• Proposed in 2016 by Hülsing, Rijneveld, and Song
• First adopted in XMSS (see RFC 8391)
• Merge with random bitmasks into tweakable hash function
• NIST proposal: tweakable hash from SHA-256, SHAKE-256, or

Haraka

31
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From SPHINCS to SPHINCS+, part II

• Verifiable index computation:
• SPHINCS:

• (i, r)← PRF(s,m),
• d← h(r,m)

• sign digest d with FTS
• include i in signature

• SPHINCS+:
• r← PRF(s,m)

• (i, d)← h(r,m),
• sign digest d with FTS
• include r in signature

• Verifier can check that d and i belong together
• Attacker cannot pick d and i independently

• Additionally: Improvements to FTS (FORS)

• Use multiple smaller trees instead of one big tree

• Per signature, reveal one secret-key leaf per tree
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Know more?

https://sphincs.org
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