MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Hash-based signatures — from Lamport to
SPHINCS™

Peter Schwabe
November 18, 2020

NIST PQC candidates

So many NIST candidates and one thing they all
have in common. ..

NIST PQC candidates

So many NIST candidates and one thing they all
have in common. . . they all need a hash function.

NIST PQC candidates

So many NIST candidates and one thing they all
have in common. . . they all need a hash function.

What can we do with just a hash function?

Hash-based signatures

- Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
- Collision resistance: Hard two find two inputs that produce the
same output
- Preimage resistance: Given the output, it's hard to find the input
-+ 2nd preimage resistance: Given input and output, it's hard to find a
second input, producing the same output

Hash-based signatures

- Hash functions map long strings to fixed-length strings
- Standard properties required from a cryptographic hash function:
- Collision resistance: Hard two find two inputs that produce the
same output
- Preimage resistance: Given the output, it's hard to find the input
-+ 2nd preimage resistance: Given input and output, it's hard to find a
second input, producing the same output
- Collision resistance is stronger assumption than (2nd) preimage
resistance

- Ideally, don't want to rely on collision resistance

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)
Signing

«Sendo =r

Signatures for 0-bit messages

Key generation

- Generate 256-bit random value r (secret key)
- Compute p = h(r) (public key)

Signing
- Sendo=r

Verification
+ Check thath(r) =p

Security of this scheme

+ Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

Security of this scheme

+ Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

+ Proof game:

+ Assume oracle A that computes forgery, given public key pk
- Getinputy, use oracle to compute x, s.t., h(x) =y
- Idea: use public-key pk = y, oracle will compute forgery x

Security of this scheme

+ Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

+ Proof game:

+ Assume oracle A that computes forgery, given public key pk
- Getinputy, use oracle to compute x, s.t., h(x) =y

- Idea: use public-key pk = y, oracle will compute forgery x

< L.oorwillit?

Security of this scheme

+ Clearly an attacker who can invert h can break the scheme
- Can we reduce from preimage-resistance to unforgeability?

+ Proof game:

+ Assume oracle A that computes forgery, given public key pk
- Getinputy, use oracle to compute x, s.t., h(x) =y

- Idea: use public-key pk = y, oracle will compute forgery x

< L.oorwillit?

+ Problem: y is not an output of h

+ What if A can distinguish legit pk from random?

+ Need additional property of h: undetectability

- From now on assume that all our hash functions are undetectable

Signatures for 1-bit messages

Key generation
- Generate 256-bit random values (rg, r1) = s (secret key)
» Compute (h(ro), h(r1)) = (po,Pp1) = p (public key)

Signatures for 1-bit messages

Key generation
- Generate 256-bit random values (rg, r1) = s (secret key)
» Compute (h(ro), h(r1)) = (po,p1) = p (public key)
Signing
- Signature formessageb =0: 0 =y
- Signature formessageb =10 =r,

Signatures for 1-bit messages

Key generation
- Generate 256-bit random values (rg, r1) = s (secret key)
» Compute (h(ro), h(r1)) = (po,p1) = p (public key)
Signing
- Signature formessageb =0: 0 =y
- Signature formessageb =10 =r,

Verification
Check that h(o) = pp

Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance

Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance
+ Proof game:

- Assume oracle A that computes forgery, given public key pk
- Getinput y, use “public key” (h(ro),y) or (y,h(ry))

Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance
+ Proof game:
- Assume oracle A that computes forgery, given public key pk
- Getinput y, use “public key” (h(ro),y) or (y,h(ry))
- A asks for signature on either 0 or 1
- If you can, answer with preimage, otherwise fail (abort)

Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance

+ Proof game:

- Assume oracle A that computes forgery, given public key pk
- Getinput y, use “public key” (h(ro),y) or (y,h(ry))

- A asks for signature on either 0 or 1

- If you can, answer with preimage, otherwise fail (abort)

- Now A returns preimage, i.e., preimage of y

Security of this scheme

- Same idea as for 0-bit messages: reduce from preimage
resistance

+ Proof game:

- Assume oracle A that computes forgery, given public key pk
- Getinput y, use “public key” (h(ro),y) or (y,h(ry))

- A asks for signature on either 0 or 1

- If you can, answer with preimage, otherwise fail (abort)

- Now A returns preimage, i.e., preimage of y

+ Reduction only works with 1/2 probability
+ We get a tightness loss of 1/2

One-time signatures for 256-bit messages

Key generation
+ Generate 256-bit random values s = (ro.0,70.1 - - -, 1255.0, [255.1)

+ Compute p = (h(ro,0),(ro,1), - - h(ress,0),h(ress,1)) =
(P0,0,P0,15 - - -+ P255,0,P255,1)

One-time signatures for 256-bit messages

Key generation
+ Generate 256-bit random values s = (ro.0,70.1 - - -, 1255.0, [255.1)
+ Compute p = (h(ro,0), h(ro,1),---,h(r2ss,0), "(ress,1)) =
(P0,0,P0,15 - - -+ P255,0,P255,1)
Signing
- Signature for message (by, . . ., bass):

0 =(00,-..,0255) = (I0.bg r-2 255 ,bass)

One-time signatures for 256-bit messages

Key generation
+ Generate 256-bit random values s = (ro.0,70.1 - - -, 1255.0, [255.1)

+ Compute p = (h(ro,0),(ro,1), - - h(ress,0),h(ress,1)) =
(P0,0,P0,15 - - -+ P255,0,P255,1)

Signing
- Signature for message (by, . . ., bass):
o= (00,...,0255) = (fo,b07~--7f255,b255)
Verification

+ Check that h(og) = po b,

+ Check that h(0'255) = p255,b255

Security of this scheme

- Same idea as before, replace one p; , in the public key by
challenge y

- Fail if signing needs the preimage of y

- In forgery, attacker has to flip at least one bit in m

+ Chance of 1/256 that attacker flips the bit with the challenge
+ Overall tightness loss of 1/512

Winternitz OTS (basic idea)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use h"(r) intead of h(r) (“hash chains”)

Winternitz OTS (basic idea)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use h"(r) intead of h(r) (“hash chains”)

Key generation
- Generate 256-bit random values ry, . . ., rg3 (Secret key)
» Compute (po, - .-, Pe3) = (h**(ro), ..., h**(re3) (public key)

Winternitz OTS (basic idea)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use h"(r) intead of h(r) (“hash chains”)

Key generation

- Generate 256-bit random values ry, . . ., rg3 (Secret key)
» Compute (po, - - ., Pe3) = (h**(ro), . .., h'*(rg3) (public key)

Signing
+ Chop 256 bit message into 64 chunks of 4 bits m = (Mo, ..., Mg3)

- Compute o = (ay,...,063) = (h™(ro),. .., M3 (rg3))

Winternitz OTS (basic idea)

- Lamport signatures are rather large (8 KB)
- Can we tradeoff speed for size?
- Idea: use h"(r) intead of h(r) (“hash chains”)

Key generation
- Generate 256-bit random values ry, . . ., rg3 (Secret key)
* CompLJte (pO; 000 ap63) = (h15(r0)7 oo 7h15(r63) (DUbllc key)

Signing
+ Chop 256 bit message into 64 chunks of 4 bits m = (Mo, ..., Mg3)
o Compute o = (0‘0, ey 0’63) = (hmo (r()), .. 7hm63 (f@g))
Verification

+ Check that Po = ht5—mo (O’O)7 ...,Pe3 = ht5—Mes (0'63)

Winternitz OTS (basic idea, ctd.)

h h h
h(ro) h(r1) h(res)
h h

Winternitz OTS (making it secure)

+ Once you signed, say, m = (8,my, ..., Mg3), can easily forge
signatureonm = (9,Mx, ..., Mg3)

+ |dea: introduce checksum, force attacker to “go down” some chain
in exchange

Winternitz OTS (making it secure)

+ Once you signed, say, m = (8,my, ..., Mg3), can easily forge
signatureonm = (9,Mx, ..., Mg3)

+ |dea: introduce checksum, force attacker to “go down” some chain
in exchange

+ Compute ¢ = 960 — .2, m; € {0,....,960}
+ Write ¢ in radix 16, obtain ¢y, ¢y, Ca

- Compute hash chains for ¢y, ¢y, ¢, as well

Winternitz OTS (making it secure)

+ Once you signed, say, m = (8,my, ..., Mg3), can easily forge
signatureonm = (9,Mx, ..., Mg3)

+ |dea: introduce checksum, force attacker to “go down” some chain
in exchange

+ Compute ¢ = 960 — .2, m; € {0,....,960}

+ Write ¢ in radix 16, obtain ¢y, ¢y, Ca

- Compute hash chains for ¢y, ¢y, ¢, as well

+ When increasing one of the mj’s, one of the c;'s decreases
- In total obtain 67 hash chains, signatures have 2144 bytes

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

- Lots of tradeoffs between speed and size

+ w = 16 yields = 2.1 KB signatures
- W = 256 yields ~ 1.1 KB signatures
+ However, w = 256 makes signing and verification ~ 8 x slower

WOTS notes

- The value w = 16 (15 hashes per chain) is tunable
- Can also use, e.g., 256 (chop message into bytes)

- Lots of tradeoffs between speed and size

+ w = 16 yields = 2.1 KB signatures
- W = 256 yields ~ 1.1 KB signatures
+ However, w = 256 makes signing and verification ~ 8 x slower

- Verification recovers (and compares) the full public key
- Can publish h(pk) instead of pk

From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge

From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge

+ Proof needs to go the other way round

- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains

From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge

+ Proof needs to go the other way round

- Given forgery oracle, need to compute preimage for some given x

- Can again place preimage challenge anywhere inside the chains

+ Problem: two ways for oracle to forge:

+ compute preimage (solve challenge)
- find different chain that collides further up

- Forgery gives us either preimage or collision

From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge
+ Proof needs to go the other way round
- Given forgery oracle, need to compute preimage for some given x
- Can again place preimage challenge anywhere inside the chains
+ Problem: two ways for oracle to forge:
+ compute preimage (solve challenge)
- find different chain that collides further up
- Forgery gives us either preimage or collision
- Idea (Hulsing, 2013): control one input in that collision, get 2nd
preimage!

From WOTS to WOTS™

- An attacker who can compute preimages can go backwards in
chains

+ Problem: hard to prove that this is the only way to forge

+ Proof needs to go the other way round

- Given forgery oracle, need to compute preimage for some given x

- Can again place preimage challenge anywhere inside the chains
+ Problem: two ways for oracle to forge:

+ compute preimage (solve challenge)

- find different chain that collides further up

- Forgery gives us either preimage or collision

- Idea (Hulsing, 2013): control one input in that collision, get 2nd
preimage!

* Replace h(r) by h(r & b) for “bitmask” b

+ Include bitmasks in public key

+ Reduction can now choose inputs to hash function

How about the message hash?

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
+ Requires collision-resistant hash-function h

How about the message hash?

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
+ Requires collision-resistant hash-function h
+ |dea: randomize before feeding minto h
+ Pick random r
- Compute h(r | m)
+ Send r as part of the signature

How about the message hash?

- What if we want to sign messages longer than 256 bits?
- Simple answer: sign h(m)
+ Requires collision-resistant hash-function h
+ |dea: randomize before feeding minto h
+ Pick random r
- Compute h(r | m)
+ Send r as part of the signature

+ Make deterministic: r < PRF(s, m) for secret s
- Signature scheme is now collision resilient

Merkle Trees

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

- Merkle, 1979: Leverage one-time signatures to multiple messages
+ Binary hash tree on top of OTS public keys

Merkle Trees

| Auth for j = 001 |

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

- Merkle, 1979: Leverage one-time signatures to multiple messages
+ Binary hash tree on top of OTS public keys

Merkle Trees

’ Auth fori = 001 ‘

Xooo Xoo1 Xo1o Xo11 X100 X101 X110 X111

+ Use OTS keys sequentially
+ SIG = (I, sign(M, Xj), Vi, Auth)
- Signer needs to remember current index (= stateful scheme)

Merkle security

+ Informally:
+ requires EUF-CMA-secure OTS
- requires collision-resistant hash in the tree

- Can apply bitmask trick to get rid of collision-resistance
assumption
+ Merkle signatures are stateful

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root

- Naive implementation uses ©(2") memory

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses ©(2") memory
- Better approach, call TreenasH for each leaf, left to right:
function TrReenasH(stack, leaf node N)
while stack.peek() is on the same level as N do
neighbor «+ stack.pop()
N+ H(neighbor||N)
end while
stack.push(N)
end function

Keygen memory usage

- Keygen needs to compute the whole tree from leaves to root
- Naive implementation uses ©(2") memory
- Better approach, call TreenasH for each leaf, left to right:
function TrReenasH(stack, leaf node N)
while stack.peek() is on the same level as N do
neighbor «+ stack.pop()
N+ H(neighbor||N)
end while
stack.push(N)
end function

- After going through all leaves, root will be on the top of the stack

+ Memory requirement: h + 1 hashes

State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf

State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?

- Can simply remember the tree from KeyGen: large secret key

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf

State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key
- Can recompute tree every time: very slow signing

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf

State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key

- Can recompute tree every time: very slow signing

+ Obvious tradeoff: remember last authentication path

+ Most of the time can reuse most nodes

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf

State size vs. signing speed

- KeyGen needs to compute the whole tree, but how about signing?
- Can simply remember the tree from KeyGen: large secret key

- Can recompute tree every time: very slow signing

+ Obvious tradeoff: remember last authentication path

-+ Most of the time can reuse most nodes

+ Signing speed now depends largely on index

- |dea: balance computations, store nodes required for future
signatures

- Best known algorithm (again allowing tradeoffs): BDS traversal
Buchmann, Dahmen, Schneider, 2008: Merkle tree traversal
revisited
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.420.4170&rep=repl&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.4170&rep=rep1&type=pdf

Stateful signatures: downside

- Secret key changes with every signature
- Going back to previous secret key is security disaster

20

Stateful signatures: downside

- Secret key changes with every signature
- Going back to previous secret key is security disaster
+ Huge problem in many contexts:

+ Backups

+ VM Snapshots

+ Load balancing

+ APl is incompatible!

20

Stateful signatures: advantage

- Remember forward secrecy?: old ciphertexts remain secure after
key compromise

- Signature forward security: old signatures remain valid after key
compromise

21

Stateful signatures: advantage

- Remember forward secrecy?: old ciphertexts remain secure after
key compromise

- Signature forward security: old signatures remain valid after key
compromise

- Need “timestamp” baked into signature
- Secret key has to evolve to disable signing “in the past”

21

Stateful signatures: advantage

- Remember forward secrecy?: old ciphertexts remain secure after
key compromise

- Signature forward security: old signatures remain valid after key
compromise

- Need “timestamp” baked into signature
- Secret key has to evolve to disable signing “in the past”

+ For Hash-based signatures:

+ generate OTS secret keys as s; = h(sj_1)
+ store only next valid OTS secret key
+ Need to keep hashes of old public keys

21

Stateful signatures: advantage

- Remember forward secrecy?: old ciphertexts remain secure after
key compromise

- Signature forward security: old signatures remain valid after key
compromise

- Need “timestamp” baked into signature

- Secret key has to evolve to disable signing “in the past”
+ For Hash-based signatures:

+ generate OTS secret keys as s; = h(sj_1)
+ store only next valid OTS secret key
+ Need to keep hashes of old public keys

- After key compromise publish index of compromised key

- Signatures with lower index remain valid

21

Multi-tree constructions

+ Remember that KeyGen has to compute the
whole tree

- Infeasible for very large trees

22

Multi-tree constructions

+ Remember that KeyGen has to compute the
whole tree

- Infeasible for very large trees

- |dea: generate all secret keys
pseudo-randomly

+ Use PRF on secret seed with position in the
tree

22

Multi-tree constructions

+ Remember that KeyGen has to compute the

- Infeasible for very large trees C Oy O

- |dea: generate all secret keys h,{ A
pseudo-randomly

+ Use PRF on secret seed with position in the

tree
- Use hierarchy of trees, connected via

one-time signatures hldI A

- Key generation computes only the top tree =
+ Many more size-speed tradeoffs

22

SPHINCS: stateless practical hash-based signatures

(2015)

Daniel J. Bernstein

Daira Hopwood

Andreas Hulsing

Tanja Lange

Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider

Peter Schwabe

Zooko Wilcox-O'Hearn

23

SPHINCS: stateless practical hash-based incredibly

nice cryptographic signatures (2015)

Daniel J. Bernstein

Daira Hopwood

Andreas Hulsing

Tanja Lange

Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider

Peter Schwabe

Zooko Wilcox-O'Hearn

23

The SPHINCS approach

- Use a “hyper-tree” of total

height h ;
- Parameter d > 1, such that .
d|h .
» Each (Merkle) tree has height h,({ @
h/d
+ (h/d)-ary certification tree e >
- A
< 95 >

24

The SPHINCS approach

Oy >
+ Pick index (pseudo-)randomly h’{ A
+ Messages signed with o

few-time signature scheme

- Significantly reduce total tree

height :
> [REgURE hldI A

Pr[r-times Coll] - Pr[Forgery o
after r signatures] = negl(n) =
IogtI
< 95 >

25

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature

26

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature
+ Idea in HORS:

- use much bigger secret key

+ reveal only small portion

+ sign hash g(m); attacker does not control output of g
- attacker won't have enough secret-key to forge

26

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature
+ |dea in HORS:
- use much bigger secret key
+ reveal only small portion
+ sign hash g(m); attacker does not control output of g
- attacker won't have enough secret-key to forge
+ Example parameters:
+ Generate sk = (ro, ..., l416)
+ Compute public key (h(ro), . ..,h(ry6))

26

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature
+ |dea in HORS:
- use much bigger secret key
+ reveal only small portion
+ sign hash g(m); attacker does not control output of g
- attacker won't have enough secret-key to forge
+ Example parameters:
+ Generate sk = (ro, ..., l416)
-+ Compute public key (h(ro), ..., h(ry16))
+ Sign 512-bit hash g(m) = (go, - .-, gs1)
« Eachgi€o0,...,2'

26

The HORS few-time signature scheme

- Lamport signatures reveal half of the secret key with each
signature
+ |dea in HORS:
- use much bigger secret key
+ reveal only small portion
+ sign hash g(m); attacker does not control output of g
- attacker won't have enough secret-key to forge
+ Example parameters:
+ Generate sk = (ro, ..., l416)
-+ Compute public key (h(ro), ..., h(ry16))
+ Sign 512-bit hash g(m) = (go, - .-, gs1)
« Eachgi€o0,...,2'
+ Signature is (rggs - - -, lgs1)
- Signature reveals 32 out of 65536 secret-key values
- Even after, say, 5 signatures, attacker does not know enough secret
key to forge with non-negligible probability

26

The HORST few-time signature scheme

+ Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

27

The HORST few-time signature scheme

+ Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

+ |dea:

+ build hash-tree on top of public-key chunks
- use root of tree as new public key (32 bytes)
« include authentication paths in signature

27

The HORST few-time signature scheme

+ Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

+ ldea:
+ build hash-tree on top of public-key chunks
- use root of tree as new public key (32 bytes)
« include authentication paths in signature

- Signature size (naive):

32-32+432-16 - 32 = 17408 Bytes

27

The HORST few-time signature scheme

+ Problem with HORS: 2 MB public key
- public key becomes part of signature in complete construction!

+ |dea:

+ build hash-tree on top of public-key chunks
- use root of tree as new public key (32 bytes)
« include authentication paths in signature

- Signature size (naive):

32-32+432-16 - 32 = 17408 Bytes

- Signature size (somewhat optimized): 13312 Bytes

27

SPHINCS-256

+ Designed for 128 bits of post-quantum security
« Support up to 2°° signatures
- 12 trees of height 5 each

28

SPHINCS-256

+ Designed for 128 bits of post-quantum security

« Support up to 2°° signatures

- 12 trees of height 5 each

+ n = 256 bit hashes in WOTS and HORST

+ Winternitz paramter w = 16

- HORST with 216 expanded-secret-key chunks (total: 2 MB)

28

SPHINCS-256

+ Designed for 128 bits of post-quantum security

« Support up to 2°° signatures

- 12 trees of height 5 each

+ n = 256 bit hashes in WOTS and HORST

+ Winternitz paramter w = 16

- HORST with 216 expanded-secret-key chunks (total: 2 MB)
- m = 512 bit message hash (BLAKE-512)

+ ChaCha12 as PRG

28

Cost of SPHINCS-256 signing

+ Three main components:
+ PRG for HORST secret-key expansion to 2 MB
+ Hashing in WOTS and HORS public-key generation:
F:{0,1}**% — {0,1}2%¢
- Hashing in trees (mainly HORST public-key):
H:{0,1}%*2 — {0,1}2%¢

+ Overall: 451 456 invocations of F, 91 251 invocations of H

29

Cost of SPHINCS-256 signing

+ Three main components:
+ PRG for HORST secret-key expansion to 2 MB
+ Hashing in WOTS and HORS public-key generation:
F:{0,1}2%¢ — {0,1}%¢
- Hashing in trees (mainly HORST public-key):
H:{0,1}%*2 — {0,1}2%¢
« Qverall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
+ Construction in SPHINCS-256:
* F(My) = Chopys(m(Ma]|C))
* H(M:[|Mz2) = Chopase (m(m(Mh]|C) @ (M=][0%9)))

29

Cost of SPHINCS-256 signing

+ Three main components:
+ PRG for HORST secret-key expansion to 2 MB
+ Hashing in WOTS and HORS public-key generation:
F:{0,1}2%¢ — {0,1}%¢
- Hashing in trees (mainly HORST public-key):
H:{0,1}**% — {0,1}*°
« Qverall: 451 456 invocations of F, 91 251 invocations of H
- Full hash function would be overkill for F and H
+ Construction in SPHINCS-256:
+ F(My) = Chop,sq(m(Mi]|C))
* H(M:[|Mz2) = Chopase (m(m(Mh]|C) @ (M=][0%9)))
+ Use fast ChaCha12 permutation for =
- All building blocks (PRG, message hash, H, F) built from very
similar permutations

29

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

+ =~ 40 KB signature
+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key

30

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

+ =~ 40 KB signature
+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key

High-speed implementation
+ Target Intel Haswell with 256-bit AVX2 vector instructions

-+ Use 8x parallel hashing, vectorize on high level
+ ~ 1.6 cycles/byte for Hand F

30

SPHINCS-256 speed and sizes

SPHINCS-256 sizes

+ =~ 40 KB signature
+ ~ 1 KB public key (mainly bitmasks)
- ~ 1KB private key

High-speed implementation
+ Target Intel Haswell with 256-bit AVX2 vector instructions
-+ Use 8x parallel hashing, vectorize on high level
+ ~ 1.6 cycles/byte for Hand F

SPHINCS-256 speed

- Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)
+ Verification: < 1.5 Mio. Haswell cycles
+ Keygen: < 3.3 Mio. Haswell cycles

30

From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls

31

https://tools.ietf.org/html/rfc8391

From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls

+ SPHINCS and SPHINCS* have many hash calls

- Think of it as attacker solving one out of many 2nd preimage
challenges

- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

31

https://tools.ietf.org/html/rfc8391

From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls

- Think of it as attacker solving one out of many 2nd preimage
challenges
- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

« |dea: use different hash function for each call
- Use address in the tree to pick hash function

31

https://tools.ietf.org/html/rfc8391

From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls

- Think of it as attacker solving one out of many 2nd preimage
challenges
- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

- |dea: use different hash function for each call

- Use address in the tree to pick hash function

+ Proposed in 2016 by Hulsing, Rijneveld, and Song
- First adopted in XMSS (see RFC 8391)

31

https://tools.ietf.org/html/rfc8391

From SPHINCS to SPHINCST, part |

+ Remember tightness loss from many hash calls
+ SPHINCS and SPHINCS* have many hash calls

- Think of it as attacker solving one out of many 2nd preimage
challenges

- Trivial (pre-quantum) attack:

« try all inputs of appropriate size
- win if output matches any of the challenges

- |dea: use different hash function for each call

- Use address in the tree to pick hash function

+ Proposed in 2016 by Hulsing, Rijneveld, and Song

- First adopted in XMSS (see RFC 8391)

+ Merge with random bitmasks into tweakable hash function

- NIST proposal: tweakable hash from SHA-256, SHAKE-256, or
Haraka

31

https://tools.ietf.org/html/rfc8391

From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
+ d <« h(r,m)
+ sign digest d with FTS
+ include i in signature

32

From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
+ d <« h(r,m)
+ sign digest d with FTS
+ include i in signature
+ SPHINCS™:
* 1<+ PRF(s,m)
« (i,d) < h(r,m),
- sign digest d with FTS
+ include rin signature

32

From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
« d < h(r,m)
+ sign digest d with FTS
+ include i in signature
+ SPHINCS™:
* 1<+ PRF(s,m)
- (i,d) + h(r,m),
- sign digest d with FTS
+ include rin signature
+ Verifier can check that d and i belong together
« Attacker cannot pick d and i independently

32

From SPHINCS to SPHINCST, part Il

- Verifiable index computation:
+ SPHINCS:
+ (iyr) = PRF(s,m),
+ d <« h(r,m)
+ sign digest d with FTS
+ include i in signature
+ SPHINCS™:
* 1<+ PRF(s,m)
« (i,d) < h(r,m),
- sign digest d with FTS
+ include rin signature

+ Verifier can check that d and i belong together
« Attacker cannot pick d and i independently

- Additionally: Improvements to FTS (FORS)
+ Use multiple smaller trees instead of one big tree
- Per signature, reveal one secret-key leaf per tree

32

Know more?

https://sphincs.org

https://sphincs.org

