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“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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The end of crypto as we know it

Shor’s algorithm (1994)

• Factor integers in polynomial time

• Compute discrete logarithms in polynomial time

Today’s asymmetric crypto

• Based on factoring: RSA encryption and signatures, or

• Based on discrete logs: DH, ElGamal, DSA, ECDH, ECDSA
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Asymmetric crypto

Digital Signatures

• Alice generates key pair (skA, pkA), publishes pkA
• Alice takes document m, combines with skA to obtain digital

signature σ, publishes (m, σ)
• Everybody can use pkA to verify that

• m was signed by Alice (by skA)
• m has not been modified, since it was signed

Used in TLS to verify authenticity of web servers
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Asymmetric crypto

Key encapsulation

• Alice generates key pair (skA, pkA), publishes pkA
• Bob generates random value r , combines with pkA to obtain

• ciphertext c, and
• shared key k

• Alice receives c , combines with skA to obtain k

Used in TLS to agree on (symmetric) session keys
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State of the art today

Digital Signatures: EdDSA

• Public key size: 32 bytes

• Signature size: 64 bytes

• Speed (ballpark): 100, 000 cycles for each operation

Key encapsulation: ECDH

• Public key size: 32 bytes

• Ciphertext size: 32 bytes

• Speed (ballpark): 100, 000 cycles for each operation
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Post-quantum signatures

Hash-based signatures

• Very strong security arguments

• Small public keys (e.g., XMSS-T: 64 bytes)

• Signatures of some KB

• Signing speed: several million cycles

• Stateful
• SPHINCS: stateless hash-based signatures

• 41KB signatures
• Signing speed: ≈ 50Mio cycles

Alternatives

• Multivariate signatures

• Lattice-based signatures
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Post-quantum KEMs

Code-based KEMs

• Traditional McEliece/Niederreiter: good security record

• Fast for encapsulation/decapsulation

• Large public keys (> 500KB)

SIDH

• Relatively young, needs more analysis

• Small public keys and ciphertexts (< 1KB)

• Slow (≈ 50Mio cycles)

Lattice-based KEMs

• Need more analysis to understand parameter choices

• Fast, reasonably small public keys and ciphertexts

• Currently very active research area
6



Ring-Learning-with-errors (RLWE)

• Let Rq = Zq[X ]/(X n + 1)

• Let χ be an error distribution on Rq

• Let s ∈ Rq be secret

• Attacker is given pairs (a, as + e) with
• a uniformly random from Rq

• e sampled from χ

• Task for the attacker: find s

• Common choice for χ: discrete Gaussian

• Common optimization for protocols: fix a
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RLWE-based Encryption, KEM, KEX

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′
u←−−−−

Alice has t = us = ass′ + e′s
Bob has t′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• t and t′ are approximately the same
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USENIX Security 2016: NewHope

• Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)

• Use reconcilation to go from approximate agreement to agreement
• Originally proposed by Ding (2012)
• Improvements by Peikert (2014)
• More improvements in NewHope

• NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)

• Very conservative parameters (n = 1024, q = 12289)
• Centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)
• Achieve ≈ 256 bits of post-quantum security according to very

conservative analysis
• Choose a fresh parameter a for every protocol run
• Higher security, shorter keys and ciphertexts, and > 10× speedup:

• Key generation: < 100, 000 cycles
• Encapsulation: < 120, 000 cycles
• Decapsulation: < 20, 000 cycles
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NewHope in the real world

• July 7, 2016, Google announces 2-year post-quantum experiment

• NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary

• Used in access to select Google services

• November 28, 2016: “At this point the experiment is concluded.”
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Conclusions for Google’s experiment

“[. . . ] we did not find any unexpected impediment to deploying
something like NewHope. There were no reported problems caused by
enabling it.”
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Conclusions for Google’s experiment

“[. . . ] if the need arose, it would be practical to quickly deploy NewHope
in TLS 1.2. (TLS 1.3 makes things a little more complex and we did not
test with CECPQ1 with it.)”
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Conclusions for Google’s experiment

“Although the median connection latency only increased by a millisecond,
the latency for the slowest 5% increased by 20ms and, for the slowest
1%, by 150ms. Since NewHope is computationally inexpensive, we’re
assuming that this is caused entirely by the increased message sizes.
Since connection latencies compound on the web (because subresource
discovery is delayed), the data requirement of NewHope is moderately
expensive for people on slower connections.”
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Are we done? Is the Internet safe again?

Disadvantages of NewHope

• Security analysis assumes that we have an LWE instance

• Structure of RLWE is ignored

• Somewhat large messages (≈ 2KB each way)

• Maybe overly conservative security. . . ?

• “Only” does ephemeral key exchange

• Must not reuse keys/noise

• No CCA security

Back to the drawing board!
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K Y B E R

The KEM

Shi Bai Joppe Bos Léo Ducas
Eike Kiltz Tancrède Lepoint Vadim Lyubashevsky
John M. Schanck Peter Schwabe Damien Stehlé
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The design of Kyber (WiP)

• Use Module-Lattices and MLWE
• RLWE: large polynomials (e.g., n = 1024)
• MLWE: matrices of smaller polynomials (e.g., n = 256) of small

dimension (e.g., d = 3)

• Less structured underlying problem: good for security

• Use Targhi-Unruh CCA transform to build CCA-secure KEM
• Can be used just like NewHope (but can cache keys!)
• Can also be used for KEM-DEM to encrypt messages
• Can be used in authenticated key exchange (without signatures)

• Choose d = 3, n = 256, q = 7681 for very conservative security

• Public key: 1088 bytes

• Ciphertext: 1184 bytes

• Performance similar to NewHope (for sufficiently large values of
“similar”)
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Stay tuned

http://pq-crystals.org/kyber
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