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“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m thinking
like it’s 15 or a little more. It’s within reach. It’s within our lifetime. It’s
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)
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The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017
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The NIST competition: initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based
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What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?
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A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!
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Challenge 1: Performance

• 10% performance difference matters!
• Reduce cost for busy servers
• Fit into constrained devices

• Small routines executed many times

• Often hand-optimized on assembly level
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Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB

• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea

, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong
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Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures

• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack
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Challenge 3: Implementation Security

• Attackers see more than
input/output:

• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks can be done
remotely

• Cost of countermeasures heavily
depends on the scheme
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Challenge 3: Implementation Security (ctd.)

“the implementation security aspect of lattice-based cryptography is still
a vastly unexplored and open topic”

— Primas, Pessl, Mangard, 2017.
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Challenge 3: Implementation Security (ctd.)

“…this isn’t very different for any of the other areas of post-quantum
crypto”

— Schwabe, 2020.
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Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.
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Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley
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Challenge 5: The curious case of Diffie-Hellman

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab
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KEMs: as close as you’ll get to DH

∗

Alice Bob

(pk, sk)← KEM.Keygen()

pk

(ct,K)← KEM.Encapsulate(pk)

ct

K← KEM.Decapsulate(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)
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Is it already too late?

• Let’s assume that today’s crypto is broken in 15 years

• When do we need to start migrating?

• Consider the following attack against confidentiality
• Record encrypted message today
• Decrypt in 15 years using quantum computer

How long do we need today’s communication to be secure?

How long does it take us to migrate?
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But for signatures we have time, right?

• Signatures provide authentication

• Cannot retroactively “decrypt” anything

• Stop accepting pre-quantum signatures once there is a quantum
computer

• May need to prepare devices today!

• Signatures are used for, e.g., software updates
• What if I cannot update anymore in 15 years?

• What’s the lifetime of a car?
• What’s the lifetime of smart-home appliances?
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A chance?

How can this migration be a chance?
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Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



High-assurance crypto software

• Use formal methods to improve crypto (software):

• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”
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HACS success stories
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An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



Some pointers

PQC resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

• Open Quantum Safe https://openquantumsafe.org/

• PQC Wiki: https://pqc-wiki.fau.edu

HACS resources
• HACS workshop: https://www.hacs-workshop.org/
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