
The transition to post-quantum cryptography:
challenge and chance

Peter Schwabe
November 14, 2020











2



“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m thinking
like it’s 15 or a little more. It’s within reach. It’s within our lifetime. It’s
going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

4



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”

• Inspired by two earlier NIST crypto competitions:
• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds

• Actual decisions are being made by NIST
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST competition: initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

6



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jan 2019

• Announcement planned at Real-World Crypto 2019

• Due to US government lockdown slightly later

Encryption / Key agreement
• 9 lattice-based

• 7 code-based

• 1 isogeny-based

Signature schemes
• 3 lattice-based

• 2 symmetric-crypto based

• 4 MQ-based

7



The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8



The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8



The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8



The NIST competition: Jul 2020

• Announcement planned for June 2020

• Due to pandemic (?) slightly later

Finalists
• 4 key-agreement schemes

• 3 lattice-based
• 1 code-based

• 3 signature schemes
• 2 lattice-based
• 1 MQ-based

Alternate schemes
• 5 key-agreement schemes

• 2 lattice-based
• 2 code-based
• 1 isogeny-based

• 3 signature schemes
• 2 symmetric-crypto based
• 1 MQ-based

8



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



What now?

• NIST is expected to announce winners in late 2021

• ≈ one year later get standards

• Replace existing crypto with new crypto

Mission accomplished – The world is safe again!

. . .or is it?

9



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



A bit of history: the case of MD5

• MD5 is a cryptographic hash function

• Hash functions are used as building blocks all over the place

• 1991: MD5 is proposed by Rivest

• 1993: Collisions in MD5 compression function
(den Boer, Bosselaers)

• 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

• 2004: Wang presents MD5 collisions

• 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

• 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

10



Challenge 1: Performance

• 10% performance difference matters!
• Reduce cost for busy servers
• Fit into constrained devices

• Small routines executed many times

• Often hand-optimized on assembly level

11



Challenge 1: Performance

• 10% performance difference matters!
• Reduce cost for busy servers
• Fit into constrained devices

• Small routines executed many times

• Often hand-optimized on assembly level

11



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples

• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB

• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 1: Performance (ctd.)

Elliptic-curve cryptography
• State of the art today (but broken by Shor)

• Operations cost 50–200 kcycles (typical x64 CPU)

• Keys, signtures etc. are 32–64 bytes

PQC performance examples
• McEliece public-key: ≈0.5MB

• SPHINCS+ signatures: ≈16KB
• SPHINCS+ signing: ≈3 billion cycles

• Kyber (all ops): <80 kcycles

• Kyber data sent: <1.2KB

12



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea

, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong

13



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea

, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong

13



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong

13



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong

13



Challenge 2: Security

Security reductions
“An attacker who can break the security can also solve some hard
mathematical problem”

Great idea, but. . .
• reductions are often not tight

• “hard problem” may turn out to be easier than expected

• proofs may be wrong

13



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures

• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures

• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures
• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures
• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures
• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 2: Security (ctd.)

The case of OCB2
• 2004: Rogaway proposes OCB2

• Security reduction guaranteeing confidentiality and authenticity

• 2009: OCB2 is standardized by ISO

• 26 Oct. 2018: Break of authenticity by Inoue and Minematsu

• 8/11 Nov. 2018: Break of confidentiality by Poettering / Iwata

Some NIST PQC proof failures
• Round-1 Kyber proof does not apply

• Round-1 SPHINCS+ proof does not apply

• Round-2 MQDSS attack “hidden inside non-tightness”

• Round-2 qTesla proof wrong (?) ⇒ devastating attack

14



Challenge 3: Implementation Security

• Attackers see more than
input/output:

• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks can be done
remotely

• Cost of countermeasures heavily
depends on the scheme

15



Challenge 3: Implementation Security

• Attackers see more than
input/output:

• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks can be done
remotely

• Cost of countermeasures heavily
depends on the scheme

15



Challenge 3: Implementation Security

• Attackers see more than
input/output:

• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks can be done
remotely

• Cost of countermeasures heavily
depends on the scheme

15



Challenge 3: Implementation Security

• Attackers see more than
input/output:

• Power consumption
• Electromagnetic radiation
• Timing

• Side-channel attacks:
• Measure information
• Use to obtain secret data

• Timing attacks can be done
remotely

• Cost of countermeasures heavily
depends on the scheme

15



Challenge 3: Implementation Security (ctd.)

“the implementation security aspect of lattice-based cryptography is still
a vastly unexplored and open topic”

— Primas, Pessl, Mangard, 2017.

16



Challenge 3: Implementation Security (ctd.)

“…this isn’t very different for any of the other areas of post-quantum
crypto”

— Schwabe, 2020.

16



Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.

16



Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.

16



Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.

16



Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.

16



Challenge 3: Implementation Security (ctd.)

• Baseline: “constant-time” implementations

• Execution time does not depend on secret data

• Unclear if all round-3 schemes have constant-time
implementations

• Very few implementations with advanced countermeasures

• Even worse if we look at fault attacks

For many applications, implementations are not ready.

16



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys

• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS

• Caveat: They are stateful
• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 4: “Huge foot cannons”

• We already have post-quantum RFCs
• Hash-based signatures XMSS and LMS

• Reasonable performance
• Reasonable signature sizes
• Small keys
• Application-specific tradeoffs
• Conservative security

• NIST fast-track standardization of XMSS and LMS
• Caveat: They are stateful

• Need to update the secret key for every signing
• Updates are as easy as 1 – 2 – 3 . . .

• Must never go back to earlier state!

• Now combine this with, e.g., backups, VMs. . .

“It’s a huge foot cannon” — Adam Langley

17



Challenge 5: The curious case of Diffie-Hellman

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

18



Challenge 5: The curious case of Diffie-Hellman

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

18



KEMs: as close as you’ll get to DH

∗

Alice Bob

(pk, sk)← KEM.Keygen()

pk

(ct,K)← KEM.Encapsulate(pk)

ct

K← KEM.Decapsulate(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

19



KEMs: as close as you’ll get to DH∗

Alice Bob

(pk, sk)← KEM.Keygen()

pk

(ct,K)← KEM.Encapsulate(pk)

ct

K← KEM.Decapsulate(ct, sk)

∗Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

19



Is it already too late?

• Let’s assume that today’s crypto is broken in 15 years

• When do we need to start migrating?

• Consider the following attack against confidentiality
• Record encrypted message today
• Decrypt in 15 years using quantum computer

How long do we need today’s communication to be secure?

How long does it take us to migrate?

20



Is it already too late?

• Let’s assume that today’s crypto is broken in 15 years

• When do we need to start migrating?
• Consider the following attack against confidentiality

• Record encrypted message today
• Decrypt in 15 years using quantum computer

How long do we need today’s communication to be secure?

How long does it take us to migrate?

20



Is it already too late?

• Let’s assume that today’s crypto is broken in 15 years

• When do we need to start migrating?
• Consider the following attack against confidentiality

• Record encrypted message today
• Decrypt in 15 years using quantum computer

How long do we need today’s communication to be secure?

How long does it take us to migrate?

20



But for signatures we have time, right?

• Signatures provide authentication

• Cannot retroactively “decrypt” anything

• Stop accepting pre-quantum signatures once there is a quantum
computer

• May need to prepare devices today!

• Signatures are used for, e.g., software updates
• What if I cannot update anymore in 15 years?

• What’s the lifetime of a car?
• What’s the lifetime of smart-home appliances?

21



But for signatures we have time, right?

• Signatures provide authentication

• Cannot retroactively “decrypt” anything

• Stop accepting pre-quantum signatures once there is a quantum
computer

• May need to prepare devices today!

• Signatures are used for, e.g., software updates
• What if I cannot update anymore in 15 years?

• What’s the lifetime of a car?
• What’s the lifetime of smart-home appliances?

21



A chance?

How can this migration be a chance?

22



Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



Crypto (software) today

23



High-assurance crypto software

• Use formal methods to improve crypto (software):

• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”

24



High-assurance crypto software

• Use formal methods to improve crypto (software):
• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”

24



High-assurance crypto software

• Use formal methods to improve crypto (software):
• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”

24



High-assurance crypto software

• Use formal methods to improve crypto (software):
• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”

24



High-assurance crypto software

• Use formal methods to improve crypto (software):
• Formal specification of
primitives

• Formal specification of
security

• Formal specification of
implementation security


Formal =machine readable

• Computer-verified correctness
• Computer-verified security reduction
• Computer-verified implementation security

Careful: high-assurance does not mean “unbreakable”

24



HACS success stories

25



HACS success stories

25



HACS success stories

25



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



An overly optimistic outlook

• By end of 2021 years we’ll have high-assurance software of all
NIST PQC candidates

• All security reductions are computer verified

• All software is proven to be correct

• All software is proven to not leak through timing

• Implementations with side-channel protection beyond timing

• Countermeasures also formally proven

• The whole world migrates to a better generation of crypto

Yes, this is overly optimistic.

. . . let’s see it as an ambitious goal!

26



Some pointers

PQC resources
• NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

• NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/
email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

• Open Quantum Safe https://openquantumsafe.org/

• PQC Wiki: https://pqc-wiki.fau.edu

HACS resources
• HACS workshop: https://www.hacs-workshop.org/

27

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://openquantumsafe.org/
https://pqc-wiki.fau.edu
https://www.hacs-workshop.org/

