
Vectorized implementations of post-quantum crypto

Peter Schwabe

January 12, 2015

DIMACS Workshop on the Mathematics of Post-Quantum
Cryptography



“The multicore revolution”

I Until early years 2000 each new processor generation had higher
clock speeds

I Nowadays: increase performance by number of cores:
I My laptop has 2 phyiscal (and 4 virtual) cores
I Smartphones typically have 2 or 4 cores
I Servers have 4, 8, 16,. . . cores
I Special-purpose hardware (e.g., GPUs) often comes with many more

cores
I Consequence: “The free lunch is over” (Herb Sutter, 2005)

“As a result, system designers and software engineers can no longer rely
on increasing clock speed to hide software bloat. Instead, they must
somehow learn to make effective use of increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Vectorized implementations of post-quantum crypto 2



“The multicore revolution”

I Until early years 2000 each new processor generation had higher
clock speeds

I Nowadays: increase performance by number of cores:
I My laptop has 2 phyiscal (and 4 virtual) cores
I Smartphones typically have 2 or 4 cores
I Servers have 4, 8, 16,. . . cores
I Special-purpose hardware (e.g., GPUs) often comes with many more

cores
I Consequence: “The free lunch is over” (Herb Sutter, 2005)

“As a result, system designers and software engineers can no longer rely
on increasing clock speed to hide software bloat. Instead, they must
somehow learn to make effective use of increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007

Vectorized implementations of post-quantum crypto 2



Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

I > 50 RSA-4096 signatures per second
I > 8000 RSA-4096 signature verifications per second
I > 28000 Ed25519 signatures per second
I > 9000 Ed25519 signature verifications per second

Post-quantum crypto is fast
I > 3900 “lattisigns512” signatures per second
I > 45000 “lattisigns512” verifications per second
I > 38000 rainbow5640 signatures per second
I > 57000 rainbow5640 verifications per second

I If you perform only one crypto operation, you don’t care
I Many crypto operations are trivially parallel on multiple cores

Vectorized implementations of post-quantum crypto 3



Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

I > 50 RSA-4096 signatures per second
I > 8000 RSA-4096 signature verifications per second
I > 28000 Ed25519 signatures per second
I > 9000 Ed25519 signature verifications per second

Post-quantum crypto is fast
I > 3900 “lattisigns512” signatures per second
I > 45000 “lattisigns512” verifications per second
I > 38000 rainbow5640 signatures per second
I > 57000 rainbow5640 verifications per second

I If you perform only one crypto operation, you don’t care
I Many crypto operations are trivially parallel on multiple cores

Vectorized implementations of post-quantum crypto 3



Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

I > 50 RSA-4096 signatures per second
I > 8000 RSA-4096 signature verifications per second
I > 28000 Ed25519 signatures per second
I > 9000 Ed25519 signature verifications per second

Post-quantum crypto is fast
I > 3900 “lattisigns512” signatures per second
I > 45000 “lattisigns512” verifications per second
I > 38000 rainbow5640 signatures per second
I > 57000 rainbow5640 verifications per second

I If you perform only one crypto operation, you don’t care

I Many crypto operations are trivially parallel on multiple cores

Vectorized implementations of post-quantum crypto 3



Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

I > 50 RSA-4096 signatures per second
I > 8000 RSA-4096 signature verifications per second
I > 28000 Ed25519 signatures per second
I > 9000 Ed25519 signature verifications per second

Post-quantum crypto is fast
I > 3900 “lattisigns512” signatures per second
I > 45000 “lattisigns512” verifications per second
I > 38000 rainbow5640 signatures per second
I > 57000 rainbow5640 verifications per second

I If you perform only one crypto operation, you don’t care
I Many crypto operations are trivially parallel on multiple cores

Vectorized implementations of post-quantum crypto 3



Pipelined and multiscalar processors

I Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Pipelined execution: overlap processing of independent instructions
(e.g., while one instruction is in step 2, the next one can do step 1
etc.)

I Superscalar execution: duplicate units and process multiple
instructions in the same stage

I Crucial to make use of these concepts: instruction-level parallelism
I To some extent, compilers will help here

Vectorized implementations of post-quantum crypto 4



Pipelined and multiscalar processors

I Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Pipelined execution: overlap processing of independent instructions
(e.g., while one instruction is in step 2, the next one can do step 1
etc.)

I Superscalar execution: duplicate units and process multiple
instructions in the same stage

I Crucial to make use of these concepts: instruction-level parallelism
I To some extent, compilers will help here

Vectorized implementations of post-quantum crypto 4



Pipelined and multiscalar processors

I Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Pipelined execution: overlap processing of independent instructions
(e.g., while one instruction is in step 2, the next one can do step 1
etc.)

I Superscalar execution: duplicate units and process multiple
instructions in the same stage

I Crucial to make use of these concepts: instruction-level parallelism
I To some extent, compilers will help here

Vectorized implementations of post-quantum crypto 4



Pipelined and multiscalar processors

I Almost all CPUs chop instructions into smaller tasks, e.g., for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Pipelined execution: overlap processing of independent instructions
(e.g., while one instruction is in step 2, the next one can do step 1
etc.)

I Superscalar execution: duplicate units and process multiple
instructions in the same stage

I Crucial to make use of these concepts: instruction-level parallelism
I To some extent, compilers will help here

Vectorized implementations of post-quantum crypto 4



Vector computations

Scalar computation
I Load 32-bit integer a
I Load 32-bit integer b
I Perform addition
c← a+ b

I Store 32-bit integer c

Vectorized computation
I Load 4 consecutive 32-bit integers

(a0, a1, a2, a3)

I Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

I Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

I Store 128-bit vector (c0, c1, c2, c3)

I Perform the same operations on independent data streams (SIMD)
I Vector instructions available on most “large” processors
I Instructions for vectors of bytes, integers, floats. . .
I Need to interleave data items (e.g., 32-bit integers) in memory
I Compilers will not help with vectorization

Vectorized implementations of post-quantum crypto 5



Vector computations

Scalar computation
I Load 32-bit integer a
I Load 32-bit integer b
I Perform addition
c← a+ b

I Store 32-bit integer c

Vectorized computation
I Load 4 consecutive 32-bit integers

(a0, a1, a2, a3)

I Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

I Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

I Store 128-bit vector (c0, c1, c2, c3)

I Perform the same operations on independent data streams (SIMD)
I Vector instructions available on most “large” processors
I Instructions for vectors of bytes, integers, floats. . .

I Need to interleave data items (e.g., 32-bit integers) in memory
I Compilers will not help with vectorization

Vectorized implementations of post-quantum crypto 5



Vector computations

Scalar computation
I Load 32-bit integer a
I Load 32-bit integer b
I Perform addition
c← a+ b

I Store 32-bit integer c

Vectorized computation
I Load 4 consecutive 32-bit integers

(a0, a1, a2, a3)

I Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

I Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

I Store 128-bit vector (c0, c1, c2, c3)

I Perform the same operations on independent data streams (SIMD)
I Vector instructions available on most “large” processors
I Instructions for vectors of bytes, integers, floats. . .
I Need to interleave data items (e.g., 32-bit integers) in memory
I Compilers will not help with vectorization

Vectorized implementations of post-quantum crypto 5



Vector computations

Scalar computation
I Load 32-bit integer a
I Load 32-bit integer b
I Perform addition
c← a+ b

I Store 32-bit integer c

Vectorized computation
I Load 4 consecutive 32-bit integers

(a0, a1, a2, a3)

I Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

I Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

I Store 128-bit vector (c0, c1, c2, c3)

I Perform the same operations on independent data streams (SIMD)
I Vector instructions available on most “large” processors
I Instructions for vectors of bytes, integers, floats. . .
I Need to interleave data items (e.g., 32-bit integers) in memory
I Compilers will not really help with vectorization

Vectorized implementations of post-quantum crypto 5



Why would you care?

I Consider the Intel Nehalem processor

I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar

Vectorized implementations of post-quantum crypto 6



Why would you care?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle

I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar

Vectorized implementations of post-quantum crypto 6



Why would you care?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar

Vectorized implementations of post-quantum crypto 6



Why would you care?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar

Vectorized implementations of post-quantum crypto 6



Why would you care?

I Consider the Intel Nehalem processor
I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar

Vectorized implementations of post-quantum crypto 6



Why would you care? (Part II)

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups

I Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

I Strong synergies between speeding up code with vector instructions
and protecting code!

Vectorized implementations of post-quantum crypto 7



Why would you care? (Part II)

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups
I Secret-data-dependent branches and secret branch conditions are the

major sources of timing-attack vulnerabilities

I Strong synergies between speeding up code with vector instructions
and protecting code!

Vectorized implementations of post-quantum crypto 7



Why would you care? (Part II)

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups
I Secret-data-dependent branches and secret branch conditions are the

major sources of timing-attack vulnerabilities
I Strong synergies between speeding up code with vector instructions

and protecting code!

Vectorized implementations of post-quantum crypto 7



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles
I This performance is already after compressing matrix entries to

32-bit integers
I Lesson: standard-lattice crypto vectorizes trivially, but

bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles

I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles
I This performance is already after compressing matrix entries to

32-bit integers
I Lesson: standard-lattice crypto vectorizes trivially, but

bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles

I Actual performance: 278912 cycles
I This performance is already after compressing matrix entries to

32-bit integers
I Lesson: standard-lattice crypto vectorizes trivially, but

bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles

I This performance is already after compressing matrix entries to
32-bit integers

I Lesson: standard-lattice crypto vectorizes trivially, but
bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles; reason: L2-cache throughput

I This performance is already after compressing matrix entries to
32-bit integers

I Lesson: standard-lattice crypto vectorizes trivially, but
bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles; reason: L2-cache throughput
I This performance is already after compressing matrix entries to

32-bit integers

I Lesson: standard-lattice crypto vectorizes trivially, but
bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 1: Lattice-based crypto

I Latincrypt 2014: Fast LWE signatures, joint work with Dagdelen,
Bansarkhani, Göpfert, Güneysu, Oder, Pöppelmann, and Sánchez.

I Most expensive operation: matrix-vector multiplication mod 229 − 3

I Use Intel AVX2 instructions: two 4× vectorized double-precision
multiply-accumulate every cycle

I Represent elements of F229−3 as doubles
I Matrix dimensions: 532× 840

I Expected performance: 532 · 840/8 = 55860 cycles
I Actual performance: 278912 cycles; reason: L2-cache throughput
I This performance is already after compressing matrix entries to

32-bit integers
I Lesson: standard-lattice crypto vectorizes trivially, but

bottlenecked by loads of large matrix

Vectorized implementations of post-quantum crypto 8



Example 2: Ideal lattices

I PQCrypto 2013: Software for GLP signatures, joint work with
Güneysu, Oder, and Pöppelmann

I Most costly operation: multiply in R = Fp[x]/〈xn + 1〉, where
I n is a power of 2
I p is a prime congruent to 1 modulo 2n

I Specifically, we used
I n = 512 and
I p = 8383489

Vectorized implementations of post-quantum crypto 9



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R, compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Vectorized implementations of post-quantum crypto 10



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R, compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Vectorized implementations of post-quantum crypto 10



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R, compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication

I Component-wise multiplication is trivially vectorizable

Vectorized implementations of post-quantum crypto 10



Multiplication in R
I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R, compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1
ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable

Vectorized implementations of post-quantum crypto 10



NTT in AVX/AVX2

I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and

v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3
I Perform all operations on v0 and v1

I Levels 0 and 1: More tricky: Use permutation instructions and
“horizontal additions”

I Lower cycle bound from arithmetic: 2176 cycles
I Actual performance: 4484 cycles (Ivy Bridge)
I Lesson: ideal lattices vectorize well for suitable parameters

Vectorized implementations of post-quantum crypto 11



NTT in AVX/AVX2

I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and

v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3
I Perform all operations on v0 and v1

I Levels 0 and 1: More tricky: Use permutation instructions and
“horizontal additions”

I Lower cycle bound from arithmetic: 2176 cycles
I Actual performance: 4484 cycles (Ivy Bridge)
I Lesson: ideal lattices vectorize well for suitable parameters

Vectorized implementations of post-quantum crypto 11



NTT in AVX/AVX2

I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and

v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3
I Perform all operations on v0 and v1

I Levels 0 and 1: More tricky: Use permutation instructions and
“horizontal additions”

I Lower cycle bound from arithmetic: 2176 cycles
I Actual performance: 4484 cycles (Ivy Bridge)
I Lesson: ideal lattices vectorize well for suitable parameters

Vectorized implementations of post-quantum crypto 11



NTT in AVX/AVX2

I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and

v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3
I Perform all operations on v0 and v1

I Levels 0 and 1: More tricky: Use permutation instructions and
“horizontal additions”

I Lower cycle bound from arithmetic: 2176 cycles
I Actual performance: 4484 cycles (Ivy Bridge)

I Lesson: ideal lattices vectorize well for suitable parameters

Vectorized implementations of post-quantum crypto 11



NTT in AVX/AVX2

I Loop over 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and

v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3
I Perform all operations on v0 and v1

I Levels 0 and 1: More tricky: Use permutation instructions and
“horizontal additions”

I Lower cycle bound from arithmetic: 2176 cycles
I Actual performance: 4484 cycles (Ivy Bridge)
I Lesson: ideal lattices vectorize well for suitable parameters

Vectorized implementations of post-quantum crypto 11



Example 3: CFS signatures

I Code-based signatures by Courtois, Finiasz, and Sendrier, 2001
I Basic idea:

I Hash the message to a syndrome
I If the syndrome has distance ≤ t from a code word, use secret

decoding algorithm to determine error positions
I Send error positions
I Address low chance of having distance ≤ t by guessing positions
I Average number of decoding attempts: ≈ t!

I Indocrypt 2012: Landais and Sendrier propose parameters and
optimization techniques, and present a software implementation of
CFS

I CHES 2013: Bernstein, Chou, Schwabe: 10× speedup
I Main technique for the speedup: vectorization

Vectorized implementations of post-quantum crypto 12



Example 3: CFS signatures

I Code-based signatures by Courtois, Finiasz, and Sendrier, 2001
I Basic idea:

I Hash the message to a syndrome
I If the syndrome has distance ≤ t from a code word, use secret

decoding algorithm to determine error positions
I Send error positions
I Address low chance of having distance ≤ t by guessing positions
I Average number of decoding attempts: ≈ t!

I Indocrypt 2012: Landais and Sendrier propose parameters and
optimization techniques, and present a software implementation of
CFS

I CHES 2013: Bernstein, Chou, Schwabe: 10× speedup
I Main technique for the speedup: vectorization

Vectorized implementations of post-quantum crypto 12



Example 3: CFS signatures

I Code-based signatures by Courtois, Finiasz, and Sendrier, 2001
I Basic idea:

I Hash the message to a syndrome
I If the syndrome has distance ≤ t from a code word, use secret

decoding algorithm to determine error positions
I Send error positions
I Address low chance of having distance ≤ t by guessing positions
I Average number of decoding attempts: ≈ t!

I Indocrypt 2012: Landais and Sendrier propose parameters and
optimization techniques, and present a software implementation of
CFS

I CHES 2013: Bernstein, Chou, Schwabe: 10× speedup

I Main technique for the speedup: vectorization

Vectorized implementations of post-quantum crypto 12



Example 3: CFS signatures

I Code-based signatures by Courtois, Finiasz, and Sendrier, 2001
I Basic idea:

I Hash the message to a syndrome
I If the syndrome has distance ≤ t from a code word, use secret

decoding algorithm to determine error positions
I Send error positions
I Address low chance of having distance ≤ t by guessing positions
I Average number of decoding attempts: ≈ t!

I Indocrypt 2012: Landais and Sendrier propose parameters and
optimization techniques, and present a software implementation of
CFS

I CHES 2013: Bernstein, Chou, Schwabe: 10× speedup
I Main technique for the speedup: vectorization

Vectorized implementations of post-quantum crypto 12



Vectorizing binary arithmetic

I With t = 8 we need ≈ 40320 decoding attempts
I Arithmetic is on small-degree polynomials over F220

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Vectorized implementations of post-quantum crypto 13



Vectorizing binary arithmetic

I With t = 8 we need ≈ 40320 decoding attempts
I Arithmetic is on small-degree polynomials over F220

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?

I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Vectorized implementations of post-quantum crypto 13



Vectorizing binary arithmetic

I With t = 8 we need ≈ 40320 decoding attempts
I Arithmetic is on small-degree polynomials over F220

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.

I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Vectorized implementations of post-quantum crypto 13



Vectorizing binary arithmetic

I With t = 8 we need ≈ 40320 decoding attempts
I Arithmetic is on small-degree polynomials over F220

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES

I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Vectorized implementations of post-quantum crypto 13



Vectorizing binary arithmetic

I With t = 8 we need ≈ 40320 decoding attempts
I Arithmetic is on small-degree polynomials over F220

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?
I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data

Vectorized implementations of post-quantum crypto 13



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions

I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications
I Lesson: code-based crypto vectorizes (bitslices) well, but need

to find parallelism

Vectorized implementations of post-quantum crypto 14



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions
I Schoolbook: 400 ANDs +361 XORs + reduction

I Much better: Karatsuba
I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications
I Lesson: code-based crypto vectorizes (bitslices) well, but need

to find parallelism

Vectorized implementations of post-quantum crypto 14



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions
I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications
I Lesson: code-based crypto vectorizes (bitslices) well, but need

to find parallelism

Vectorized implementations of post-quantum crypto 14



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions
I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: refined Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications
I Lesson: code-based crypto vectorizes (bitslices) well, but need

to find parallelism

Vectorized implementations of post-quantum crypto 14



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions
I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: refined Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications

I Lesson: code-based crypto vectorizes (bitslices) well, but need
to find parallelism

Vectorized implementations of post-quantum crypto 14



Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I Possibly better: tower-field constructions
I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: refined Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I 2 levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
I Performance: 744 cycles per 256 multiplications
I Lesson: code-based crypto vectorizes (bitslices) well, but need

to find parallelism
Vectorized implementations of post-quantum crypto 14



Summary

I Parallelism 6= parallelism

I Don’t think about a program as one sequence of instructions
operating on one set of data

I Think about a program as one long instruction stream operating in
parallel in multiple independent sets of data

I Data flow from one data set to another (“vector permutation”)
incurs overhead

I Synergy between vectorization and timing-attack protection:
I Think branchfree
I Don’t think lookup tables

Vectorized implementations of post-quantum crypto 15



Summary

I Parallelism 6= parallelism
I Don’t think about a program as one sequence of instructions

operating on one set of data
I Think about a program as one long instruction stream operating in

parallel in multiple independent sets of data

I Data flow from one data set to another (“vector permutation”)
incurs overhead

I Synergy between vectorization and timing-attack protection:
I Think branchfree
I Don’t think lookup tables

Vectorized implementations of post-quantum crypto 15



Summary

I Parallelism 6= parallelism
I Don’t think about a program as one sequence of instructions

operating on one set of data
I Think about a program as one long instruction stream operating in

parallel in multiple independent sets of data
I Data flow from one data set to another (“vector permutation”)

incurs overhead

I Synergy between vectorization and timing-attack protection:
I Think branchfree
I Don’t think lookup tables

Vectorized implementations of post-quantum crypto 15



Summary

I Parallelism 6= parallelism
I Don’t think about a program as one sequence of instructions

operating on one set of data
I Think about a program as one long instruction stream operating in

parallel in multiple independent sets of data
I Data flow from one data set to another (“vector permutation”)

incurs overhead
I Synergy between vectorization and timing-attack protection:

I Think branchfree
I Don’t think lookup tables

Vectorized implementations of post-quantum crypto 15



Papers

I Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim
Güneysu, Tobias Oder, Thomas Pöppelmann, Ana Helena Sánchez,
and Peter Schwabe: High-speed signatures from standard
lattices.
http://cryptojedi.org/papers/#lwesign (online soon)

I Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter
Schwabe: Software speed records for lattice-based signatures.
http://cryptojedi.org/papers/#lattisigns

I Daniel J. Bernstein, Tung Chou, and Peter Schwabe: McBits: fast
constant-time code-based cryptography.
http://cryptojedi.org/papers/#mcbits

Vectorized implementations of post-quantum crypto 16

http://cryptojedi.org/papers/#lwesign
http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#mcbits

