
High-Performance Cryptography in Software

Peter Schwabe

Research Center for Information Technology Innovation
Academia Sinica

September 3, 2012

ECRYPT Summer School: Challenges in Security Engineering 2012

Introduction

I Previous talk: High performance crypto in hardware
I Reason for special-purpose crypto hardware: Speed!
I Disadvantages: High cost, loss of flexibility, hard to replace/update

I This talk: How fast can we make crypto on off-the-shelf computers?
I Implement cryptography with a set of general-purpose instructions

High-Performance Cryptography in Software 2

Introduction

I Previous talk: High performance crypto in hardware
I Reason for special-purpose crypto hardware: Speed!
I Disadvantages: High cost, loss of flexibility, hard to replace/update
I This talk: How fast can we make crypto on off-the-shelf computers?
I Implement cryptography with a set of general-purpose instructions

High-Performance Cryptography in Software 2

Levels of optimization

I Consider the example of elliptic-curve cryptography
I Various levels of optimization:

I Choice of scalar-multiplication algorithm
I Choice of curve and underlying finite field
I Choice of coordinates and addition and doubling formulas
I Representation of finite-field elements in machine words and related

algorithms (e.g. schoolbook vs. Karatsuba multiplication)
I Low-level optimizations of machine instructions

I These levels are not independent, many subtle interactions

High-Performance Cryptography in Software 3

Levels of optimization

I Consider the example of elliptic-curve cryptography
I Various levels of optimization:

I Choice of scalar-multiplication algorithm
I Choice of curve and underlying finite field
I Choice of coordinates and addition and doubling formulas
I Representation of finite-field elements in machine words and related

algorithms (e.g. schoolbook vs. Karatsuba multiplication)
I Low-level optimizations of machine instructions

I These levels are not independent, many subtle interactions

High-Performance Cryptography in Software 3

Levels of optimization

I Consider the example of elliptic-curve cryptography
I Various levels of optimization:

I Choice of scalar-multiplication algorithm
I Choice of curve and underlying finite field
I Choice of coordinates and addition and doubling formulas
I Representation of finite-field elements in machine words and related

algorithms (e.g. schoolbook vs. Karatsuba multiplication)
I Low-level optimizations of machine instructions

I These levels are not independent, many subtle interactions

High-Performance Cryptography in Software 3

Computers and computer programs
A highly simplified view

M
em

ory

Branch Unit

ALU

Registers

L/S Unit

implicit

explicit

CPU

I A program is a sequence of
instructions

I Load/Store instructions move
data between memory and
registers (processed by the L/S
unit)

I Branch instructions
(conditionally) jump to a
position in the program

I Arithmetic instructions perform
simple operations on values in
registers (processed by the
ALU)

I Registers are fast (fixed-size)
storage units, addressed “by
name”

High-Performance Cryptography in Software 4

A first program
Adding up 1000 integers

1. Set register R1 to zero
2. Set register R2 to zero
3. Load 32-bits from address START+R2 into register R3
4. Add 32-bit integers in R1 and R3, write the result in R1
5. Increase value in register R2 by 4
6. Compare value in register R2 to 4000
7. Goto line 3 if R2 was smaller than 4000

High-Performance Cryptography in Software 5

A first program
Adding up 1000 integers in readable syntax

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:

tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<

High-Performance Cryptography in Software 6

Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

High-Performance Cryptography in Software 7

Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

High-Performance Cryptography in Software 7

Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)

I Requirement for overlapping execution: instructions have to be
independent

High-Performance Cryptography in Software 7

Running the program

I Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

I Cycles needs to be long enough to finish the most complex
supported instruction

I Other approach: Chop instructions into smaller tasks, e.g. for
addition:
1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

I Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

I This is called pipelined execution (many more stages possible)
I Advantage: cycles can be much shorter (higher clock speed)
I Requirement for overlapping execution: instructions have to be

independent

High-Performance Cryptography in Software 7

Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution
I Number of independent instructions of one type per cycle:

throughput
I Number of cycles that need to pass before the result can be used:

latency

High-Performance Cryptography in Software 8

Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution

I Number of independent instructions of one type per cycle:
throughput

I Number of cycles that need to pass before the result can be used:
latency

High-Performance Cryptography in Software 8

Throughput and latency

I While the ALU is executing an instruction the L/S and branch units
are idle

I Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

I While we’re at it: Why not deploy two ALUs
I This concept is called superscalar execution
I Number of independent instructions of one type per cycle:

throughput
I Number of cycles that need to pass before the result can be used:

latency

High-Performance Cryptography in Software 8

An example computer
Still highly simplified

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

implicit

explicit

CPU

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

High-Performance Cryptography in Software 9

Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

High-Performance Cryptography in Software 10

Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

High-Performance Cryptography in Software 10

Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

High-Performance Cryptography in Software 10

Adding up 1000 integers on this computer

I Need at least 1000 load
instructions: ≥ 1000 cycles

I Need at least 999 addition
instructions: ≥ 500 cycles

I At least 1999 instructions:
≥ 500 cycles

I Lower bound: 1000 cycles

Latencies and throughputs
I At most 4 instructions per cycle
I At most 1 Load/Store

instruction per cycle
I At most 2 arithmetic

instructions per cycle
I Arithmetic latency: 2 cycles
I Load latency: 3 cycles
I Branches have to be last

instruction in a cycle

High-Performance Cryptography in Software 10

How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:

tmp = mem32[START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles
I This program sucks!

High-Performance Cryptography in Software 11

How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:

tmp = mem32[START+ctr]
wait 2 cycles for tmp
result += tmp
ctr += 4
wait 1 cycle for ctr
unsigned<? ctr - 4000
wait 1 cycle for unsigned<
goto looptop if unsigned<

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles

I This program sucks!

High-Performance Cryptography in Software 11

How about our program?

int32 result
int32 tmp
int32 ctr

result = 0
ctr = 0
looptop:

tmp = mem32[START+ctr]
wait 2 cycles for tmp
result += tmp
ctr += 4
wait 1 cycle for ctr
unsigned<? ctr - 4000
wait 1 cycle for unsigned<
goto looptop if unsigned<

I Addition has to wait for load
I Comparison has to wait for

addition
I Each iteration of the loop takes

8 cycles
I Total: > 8000 cycles
I This program sucks!

High-Performance Cryptography in Software 11

Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START+0]
result += tmp
tmp = mem32[START+4]
result += tmp
tmp = mem32[START+8]
result += tmp

...

tmp = mem32[START+3996]
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles
I Better, but still too slow

High-Performance Cryptography in Software 12

Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START+0]
wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
wait 2 cycles for tmp
result += tmp

...

tmp = mem32[START+3996]
wait 2 cycles for tmp
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles

I Better, but still too slow

High-Performance Cryptography in Software 12

Making the program fast
Step 1 – Unrolling

result = 0
tmp = mem32[START+0]
wait 2 cycles for tmp
result += tmp
tmp = mem32[START+4]
wait 2 cycles for tmp
result += tmp
tmp = mem32[START+8]
wait 2 cycles for tmp
result += tmp

...

tmp = mem32[START+3996]
wait 2 cycles for tmp
result += tmp

I Remove all the loop control:
unrolling

I Each load-and-add now takes 3
cycles

I Total: ≈ 3000 cycles
I Better, but still too slow

High-Performance Cryptography in Software 12

Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]

result += tmp0
tmp0 = mem32[START+16]
result += tmp1
tmp1 = mem32[START+20]
result += tmp2
tmp2 = mem32[START+24]

...

result += tmp2
tmp2 = mem32[START+3996]
result += tmp0
result += tmp1
result += tmp2

I Load values earlier
I Load latencies are hidden
I Use more registers for loaded

values (tmp0, tmp1, tmp2)
I Get rid of one addition to zero

I Now arithmetic latencies kick in
I Total: ≈ 2000 cycles

High-Performance Cryptography in Software 13

Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]
tmp0 = mem32[START + 4]
tmp1 = mem32[START + 8]
tmp2 = mem32[START +12]
result += tmp0
tmp0 = mem32[START+16]
wait 1 cycle for result
result += tmp1
tmp1 = mem32[START+20]
wait 1 cycle for result
result += tmp2
tmp2 = mem32[START+24]

...

result += tmp2
tmp2 = mem32[START+3996]
wait 1 cycle for result
result += tmp0
wait 1 cycle for result
result += tmp1
wait 1 cycle for result
result += tmp2

I Load values earlier
I Load latencies are hidden
I Use more registers for loaded

values (tmp0, tmp1, tmp2)
I Get rid of one addition to zero
I Now arithmetic latencies kick in
I Total: ≈ 2000 cycles

High-Performance Cryptography in Software 13

Making the program fast
Step 3 – More Instruction Scheduling (two accumulators)

result0 = mem32[START + 0]
tmp0 = mem32[START + 8]
result1 = mem32[START + 4]
tmp1 = mem32[START +12]
tmp2 = mem32[START +16]

result0 += tmp0
tmp0 = mem32[START+20]
result1 += tmp1
tmp1 = mem32[START+24]
result0 += tmp2
tmp2 = mem32[START+28]

...

result0 += tmp1
tmp1 = mem32[START+3996]
result1 += tmp2
result0 += tmp0
result1 += tmp1
result0 += result1

I Use one more accumulator
register (result1)

I All latencies hidden
I Total: 1004 cycles
I Asymptotically n cycles for n

additions

High-Performance Cryptography in Software 14

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles

I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop

I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)

I Resulting program is larger and requires more registers!
I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers

I Opposing requirements to register allocation (assigning registers to
live variables, minimizing memory access)

I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)

I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Summary of what we did

I Analyze the algorithm in terms of machine instructions
I Look at what the respective machine is able to do
I Compute a lower bound of the cycles
I Optimize until we (almost) reached the lower bound:

I Unroll the loop
I Interleave independent instructions (instruction scheduling)
I Resulting program is larger and requires more registers!

I Note: Good instruction scheduling typically requires more registers
I Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
I Both instruction scheduling and register allocation are NP hard
I So is the joint problem
I Many instances are efficiently solvable

High-Performance Cryptography in Software 15

Architectures and microarchitectures

What instructions and how many registers do we have?
I Instructions are defined by the instruction set
I Supported register names are defined by the set of architectural

registers
I Instruction set and set of architectural registers together define the

architecture
I Examples for architectures: x86, AMD64, ARMv6, ARMv7,

UltraSPARC
I Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?
I Different microarchitectures implement an architecture
I Latencies and throughputs are specific to a microarchitecture
I Example: Intel Core 2 Quad Q9550 implements the AMD64

architecture

High-Performance Cryptography in Software 16

Architectures and microarchitectures

What instructions and how many registers do we have?
I Instructions are defined by the instruction set
I Supported register names are defined by the set of architectural

registers
I Instruction set and set of architectural registers together define the

architecture
I Examples for architectures: x86, AMD64, ARMv6, ARMv7,

UltraSPARC
I Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?
I Different microarchitectures implement an architecture
I Latencies and throughputs are specific to a microarchitecture
I Example: Intel Core 2 Quad Q9550 implements the AMD64

architecture

High-Performance Cryptography in Software 16

Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)

I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling
I Harder to screw up completely

High-Performance Cryptography in Software 17

Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution

I Typically requires more physical than architectural registers and
register renaming

I Harder for the (assembly) programmer to understand what exactly
will happen with the code

I Harder to come up with optimal scheduling
I Harder to screw up completely

High-Performance Cryptography in Software 17

Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming

I Harder for the (assembly) programmer to understand what exactly
will happen with the code

I Harder to come up with optimal scheduling
I Harder to screw up completely

High-Performance Cryptography in Software 17

Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling

I Harder to screw up completely

High-Performance Cryptography in Software 17

Out-of-order execution

I Optimal instruction scheduling depends on the microarchitecture
I Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
I Many software is shipped in binary form (cannot recompile)
I Idea: Let the processor reschedule instructions on the fly
I Look ahead a few instructions, pick one that can be executed
I This is called out-of-order execution
I Typically requires more physical than architectural registers and

register renaming
I Harder for the (assembly) programmer to understand what exactly

will happen with the code
I Harder to come up with optimal scheduling
I Harder to screw up completely

High-Performance Cryptography in Software 17

The Advanced Encryption Standard (AES)

I Block cipher Rijndael proposed by Rijmen, Daemen in 1998
I Selected as AES by NIST in October 2000

I Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
I Key size /192/256 bits (resp. /12/14 rounds)
I AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

I Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

I Last round does not have MixColumns

High-Performance Cryptography in Software 18

The Advanced Encryption Standard (AES)

I Block cipher Rijndael proposed by Rijmen, Daemen in 1998
I Selected as AES by NIST in October 2000
I Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
I Key size 128/192/256 bits (resp. 10/12/14 rounds)

I AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

I Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

I Last round does not have MixColumns

High-Performance Cryptography in Software 18

The Advanced Encryption Standard (AES)

I Block cipher Rijndael proposed by Rijmen, Daemen in 1998
I Selected as AES by NIST in October 2000
I Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
I Key size 128/192/256 bits (resp. 10/12/14 rounds)

I AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

I Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

I Last round does not have MixColumns

High-Performance Cryptography in Software 18

The Advanced Encryption Standard (AES)

I Block cipher Rijndael proposed by Rijmen, Daemen in 1998
I Selected as AES by NIST in October 2000
I Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
I Key size 128/192/256 bits (resp. 10/12/14 rounds)
I AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

I Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

I Last round does not have MixColumns

High-Performance Cryptography in Software 18

The Advanced Encryption Standard (AES)

I Block cipher Rijndael proposed by Rijmen, Daemen in 1998
I Selected as AES by NIST in October 2000
I Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
I Key size 128/192/256 bits (resp. 10/12/14 rounds)
I AES with n rounds uses n+ 1 16-byte rounds keys K0, . . . ,Kn

I Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

I Last round does not have MixColumns

High-Performance Cryptography in Software 18

High-level pseudocode AES-128

Require: 128-bit input block B, 128-bit AES round keys K0, . . . ,K10

Ensure: 128-bit block of encrypted output
B ← AddRoundKey(B,K0)
for i from 1 to 9 do

B ← SubBytes(B)
B ← ShiftRows(B)
B ← MixColumns(B)
B ← AddRoundKey(B,Ki)

end for
B ← SubBytes(B)
B ← ShiftRows(B)
B ← AddRoundKey(B,K10)
return B

High-Performance Cryptography in Software 19

The AES operations, part I

I SubBytes is an S-Box acting on individual bytes
I Substitution based on inversion in F28

I ShiftRows rotates each row by a different amount

High-Performance Cryptography in Software 20

The AES operations, part II

I MixColumns is a linear transformation on columns

I AddRoundKey XORs the 128-bit round key to the state

High-Performance Cryptography in Software 21

AES on 32-bit processors

I Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

I Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C
I Input: 32-bit integers y0, y1, y2, y3
I Output: 32-bit integers z0, z1, z2, z3
I Round keys in 32-bit-integer array rk[44]
z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk[4];
z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk[5];
z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk[6];
z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk[7];

High-Performance Cryptography in Software 22

AES on 32-bit processors

I Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

I Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C
I Input: 32-bit integers y0, y1, y2, y3
I Output: 32-bit integers z0, z1, z2, z3
I Round keys in 32-bit-integer array rk[44]
z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk[4];
z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk[5];
z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk[6];
z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk[7];

High-Performance Cryptography in Software 22

What a machine is really doing
unsigned char rk[176], T0[1024], T1[1024], T2[1024], T3[1024];

z0 = *(uint32 *)(rk + 16);
z1 = *(uint32 *)(rk + 20);
z2 = *(uint32 *)(rk + 24);
z3 = *(uint32 *)(rk + 28);

z0 ^= *(uint32 *) (T0 + ((y0 >> 22) & 0x3fc)) \
^ *(uint32 *) (T1 + ((y1 >> 14) & 0x3fc)) \
^ *(uint32 *) (T2 + ((y2 >> 6) & 0x3fc)) \
^ *(uint32 *) (T3 + ((y3 << 2) & 0x3fc));

z1 ^= *(uint32 *) (T0 + ((y1 >> 22) & 0x3fc)) \
^ *(uint32 *) (T1 + ((y2 >> 14) & 0x3fc)) \
^ *(uint32 *) (T2 + ((y3 >> 6) & 0x3fc)) \
^ *(uint32 *) (T3 + ((y0 << 2) & 0x3fc));

z2 ^= *(uint32 *) (T0 + ((y2 >> 22) & 0x3fc)) \
^ *(uint32 *) (T1 + ((y3 >> 14) & 0x3fc)) \
^ *(uint32 *) (T2 + ((y0 >> 6) & 0x3fc)) \
^ *(uint32 *) (T3 + ((y1 << 2) & 0x3fc));

z3 ^= *(uint32 *) (T0 + ((y3 >> 22) & 0x3fc)) \
^ *(uint32 *) (T1 + ((y0 >> 14) & 0x3fc)) \
^ *(uint32 *) (T2 + ((y1 >> 6) & 0x3fc)) \
^ *(uint32 *) (T3 + ((y2 << 2) & 0x3fc));

High-Performance Cryptography in Software 23

AES instruction counts

I Each round has 20 loads, 16 shifts, 16 masks and 16 xors

I Last round is slightly different: Needs 16 more mask instructions
I 4 load instructions to load input, 4 stores for output
I In CTR mode: 4 xors with the key stream, incrementing the counter
I . . . some more overhead
I Results in 720 instructions needed to encrypt a block of 16 bytes
I Specifically: 208 loads, 4 stores, 508 arithmetic instructions

High-Performance Cryptography in Software 24

AES instruction counts

I Each round has 20 loads, 16 shifts, 16 masks and 16 xors
I Last round is slightly different: Needs 16 more mask instructions
I 4 load instructions to load input, 4 stores for output

I In CTR mode: 4 xors with the key stream, incrementing the counter
I . . . some more overhead
I Results in 720 instructions needed to encrypt a block of 16 bytes
I Specifically: 208 loads, 4 stores, 508 arithmetic instructions

High-Performance Cryptography in Software 24

AES instruction counts

I Each round has 20 loads, 16 shifts, 16 masks and 16 xors
I Last round is slightly different: Needs 16 more mask instructions
I 4 load instructions to load input, 4 stores for output
I In CTR mode: 4 xors with the key stream, incrementing the counter
I . . . some more overhead
I Results in 720 instructions needed to encrypt a block of 16 bytes
I Specifically: 208 loads, 4 stores, 508 arithmetic instructions

High-Performance Cryptography in Software 24

Making AES fast on an UltraSPARC
My first project as Ph.D. student

I 64-bit architecture
I Up to 4 instructions per cycle
I At most 2 integer-arithmetic

instructions per cycle
I At most 1 load/store

instruction per cycle
I 24 integer registers available

I Previous AES speed:

I 20.75 cycles/byte by
Bernstein (public domain)

I 16.875 cycles/byte by
Lipmaa (unpublished)

High-Performance Cryptography in Software 25

Making AES fast on an UltraSPARC
My first project as Ph.D. student

I 64-bit architecture
I Up to 4 instructions per cycle
I At most 2 integer-arithmetic

instructions per cycle
I At most 1 load/store

instruction per cycle
I 24 integer registers available
I Previous AES speed:

I 20.75 cycles/byte by
Bernstein (public domain)

I 16.875 cycles/byte by
Lipmaa (unpublished)

High-Performance Cryptography in Software 25

Making AES fast on an UltraSPARC
My first project as Ph.D. student

I 64-bit architecture
I Up to 4 instructions per cycle
I At most 2 integer-arithmetic

instructions per cycle
I At most 1 load/store

instruction per cycle
I 24 integer registers available
I Previous AES speed:

I 20.75 cycles/byte by
Bernstein (public domain)

I 16.875 cycles/byte by
Lipmaa (unpublished)

High-Performance Cryptography in Software 25

Making AES fast on an UltraSPARC
My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

I Only one load or store per cycle (⇒ at least 212 cycles)
I Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast
I After quite some instruction scheduling: 269 cycles per block

I Dan’s reaction:
“. . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

I After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

I What now? Is this already a bloody pulp?

High-Performance Cryptography in Software 26

Making AES fast on an UltraSPARC
My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

I Only one load or store per cycle (⇒ at least 212 cycles)
I Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast
I After quite some instruction scheduling: 269 cycles per block

I Dan’s reaction:
“. . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

I After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

I What now? Is this already a bloody pulp?

High-Performance Cryptography in Software 26

Making AES fast on an UltraSPARC
My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

I Only one load or store per cycle (⇒ at least 212 cycles)
I Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast
I After quite some instruction scheduling: 269 cycles per block
I Dan’s reaction:

“. . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

I After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

I What now? Is this already a bloody pulp?

High-Performance Cryptography in Software 26

Making AES fast on an UltraSPARC
My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

I Only one load or store per cycle (⇒ at least 212 cycles)
I Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast
I After quite some instruction scheduling: 269 cycles per block
I Dan’s reaction:

“. . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

I After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

I What now? Is this already a bloody pulp?

High-Performance Cryptography in Software 26

Making AES fast on an UltraSPARC
My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block

I Only one load or store per cycle (⇒ at least 212 cycles)
I Only 2 arithmetic instructions per cycle (⇒ at least 254 cycles)

Making it fast
I After quite some instruction scheduling: 269 cycles per block
I Dan’s reaction:

“. . . this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)”

I After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

I What now? Is this already a bloody pulp?

High-Performance Cryptography in Software 26

Making AES fast on an UltraSPARC
Lowering the lower bound

I We have to reduce the number of (arithmetic) instructions
I Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values

with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

I Do that consistently for values in registers, the tables and the round
keys

I Interleave entries in tables T0 and T1 and in T2 and T3

I Instruction set supports 32-bit shifts that zero out the upper 32 bits
I Apply some more optimizations
I Final result: AES in CTR mode on UltraSPARC III at 12.06

cycles/byte

Without padded registers
t0 = (uint32) y0 >> 22
t1 = (uint32) y0 >> 14
t2 = (uint32) y0 >> 6
t3 = (uint32) y0 << 2
t0 &= 0x7f8
t1 &= 0x7f8
t2 &= 0x7f8
t3 &= 0x7f8

With padded registers

High-Performance Cryptography in Software 27

Making AES fast on an UltraSPARC
Lowering the lower bound

I We have to reduce the number of (arithmetic) instructions
I Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values

with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

I Do that consistently for values in registers, the tables and the round
keys

I Interleave entries in tables T0 and T1 and in T2 and T3

I Instruction set supports 32-bit shifts that zero out the upper 32 bits
I Apply some more optimizations
I Final result: AES in CTR mode on UltraSPARC III at 12.06

cycles/byte

Without padded registers
t0 = (uint32) y0 >> 22
t1 = (uint32) y0 >> 14
t2 = (uint32) y0 >> 6
t3 = (uint32) y0 << 2
t0 &= 0x7f8
t1 &= 0x7f8
t2 &= 0x7f8
t3 &= 0x7f8

With padded registers
t0 = (uint64) y0 >> 48
t1 = (uint64) y0 >> 32
t2 = (uint64) y0 >> 16
t1 &= 0xff0
t2 &= 0xff0
t3 = y0 & 0xff0

High-Performance Cryptography in Software 27

Making AES fast on an UltraSPARC
Lowering the lower bound

I We have to reduce the number of (arithmetic) instructions
I Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values

with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

I Do that consistently for values in registers, the tables and the round
keys

I Interleave entries in tables T0 and T1 and in T2 and T3
I Instruction set supports 32-bit shifts that zero out the upper 32 bits

I Apply some more optimizations
I Final result: AES in CTR mode on UltraSPARC III at 12.06

cycles/byte

Without padded registers
t0 = (uint32) y0 >> 22
t1 = (uint32) y0 >> 14
t2 = (uint32) y0 >> 6
t3 = (uint32) y0 << 2
t0 &= 0x7f8
t1 &= 0x7f8
t2 &= 0x7f8
t3 &= 0x7f8

With padded registers
t0 = (uint64) y0 >> 48
t1 = (uint64) y0 >> 32
t2 = (uint32) y0 >> 16
t1 &= 0xff0
t3 = y0 & 0xff0

High-Performance Cryptography in Software 27

Making AES fast on an UltraSPARC
Lowering the lower bound

I We have to reduce the number of (arithmetic) instructions
I Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values

with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

I Do that consistently for values in registers, the tables and the round
keys

I Interleave entries in tables T0 and T1 and in T2 and T3
I Instruction set supports 32-bit shifts that zero out the upper 32 bits
I Apply some more optimizations
I Final result: AES in CTR mode on UltraSPARC III at 12.06

cycles/byte

Without padded registers
t0 = (uint32) y0 >> 22
t1 = (uint32) y0 >> 14
t2 = (uint32) y0 >> 6
t3 = (uint32) y0 << 2
t0 &= 0x7f8
t1 &= 0x7f8
t2 &= 0x7f8
t3 &= 0x7f8

With padded registers

High-Performance Cryptography in Software 27

Optimizing crypto vs. optimizing . . .

I So far there was nothing crypto-specific in this talk (except for the
AES example)

I Is optimizing crypto the same as optimizing any other software?

I No.

Cryptographic software deals with secret data (keys)

I Information about secret data must not leak
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)
I Is this the case for the AES implementation?

High-Performance Cryptography in Software 28

Optimizing crypto vs. optimizing . . .

I So far there was nothing crypto-specific in this talk (except for the
AES example)

I Is optimizing crypto the same as optimizing any other software?
I No.

Cryptographic software deals with secret data (keys)
I Information about secret data must not leak
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)
I Is this the case for the AES implementation?

High-Performance Cryptography in Software 28

Optimizing crypto vs. optimizing . . .

I So far there was nothing crypto-specific in this talk (except for the
AES example)

I Is optimizing crypto the same as optimizing any other software?
I No. Cryptographic software deals with secret data (keys)
I Information about secret data must not leak

I Most critical for software implementations on “large” CPUs: software
must take constant time (independent of secret data)

I Is this the case for the AES implementation?

High-Performance Cryptography in Software 28

Optimizing crypto vs. optimizing . . .

I So far there was nothing crypto-specific in this talk (except for the
AES example)

I Is optimizing crypto the same as optimizing any other software?
I No. Cryptographic software deals with secret data (keys)
I Information about secret data must not leak
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)

I Is this the case for the AES implementation?

High-Performance Cryptography in Software 28

Optimizing crypto vs. optimizing . . .

I So far there was nothing crypto-specific in this talk (except for the
AES example)

I Is optimizing crypto the same as optimizing any other software?
I No. Cryptographic software deals with secret data (keys)
I Information about secret data must not leak
I Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)
I Is this the case for the AES implementation?

High-Performance Cryptography in Software 28

Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

High-Performance Cryptography in Software 29

Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

High-Performance Cryptography in Software 29

Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

I Memory access goes through a
cache

I Small but fast transparent
memory for frequently used
data

I A load from memory places
data also in the cache

I Data remains in cache until it’s
replaced by other data

I Loading data is fast if data is in
the cache (cache hit)

I Loading data is slow if data is
not in the cache (cache miss)

High-Performance Cryptography in Software 29

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

T 0[32] . . . T 0[47]

T 0[48] . . . T 0[63]

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

T 0[96] . . . T 0[111]

T 0[112] . . . T 0[127]

T 0[128] . . . T 0[143]

T 0[144] . . . T 0[159]

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

T 0[224] . . . T 0[239]

T 0[240] . . . T 0[255]

I AES and the attackers program run on
the same CPU

I Tables are in cache

I The attacker’s program replaces some
cache lines

I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

attacker’s data
attacker’s data
T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

attacker’s data
attacker’s data
attacker’s data
attacker’s data

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

attacker’s data
attacker’s data

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines

I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???
???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???
???
???
???

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

???
???

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines
I AES continues, loads from table again

I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???
???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???
???
???
???

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

???
???

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines
I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???
???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???
attacker’s data

???
???

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

???
???

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines
I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???
???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???
T 0[112] . . . T 0[127]

???
???

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

???
???

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines
I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

Cache-timing attacks

T 0[0] . . . T 0[15]

T 0[16] . . . T 0[31]

???
???

T 0[64] . . . T 0[79]

T 0[80] . . . T 0[95]

???
T 0[112] . . . T 0[127]

???
???

T 0[160] . . . T 0[175]

T 0[176] . . . T 0[191]

T 0[192] . . . T 0[207]

T 0[208] . . . T 0[223]

???
???

I AES and the attackers program run on
the same CPU

I Tables are in cache
I The attacker’s program replaces some

cache lines
I AES continues, loads from table again
I Attacker loads his data:

I Fast: cache hit (AES did not just
load from this line)

I Slow: cache miss (AES just loaded
from this line)

I Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption

High-Performance Cryptography in Software 30

More timing attacks

I Bad news: Loading from secret positions is not the only source for
timing variation

I More obvious: Secret branch conditions:
if s then

do A
else

do B
end if

I Even if A and B take the same amount of cycles this is not constant
time!

I Reason: Conditional branch takes different amount of cycles whether
taken or not

I Good news: Loads from secret indices and secret branch conditions
are the only problems (on most processors)

High-Performance Cryptography in Software 31

More timing attacks

I Bad news: Loading from secret positions is not the only source for
timing variation

I More obvious: Secret branch conditions:
if s then

do A
else

do B
end if

I Even if A and B take the same amount of cycles this is not constant
time!

I Reason: Conditional branch takes different amount of cycles whether
taken or not

I Good news: Loads from secret indices and secret branch conditions
are the only problems (on most processors)

High-Performance Cryptography in Software 31

More timing attacks

I Bad news: Loading from secret positions is not the only source for
timing variation

I More obvious: Secret branch conditions:
if s then

do A
else

do B
end if

I Even if A and B take the same amount of cycles this is not constant
time!

I Reason: Conditional branch takes different amount of cycles whether
taken or not

I Good news: Loads from secret indices and secret branch conditions
are the only problems (on most processors)

High-Performance Cryptography in Software 31

More timing attacks

I Bad news: Loading from secret positions is not the only source for
timing variation

I More obvious: Secret branch conditions:
if s then

do A
else

do B
end if

I Even if A and B take the same amount of cycles this is not constant
time!

I Reason: Conditional branch takes different amount of cycles whether
taken or not

I Good news: Loads from secret indices and secret branch conditions
are the only problems (on most processors)

High-Performance Cryptography in Software 31

Eliminating ifs and lookups

Generic technique to eliminate conditional branches

if s then
a← b

else
a← c

end if

a← s · b+ (1− s) · c

I If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups
I Load all possible values from the table
I Use arithmetic (similar as for elimination of conditional branches) to

pick the right one

I This is very slow for many table entries

High-Performance Cryptography in Software 32

Eliminating ifs and lookups

Generic technique to eliminate conditional branches

if s then
a← b

else
a← c

end if

a← s · b+ (1− s) · c

I If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups
I Load all possible values from the table
I Use arithmetic (similar as for elimination of conditional branches) to

pick the right one

I This is very slow for many table entries

High-Performance Cryptography in Software 32

Eliminating ifs and lookups

Generic technique to eliminate conditional branches

if s then
a← b

else
a← c

end if

a← s · b+ (1− s) · c

I If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups
I Load all possible values from the table
I Use arithmetic (similar as for elimination of conditional branches) to

pick the right one

I This is very slow for many table entries

High-Performance Cryptography in Software 32

Eliminating ifs and lookups

Generic technique to eliminate conditional branches

if s then
a← b

else
a← c

end if

a← s · b+ (1− s) · c

I If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups
I Load all possible values from the table
I Use arithmetic (similar as for elimination of conditional branches) to

pick the right one
I This is very slow for many table entries

High-Performance Cryptography in Software 32

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel
I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations
I Performance highly depends on the algorithm and the

microarchitecture
I Some overhead for transforming input data to bitsliced

representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)

I This is very slow, because we use only one bit of a register but
arithmetic is performed on all register bits in parallel

I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations
I Performance highly depends on the algorithm and the

microarchitecture
I Some overhead for transforming input data to bitsliced

representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel

I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations
I Performance highly depends on the algorithm and the

microarchitecture
I Some overhead for transforming input data to bitsliced

representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel
I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit

I This can be very fast if there are m independent data streams that
all want the same computations

I Performance highly depends on the algorithm and the
microarchitecture

I Some overhead for transforming input data to bitsliced
representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel
I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations

I Performance highly depends on the algorithm and the
microarchitecture

I Some overhead for transforming input data to bitsliced
representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel
I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations
I Performance highly depends on the algorithm and the

microarchitecture

I Some overhead for transforming input data to bitsliced
representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing

I Every algorithm can be implemented with just AND and XOR gates
I Idea: Simulate this in software:

I Split each n-bit value across n registers (one bit per register)
I Operate on registers with AND and XOR instructions (may also use

OR, NEG, NAND, etc. if available)
I This is very slow, because we use only one bit of a register but

arithmetic is performed on all register bits in parallel
I Perform m computations in parallel, where m is the register width
I In other words: Treat m-bit registers as vector registers containing m

elements of a single bit
I This can be very fast if there are m independent data streams that

all want the same computations
I Performance highly depends on the algorithm and the

microarchitecture
I Some overhead for transforming input data to bitsliced

representation (transpose data)

High-Performance Cryptography in Software 33

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)

I Obvious approach: Consider 128 independent input blocks
I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns
I Start with a good hardware implementation of SubBytes (inversion

in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates
I Small problems: AMD64 instruction set only has 2-operand

instructions, only 16 128-bit registers
I Software implementation needs some more operations than hardware

implementation needs gates
I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550

(bitsliced)
I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte

(with table lookups)

High-Performance Cryptography in Software 34

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)
I Obvious approach: Consider 128 independent input blocks

I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns
I Start with a good hardware implementation of SubBytes (inversion

in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates
I Small problems: AMD64 instruction set only has 2-operand

instructions, only 16 128-bit registers
I Software implementation needs some more operations than hardware

implementation needs gates
I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550

(bitsliced)
I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte

(with table lookups)

High-Performance Cryptography in Software 34

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)
I Obvious approach: Consider 128 independent input blocks
I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns

I Start with a good hardware implementation of SubBytes (inversion
in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates

I Small problems: AMD64 instruction set only has 2-operand
instructions, only 16 128-bit registers

I Software implementation needs some more operations than hardware
implementation needs gates

I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550
(bitsliced)

I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte
(with table lookups)

High-Performance Cryptography in Software 34

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)
I Obvious approach: Consider 128 independent input blocks
I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns
I Start with a good hardware implementation of SubBytes (inversion

in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates

I Small problems: AMD64 instruction set only has 2-operand
instructions, only 16 128-bit registers

I Software implementation needs some more operations than hardware
implementation needs gates

I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550
(bitsliced)

I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte
(with table lookups)

High-Performance Cryptography in Software 34

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)
I Obvious approach: Consider 128 independent input blocks
I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns
I Start with a good hardware implementation of SubBytes (inversion

in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates
I Small problems: AMD64 instruction set only has 2-operand

instructions, only 16 128-bit registers
I Software implementation needs some more operations than hardware

implementation needs gates

I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550
(bitsliced)

I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte
(with table lookups)

High-Performance Cryptography in Software 34

Bitslicing AES
I Consider a “good” architecture for bitslicing
I For example, Intel Core 2: 3 bit-logical operations on 128-bit

registers each cycle (384 bit operations per cycle!)
I Obvious approach: Consider 128 independent input blocks
I But: Core part of AES (SubBytes) is already 16× parallel
I Better for small packets: Consider just 8 independent blocks
I Need to pay some attention in ShiftRows and MixColumns
I Start with a good hardware implementation of SubBytes (inversion

in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates
I Small problems: AMD64 instruction set only has 2-operand

instructions, only 16 128-bit registers
I Software implementation needs some more operations than hardware

implementation needs gates
I Käsper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550

(bitsliced)
I Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte

(with table lookups)
High-Performance Cryptography in Software 34

Levels of optimization

I Consider the example of elliptic-curve cryptography
I Various levels of optimization:

I Choice of scalar-multiplication algorithm
I Choice of curve an underlying finite field
I Choice of coordinates and addition and doubling formulas
I Representation of finite-field elements in machine words and related

algorithms (e.g. schoolbook vs. Karatsuba multiplication)
I Low-level optimizations of machine instructions

I These levels are not independent, many subtle interactions

High-Performance Cryptography in Software 35

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009

I On most processors there is no instruction for multiplication of
binary polynomials

I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials

I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers

I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions

I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Finite-field arithmetic

I With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

I In the context of elliptic-curve cryptography: Bernstein, 2009
I On most processors there is no instruction for multiplication of

binary polynomials
I There are instructions to efficiently multiply 32-bit or 64-bit integers
I Obvious for large-prime fields: use these instructions
I Consider the example of multiplication in Fp with p = 2255 − 19

I Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

I For schoolbook multiplication: 16 64× 64-bit integer multiplications
producing 128-bit results

I Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software 36

Multiplication in F2255−19 on AMD64

mulx0 = *(uint64 *)(xp + 0)
rax = *(uint64 *)(yp + 0)
(uint128) rdx rax = rax * mulx0
r0 = rax
r1 = rdx

rax = *(uint64 *)(yp + 8)
(uint128) rdx rax = rax * mulx0
carry? r1 += rax
r2 = 0
r2 += rdx + carry

rax = *(uint64 *)(yp + 16)
(uint128) rdx rax = rax * mulx0
carry? r2 += rax
r3 = 0
r3 += rdx + carry

rax = *(uint64 *)(yp + 24)
(uint128) rdx rax = rax * mulx0
carry? r3 += rax
r4 += rdx + carry

I Initialization: 4 multiplications,
each with one addition and one
add-with-carry

I Continue: Each multiplication
comes with 2 adds-with-carry

I Intel Nehalem/Westmere: 3
additions per cycles, only 1
add-with-carry every two cycles

I Handling carries becomes a
bottleneck!

High-Performance Cryptography in Software 37

Multiplication in F2255−19 on AMD64

mulx1 = *(uint64 *)(xp + 8)
rax = *(uint64 *)(yp + 0)
(uint128) rdx rax = rax * mulx1
carry? r1 += rax
mulc = 0
mulc += rdx + carry

rax = *(uint64 *)(yp + 8)
(uint128) rdx rax = rax * mulx1
carry? r2 += rax
rdx += 0 + carry
carry? r2 += mulc
mulc = 0
mulc += rdx + carry

rax = *(uint64 *)(yp + 16)
(uint128) rdx rax = rax * mulx1
carry? r3 += rax
rdx += 0 + carry
carry? r3 += mulc
mulc = 0
mulc += rdx + carry

...

I Initialization: 4 multiplications,
each with one addition and one
add-with-carry

I Continue: Each multiplication
comes with 2 adds-with-carry

I Intel Nehalem/Westmere: 3
additions per cycles, only 1
add-with-carry every two cycles

I Handling carries becomes a
bottleneck!

High-Performance Cryptography in Software 37

Multiplication in F2255−19 on AMD64

mulx1 = *(uint64 *)(xp + 8)
rax = *(uint64 *)(yp + 0)
(uint128) rdx rax = rax * mulx1
carry? r1 += rax
mulc = 0
mulc += rdx + carry

rax = *(uint64 *)(yp + 8)
(uint128) rdx rax = rax * mulx1
carry? r2 += rax
rdx += 0 + carry
carry? r2 += mulc
mulc = 0
mulc += rdx + carry

rax = *(uint64 *)(yp + 16)
(uint128) rdx rax = rax * mulx1
carry? r3 += rax
rdx += 0 + carry
carry? r3 += mulc
mulc = 0
mulc += rdx + carry

...

I Initialization: 4 multiplications,
each with one addition and one
add-with-carry

I Continue: Each multiplication
comes with 2 adds-with-carry

I Intel Nehalem/Westmere: 3
additions per cycles, only 1
add-with-carry every two cycles

I Handling carries becomes a
bottleneck!

High-Performance Cryptography in Software 37

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications

I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III
I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector

multiplication on Cell SPU
I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector

multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits

I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III
I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector

multiplication on Cell SPU
I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector

multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)

I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III
I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector

multiplication on Cell SPU
I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector

multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best

I Bernstein, 2006: Use radix 225.5 and double-precision floating-point
multiplication on Pentium III

I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector
multiplication on Cell SPU

I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector
multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III

I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector
multiplication on Cell SPU

I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector
multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III
I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector

multiplication on Cell SPU

I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector
multiplication on ARM NEON

High-Performance Cryptography in Software 38

A different representation

I Better approach: Chop 255-bit integers into 5 parts, radix 251

I Schoolbook multiplication now needs 25 64× 64-bit multiplications
I Intermediary results now have only 102 bits
I Adding lower 64 bits still requires add-with-carry
I Adding upper parts only needs addition (carries go in extra space)
I We have verified that this is faster on Intel Nehalem/Westmere
I General lesson: The obvious representation may not be the best
I Bernstein, 2006: Use radix 225.5 and double-precision floating-point

multiplication on Pentium III
I Costigan, Schwabe 2009: Use radix 212.75 and integer-vector

multiplication on Cell SPU
I Bernstein, Schwabe 2012: Use radix 225.5 and integer-vector

multiplication on ARM NEON

High-Performance Cryptography in Software 38

Concluding remarks

qhasm
I Syntax I used for assembly is actually qhasm syntax
I Language developed by Bernstein to make programming on the

assembly level easier: http://cr.yp.to/qhasm.html

Benchmarking your software
I Measuring performance of (cryptographic) software is easy to do

wrong
I Please submit to eBACS: ECRYPT Benchmarking of

Cryptographic Systems (Bernstein, Lange): http://bench.cr.yp.to

Put software online
I A paper describing software is nice, it’s worth much more if it comes

with the software
I Please make your software available!

High-Performance Cryptography in Software 39

Concluding remarks

qhasm
I Syntax I used for assembly is actually qhasm syntax
I Language developed by Bernstein to make programming on the

assembly level easier: http://cr.yp.to/qhasm.html

Benchmarking your software
I Measuring performance of (cryptographic) software is easy to do

wrong
I Please submit to eBACS: ECRYPT Benchmarking of

Cryptographic Systems (Bernstein, Lange): http://bench.cr.yp.to

Put software online
I A paper describing software is nice, it’s worth much more if it comes

with the software
I Please make your software available!

High-Performance Cryptography in Software 39

Concluding remarks

qhasm
I Syntax I used for assembly is actually qhasm syntax
I Language developed by Bernstein to make programming on the

assembly level easier: http://cr.yp.to/qhasm.html

Benchmarking your software
I Measuring performance of (cryptographic) software is easy to do

wrong
I Please submit to eBACS: ECRYPT Benchmarking of

Cryptographic Systems (Bernstein, Lange): http://bench.cr.yp.to

Put software online
I A paper describing software is nice, it’s worth much more if it comes

with the software
I Please make your software available!

High-Performance Cryptography in Software 39

	Introduction
	Optimizing symmetric cryptography – the Advanced Encryption Standard
	Galois-field arithmetic

