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Introduction & I A R

» Previous talk: High performance crypto in hardware
» Reason for special-purpose crypto hardware: Speed!

» Disadvantages: High cost, loss of flexibility, hard to replace/update
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Introduction & I A R

Previous talk: High performance crypto in hardware
Reason for special-purpose crypto hardware: Speed!

>
>

» Disadvantages: High cost, loss of flexibility, hard to replace/update
» This talk: How fast can we make crypto on off-the-shelf computers?
>

Implement cryptography with a set of general-purpose instructions
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Levels of optimization & I AR

» Consider the example of elliptic-curve cryptography

» Various levels of optimization:

>

>
>
>

Choice of scalar-multiplication algorithm

Choice of curve and underlying finite field

Choice of coordinates and addition and doubling formulas
Representation of finite-field elements in machine words and related
algorithms (e.g. schoolbook vs. Karatsuba multiplication)
Low-level optimizations of machine instructions
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Computers and computer programs & I AT B

A highly simplified view

> A program is a sequence of

Branch Unit . .
instructions

» Load/Store instructions move
data between memory and
registers (processed by the L/S
unit)

» Branch instructions
(conditionally) jump to a
position in the program

Registers

explicit

» Arithmetic instructions perform
simple operations on values in
registers (processed by the
ALU)

> Registers are fast (fixed-size)

storage units, addressed “by
name"
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A first program ¥ K A B

Adding up 1000 integers

No ok~ b

Set register R1 to zero

Set register R2 to zero

Load 32-bits from address START+R2 into register R3
Add 32-bit integers in R1 and R3, write the result in R1
Increase value in register R2 by 4

Compare value in register R2 to 4000

Goto line 3 if R2 was smaller than 4000
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A first program

Adding up 1000 integers in readable syntax

int32 result
int32 tmp
int32 ctr

result = 0

ctr =0

looptop:
tmp = mem32 [START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<
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Running the program ¥ K A B
» Easy approach: Per “time-slot” (cycle) execute one instruction, then

go for the next
» Cycles needs to be long enough to finish the most complex

supported instruction
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Running the program ¥ KA B

» Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

» Cycles needs to be long enough to finish the most complex
supported instruction

» Other approach: Chop instructions into smaller tasks, e.g. for
addition:

Fetch instruction

Decode instruction

Fetch register arguments

Execute (actual addition)

Write back to register

arwbd=
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Running the program ¥ KA B

» Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

» Cycles needs to be long enough to finish the most complex
supported instruction

» Other approach: Chop instructions into smaller tasks, e.g. for
addition:

1. Fetch instruction

2. Decode instruction

3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

» Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

» This is called pipelined execution (many more stages possible)

» Advantage: cycles can be much shorter (higher clock speed)
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Running the program ¥ KA B

» Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

» Cycles needs to be long enough to finish the most complex
supported instruction

» Other approach: Chop instructions into smaller tasks, e.g. for
addition:

Fetch instruction

Decode instruction

Fetch register arguments

Execute (actual addition)

5. Write back to register

i s

» Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

» This is called pipelined execution (many more stages possible)
» Advantage: cycles can be much shorter (higher clock speed)

» Requirement for overlapping execution: instructions have to be
independent
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Throughput and latency ¥ K A B

» While the ALU is executing an instruction the L/S and branch units
are idle
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Throughput and latency ¥ K A B

» While the ALU is executing an instruction the L/S and branch units
are idle

» Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

» While we're at it: Why not deploy two ALUs

» This concept is called superscalar execution
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Throughput and latency ¥ K A B

» While the ALU is executing an instruction the L/S and branch units
are idle

» Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

» While we're at it: Why not deploy two ALUs
» This concept is called superscalar execution

» Number of independent instructions of one type per cycle:
throughput

» Number of cycles that need to pass before the result can be used:
latency
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An example computer & I AT B

Still highly simplified

Branch Unit

Latencies and throughputs

» At most 4 instructions per cycle
> At most 1 Load/Store
instruction per cycle

> At most 2 arithmetic
instructions per cycle

Registers

explicit

» Arithmetic latency: 2 cycles
> Load latency: 3 cycles

» Branches have to be last
instruction in a cycle
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Adding up 1000 integers on this computer

» Need at least 1000 load
instructions: > 1000 cycles

Latencies and throughputs

» At most 4 instructions per cycle

» At most 1 Load/Store
instruction per cycle

» At most 2 arithmetic
instructions per cycle

» Arithmetic latency: 2 cycles
> Load latency: 3 cycles

» Branches have to be last
instruction in a cycle
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Adding up 1000 integers on this computer

» Need at least 1000 load
instructions: > 1000 cycles

» Need at least 999 addition
instructions: > 500 cycles

Latencies and throughputs

» At most 4 instructions per cycle

» At most 1 Load/Store
instruction per cycle

» At most 2 arithmetic
instructions per cycle

» Arithmetic latency: 2 cycles
> Load latency: 3 cycles

» Branches have to be last
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Adding up 1000 integers on this computer

v

v

v

v

Need at least 1000 load
instructions: > 1000 cycles

Need at least 999 addition
instructions: > 500 cycles

At least 1999 instructions:
> 500 cycles

Lower bound: 1000 cycles

Latencies and throughputs

» At most 4 instructions per cycle

» At most 1 Load/Store
instruction per cycle

» At most 2 arithmetic
instructions per cycle

» Arithmetic latency: 2 cycles
> Load latency: 3 cycles

» Branches have to be last
instruction in a cycle
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How about our program?

int32 result
int32 tmp
int32 ctr

result = 0

ctr =0

looptop:
tmp = mem32 [START+ctr]
result += tmp
ctr += 4
unsigned<? ctr - 4000
goto looptop if unsigned<
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How about our program?

int32 result
int32 tmp
int32 ctr

result =0

ctr =0

looptop:
tmp = mem32 [START+ctr]
# wait 2 cycles for tmp
result += tmp

ctr += 4
# wait 1 cycle for ctr
unsigned<? ctr - 4000

# wait 1 cycle for unsigned<
goto looptop if unsigned<

v

v

v

v

Addition has to wait for load

Comparison has to wait for
addition

Each iteration of the loop takes
8 cycles

Total: > 8000 cycles
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How about our program? ¥ 5 A R

int32 result

int32 tmp
int32 ctr
» Addition has to wait for load

result = 0 . .
ctr -0 » Comparison has to wait for
looptop: addition

tmp = mem32 [START+ctr] » Each iteration of the loop takes

# wait 2 cycles for tmp

result += tmp 8 cycles

ctr += 4 » Total: > 8000 cycles

# wait 1 cycle for ctr

unsigned<? ctr - 4000 » This program sucks!

# wait 1 cycle for unsigned<
goto looptop if unsigned<
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Making the program fast

Step 1 — Unrolling

result = 0

tmp = mem32[START+0]
result += tmp
tmp = mem32 [START+4]
result += tmp
tmp = mem32 [START+8]
result += tmp

tmp = mem32 [START+3996]
result += tmp

» Remove all the loop control:
unrolling

High-Performance Cryptography in Software
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Making the program fast ¥ 5 A R

Step 1 — Unrolling

result =0

tmp = mem32[START+O0]

# wait 2 cycles for tmp
result += tmp

tmp = mem32 [START+4]

# wait 2 cycles for tmp
result += tmp

tmp = mem32 [START+8]

# wait 2 cycles for tmp
result += tmp

tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp

» Remove all the loop control:
unrolling

» Each load-and-add now takes 3
cycles

» Total: = 3000 cycles
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Making the program fast ¥ 5 A R

Step 1 — Unrolling

result = 0

tmp = mem32[START+O0]

# wait 2 cycles for tmp

result += tmp

tmp = mem32[START+4] » Remove all the loop control:

# wait 2 cycles for tmp i

result += tmp unrofiing

tmp = mem32 [START+8] » Each load-and-add now takes 3
# wait 2 cycles for tmp CkaS

result += tmp
» Total: = 3000 cycles

Better, but still too slow

tmp = mem32[START+3996]
# wait 2 cycles for tmp
result += tmp
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Making the program fast ¥ 5 A R

Step 2 — Instruction Scheduling

result = mem32[START + 0]
tmp0 = mem32 [START + 4]
tmpl = mem32 [START + 8]
tmp?2 = mem32 [START +12]

v

result += tmp0 Load values earlier
tmpO0 = mem32 [START+16]
result += tmpl

tmpl = mem32[START+20] Use more registers for loaded
result += tmp2 values (tmp0, tmp1, tmp2)
tmp2 = mem32 [START+24]

Load latencies are hidden

v

v

Get rid of one addition to zero

v

result += tmp2
tmp2 = mem32 [START+3996]
result += tmpO
result += tmpl
result += tmp2
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Making the program fast

Step 2 — Instruction Scheduling

result
tmp0

tmpl

tmp2

result
tmp0 =
# wait
result
tmpl =
# wait
result
tmp2 =

result
tmp2 =
# wait
result
# wait
result
# wait
result

= mem32 [START
= mem32 [START
= mem32 [START
= mem32 [START
+= tmp0

mem32 [START+16]

1 cycle for result
+= tmpl

mem32 [START+20]

1 cycle for result
+= tmp2

mem32 [START+24]

FoE o

0]
4]
8]
12]

+= tmp2

mem32 [START+3996]
1 cycle for result
+= tmp0

1 cycle for result
+= tmpl

1 cycle for result
+= tmp2

Load values earlier
Load latencies are hidden

Use more registers for loaded
values (tmp0, tmpl, tmp2)

Get rid of one addition to zero
Now arithmetic latencies kick in
Total: =~ 2000 cycles
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Making the program fast

Step 3 — More Instruction Scheduling (two accumulators)

result0 = mem32[START + 0]
tmp0 = mem32 [START + 8]
resultl = mem32[START + 4]
tmpl = mem32 [START +12]
tmp2 = mem32 [START +16]

resultO0 += tmpO0
tmp0 = mem32 [START+20] » Use one more accumulator

resultl += tmpl register (resultl)

tmpl = mem32 [START+24] i i
result0 += tmp2 » All latencies hidden

tmp2 = mem32 [START+28] » Total: 1004—cydes

» Asymptotically n cycles for n
additions
resultO0 += tmpl
tmpl = mem32 [START+3996]
resultl += tmp2
resultO0 += tmpO0

resultl
resultO

+= tmpl
+= resultl

High-Performance Cryptography in Software
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Summary of what we did ¥ K A B

» Analyze the algorithm in terms of machine instructions
» Look at what the respective machine is able to do

» Compute a lower bound of the cycles
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Summary of what we did ¥ K A B

Analyze the algorithm in terms of machine instructions
Look at what the respective machine is able to do
Compute a lower bound of the cycles

vV Yy vy

Optimize until we (almost) reached the lower bound:
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vV Yy vy
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i gE SR N

ns

> Interleave independent instructions (instruction scheduling)
> Resulting program is larger and requires more registers!

v

Note: Good instruction scheduling typically requires more registers
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Summary of what we did

vV Yy vy

Analyze the algorithm in terms of machine instructions
Look at what the respective machine is able to do
Compute a lower bound of the cycles

Optimize until we (almost) reached the lower bound:

» Unroll the loop
> Interleave independent instructions (instruction scheduling)
> Resulting program is larger and requires more registers!

Note: Good instruction scheduling typically requires more registers

Opposing requirements to register allocation (assigning registers to
live variables, minimizing memory access)
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Summary of what we did

vV Yy vy

Analyze the algorithm in terms of machine instructions
Look at what the respective machine is able to do
Compute a lower bound of the cycles

Optimize until we (almost) reached the lower bound:

» Unroll the loop
> Interleave independent instructions (instruction scheduling)
> Resulting program is larger and requires more registers!

Note: Good instruction scheduling typically requires more registers

Opposing requirements to register allocation (assigning registers to
live variables, minimizing memory access)

Both instruction scheduling and register allocation are NP hard

So is the joint problem

» Many instances are efficiently solvable

High-Performance Cryptography in Software
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Architectures and microarchitectures & K KB

What instructions and how many registers do we have?

» Instructions are defined by the instruction set

» Supported register names are defined by the set of architectural
registers

> Instruction set and set of architectural registers together define the
architecture

» Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

» Sometimes base architectures are extended, e.g., MMX, SSE, NEON
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Architectures and microarchitectures & K KB

What instructions and how many registers do we have?

» Instructions are defined by the instruction set

» Supported register names are defined by the set of architectural
registers

> Instruction set and set of architectural registers together define the
architecture

» Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

» Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?

» Different microarchitectures implement an architecture
» Latencies and throughputs are specific to a microarchitecture

» Example: Intel Core 2 Quad Q9550 implements the AMD64
architecture

High-Performance Cryptography in Software
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Out-of-order execution & I A R

» Optimal instruction scheduling depends on the microarchitecture

» Code optimized for one microarchitecture may run at very bad
performance on another microarchitecture

» Many software is shipped in binary form (cannot recompile)
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Out-of-order execution

» Optimal instruction scheduling depends on the microarchitecture

» Code optimized for one microarchitecture may run at very bad

vV v. v Y

performance on another microarchitecture

Many software is shipped in binary form (cannot recompile)
Idea: Let the processor reschedule instructions on the fly
Look ahead a few instructions, pick one that can be executed

This is called out-of-order execution
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performance on another microarchitecture

Many software is shipped in binary form (cannot recompile)
Idea: Let the processor reschedule instructions on the fly
Look ahead a few instructions, pick one that can be executed
This is called out-of-order execution

Typically requires more physical than architectural registers and
register renaming

Harder for the (assembly) programmer to understand what exactly
will happen with the code

Harder to come up with optimal scheduling
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Out-of-order execution

» Optimal instruction scheduling depends on the microarchitecture

» Code optimized for one microarchitecture may run at very bad

vV v v v Yy

performance on another microarchitecture

Many software is shipped in binary form (cannot recompile)
Idea: Let the processor reschedule instructions on the fly
Look ahead a few instructions, pick one that can be executed
This is called out-of-order execution

Typically requires more physical than architectural registers and
register renaming

Harder for the (assembly) programmer to understand what exactly
will happen with the code

Harder to come up with optimal scheduling

Harder to screw up completely

High-Performance Cryptography in Software
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The Advanced Encryption Standard (AES) 2% 7t $6 BG

» Block cipher Rijndael proposed by Rijmen, Daemen in 1998
» Selected as AES by NIST in October 2000

High-Performance Cryptography in Software 18



The Advanced Encryption Standard (AES) 2% 7t $6 BG

Block cipher Rijndael proposed by Rijmen, Daemen in 1998
Selected as AES by NIST in October 2000

Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)
Key size 128/192/256 bits (resp. 10/12/14 rounds)

vV v v v
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The Advanced Encryption Standard (AES) 2% 7t $6 BG

Block cipher Rijndael proposed by Rijmen, Daemen in 1998
Selected as AES by NIST in October 2000

Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)

Key size 128/192/256 bits (resp. 10/12/14 rounds)

AES with n rounds uses n + 1 16-byte rounds keys Ky, ..., K,

vV v.v. v .Yy
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The Advanced Encryption Standard (AES)

vV vV.v v v .Y

Block cipher Rijndael proposed by Rijmen, Daemen in 1998
Selected as AES by NIST in October 2000

Block size: 128 bits (AES state: 4x4 matrix of 16 bytes)

Key size 128/192/256 bits (resp. 10/12/14 rounds)

AES with n rounds uses n + 1 16-byte rounds keys Ky, ..., K,

Four operations per round: SubBytes, ShiftRows, MixColumns, and
AddRoundKey

Last round does not have MixColumns

High-Performance Cryptography in Software
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High-level pseudocode AES-128 ¥ KA B

Require: 128-bit input block B, 128-bit AES round keys K, ..., Kig
Ensure: 128-bit block of encrypted output
B + AddRoundKey(B, Kj)
for i from 1 to 9 do
B < SubBytes(B)
B + ShiftRows(B)
B + MixColumns(B)
B + AddRoundKey(B, K;)
end for
B < SubBytes(B)
B + ShiftRows(B)
B+ AddRoundKey(B, K10>
return B
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The AES operations, part | &+ I A B

» SubBytes is an S-Box acting on individual bytes

» Substitution based on inversion in Fys

aOO aOl aO: a03 bOO 01 0z b03
alO all al: al3 blO 11 12 b13
aZU a31 a22 a33 bco b21 b22 b:3
a30 a31|a3:‘%\ S _ﬁ%%‘bgjlbﬁ

» ShiftRows rotates each row by a different amount

aOO aOl aO: a03
alO a‘ll
a:O a:l a:} %ZAZB a
a.. |a..|la

30| 731} T3z 33 a33 a30 a}l a32

aOO aOl aO: a03

a‘l 1

>
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The AES operations, part |l & 5 A B

» MixColumns is a linear transformation on columns

Ay a,, (3,120, boo by, 10,.1 P,
a Ja,,|a,-|a,, . bmbn b.lb,
I T bzo b, [b..|b.,
a,, a, |a,.|a,, Py bso b b, |b,,

L

» AddRoundKey XORs the 128-bit round key to the state
a_la_.la Sl Lol ol
o R
ST T - TN N D S IS o S
k2

r
31 32 kBE
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AES on 32-bit processors & I AR

» Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

» Use 4 lookup tables TO, T1, T2, and T3 (1 KB each)
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AES on 32-bit processors & I AR

» Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

» Use 4 lookup tables TO, T1, T2, and T3 (1 KB each)

The first round of AES in C
» Input: 32-bit integers yO, v1, v2, y3
» Output: 32-bit integers z0, z1, z2, z3
» Round keys in 32-bit-integer array rk[44]

z0 = TO[ y0 >> 24 ] A~ T1l[(yl >> 16) & Oxff] \

A T2 (y2 >>  8) & Oxff] ~ T3[ y3 & Oxff] »~ rk[4];
z1 = TO[ yl >> 24 ] A~ T1l[(y2 >> 16) & Oxff] \

A T2[(y3 >> 8) & O0xff] ~ T3[ y0 & Oxff]l ~ rk[5];
z2 = TO[ y2 >> 24 ] ~ T1[(y3 >> 16) & Oxff] \

A T2[(y0 >> 8) & Oxff] ~ T3[ yl & Oxff]l ~ rk[6];
z3 = TO[ y3 >> 24 ] ~ T1[(y0 >> 16) & Oxff] \

A T2[(yl >>  8) & Oxff] ~ T3[ y2 & Oxffl ~ rk[7];

High-Performance Cryptography in Software 22



What a machine is really doing ¥ 5 A R

unsigned char rk[176], T0[1024], T1[1024], T2[1024], T3[1024];

z0 = *(uint32 *) (rk + 16);

z1l = *x(uint32 *) (rk + 20);

z2 = *(uint32 *) (rk + 24);

z3 = x(uint32 x) (rk + 28);

z0 ~= x(uint32 *) (TO + ((y0 >> 22) & 0x3fc)) \
A % (uint32 ) (T1 + ((yl >> 14) & 0x3fc)) \
A % (uint32 ) (T2 + ((y2 >> 6) & 0x3fc)) \
A« (uint32 %) (T3 + ((y3 << 2) & 0x3fc));

z1 *= x(uint32 *) (TO + ((yl >> 22) & 0x3fc)) \
A x(uint32 x) (T1 + ((y2 >> 14) & 0x3fc)) \
A~ % (uint32 x) (T2 + ((y3 >> 6) & 0x3fc)) \
A x(uint32 %) (T3 + ((y0 << 2) & 0x3fc));

z2 ~= x(uint32 *) (TO0 + ((y2 >> 22) & 0x3fc)) \
A x(uint32 x) (T1 + ((y3 >> 14) & 0x3fc)) \
A % (uint32 *) (T2 + ((y0 >> 6) & 0x3fc)) \
A % (uint32 %) (T3 + ((yl << 2) & 0x3fc));

z3 "= x(uint32 ) (TO0 + ((y3 >> 22) & 0x3fc)) \
A~ % (uint32 x) (T1 + ((y0 >> 14) & 0x3fc)) \
A+ (uint32 *) (T2 + ((y1 >> 6) & 0x3fc)) \
A x(uint32 *) (T3 + ((y2 << 2) & 0x3fc));
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AES instruction counts & I AR

» Each round has 20 loads, 16 shifts, 16 masks and 16 xors
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AES instruction counts & I AR

» Each round has 20 loads, 16 shifts, 16 masks and 16 xors
» Last round is slightly different: Needs 16 more mask instructions

» 4 load instructions to load input, 4 stores for output
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AES instruction counts & I AR

Each round has 20 loads, 16 shifts, 16 masks and 16 xors

Last round is slightly different: Needs 16 more mask instructions

4 load instructions to load input, 4 stores for output

In CTR mode: 4 xors with the key stream, incrementing the counter
...some more overhead

Results in 720 instructions needed to encrypt a block of 16 bytes

vV vV.v v v v .Y

Specifically: 208 loads, 4 stores, 508 arithmetic instructions
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Making AES fast on an UltraSPARC

My first project as Ph.D. student

64-bit architecture
Up to 4 instructions per cycle

» At most 2 integer-arithmetic

instructions per cycle

At most 1 load/store
instruction per cycle

24 integer registers available

High-Performance Cryptography in Software
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Making AES fast on an UltraSPARC 3 KA B

My first project as Ph.D. student

> 64-bit architecture

» Up to 4 instructions per cycle

» At most 2 integer-arithmetic
instructions per cycle

> At most 1 load/store
instruction per cycle

> 24 integer registers available

> Previous AES speed:

> 20.75 cycles/byte by
Bernstein (public domain)
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Making AES fast on an UltraSPARC 3 KA B

My first project as Ph.D. student

> 64-bit architecture

» Up to 4 instructions per cycle

» At most 2 integer-arithmetic
instructions per cycle

> At most 1 load/store
instruction per cycle

> 24 integer registers available

> Previous AES speed:

> 20.75 cycles/byte by
Bernstein (public domain)

» 16.875 cycles/byte by
Lipmaa (unpublished)
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Making AES fast on an UltraSPARC ¥ KA B

My first project as Ph.D. student
Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)

» Only 2 arithmetic instructions per cycle (= at least 254 cycles)
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Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)
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» After quite some instruction scheduling: 269 cycles per block
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My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)

» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

» After quite some instruction scheduling: 269 cycles per block

» Dan'’s reaction:
“...this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)"
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My first project as Ph.D. student

Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)

» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

» After quite some instruction scheduling: 269 cycles per block

» Dan'’s reaction:
“...this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)"

» After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte
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Making AES fast on an UltraSPARC ¥ KA B

My first project as Ph.D. student
Computing a lower bound
Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)

» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

v

After quite some instruction scheduling: 269 cycles per block

v

Dan's reaction:
“...this is no time to relax; you have to not just beat
Lipmaa’s code, but beat it to a bloody pulp and dance on
its grave. :-)"

v

After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

» What now? Is this already a bloody pulp?
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Making AES fast on an UltraSPARC

Lowering the lower bound

>

>

We have to reduce the number of (arithmetic) instructions

Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,

0xc66363a5 becomes 0x0c60063006300a50

Do that consistently for values in registers, the tables and the round
keys

Interleave entries in tables TO and T1 and in T2 and T3
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Making AES fast on an UltraSPARC

Lowering the lower bound

Without padded registers

t0
tl
t2
t3
t0
tl
t2
t3

>

>

We have to reduce the number of (arithmetic) instructions

Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

Do that consistently for values in registers, the tables and the round

keys

Interleave entries in tables TO and T1 and in T2 and T3

= (uint32
(uint32
= (uint32
= (uint32
&= 0x7f£8
&= 0x7f£8
&= 0x7£8
&= 0x7£8

)

)
)
)

yO0
yO0
yO0
yO0

>>
>>
>>
<<

22
14
6
2

With padded registers

t0 =

tl
t2
tl
t2
t£3

(uint64) y0 >> 48
= (uint64) y0 >> 32
= (uint64) y0 >> 16
&= 0xff0
&= 0xff0
= y0 & Oxff0
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Making AES fast on an UltraSPARC

Lowering the lower bound

Without padded registers

t0
tl
t2
t3
t0
tl
t2
t3

» We have to reduce the number of (arithmetic) instructions

» Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

» Do that consistently for values in registers, the tables and the round

keys

» Interleave entries in tables TO and T1 and in T2 and T3

> Instruction set supports 32-bit shifts that zero out the upper 32 bits

= (uint32
= (uint32
= (uint32
= (uint32
&= 0x7f£8
&= 0x7f£8
&= 0x7£8
&= 0x7£8

)

)
)
)

yO0
yO0
yO0
yO0

>>
>>
>>
<<

22
14
6
2

With padded registers

t0 =

tl
t2
tl
t3

(uint64) y0 >> 48

= (uint64) y0 >> 32
= (uint32) y0 >> 16
&= 0xffo0

= y0 & Oxff0
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Making AES fast on an UltraSPARC

Lowering the lower bound

>

>

vV v v v

We have to reduce the number of (arithmetic) instructions

Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

Do that consistently for values in registers, the tables and the round
keys

Interleave entries in tables TO and T1 and in T2 and T3
Instruction set supports 32-bit shifts that zero out the upper 32 bits
Apply some more optimizations

Final result: AES in CTR mode on UltraSPARC Il at 12.06
cycles/byte
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Optimizing crypto vs. optimizing ... & 5 A B

» So far there was nothing crypto-specific in this talk (except for the
AES example)

» Is optimizing crypto the same as optimizing any other software?
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» So far there was nothing crypto-specific in this talk (except for the
AES example)

» Is optimizing crypto the same as optimizing any other software?
» No.
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Optimizing crypto vs. optimizing ... & 5 A B

v

So far there was nothing crypto-specific in this talk (except for the
AES example)

Is optimizing crypto the same as optimizing any other software?

v

v

No. Cryptographic software deals with secret data (keys)

Information about secret data must not leak

v
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vV v v v

So far there was nothing crypto-specific in this talk (except for the
AES example)

Is optimizing crypto the same as optimizing any other software?
No. Cryptographic software deals with secret data (keys)
Information about secret data must not leak

Most critical for software implementations on “large” CPUs: software
must take constant time (independent of secret data)
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Optimizing crypto vs. optimizing ...

vV v v v

So far there was nothing crypto-specific in this talk (except for the
AES example)

Is optimizing crypto the same as optimizing any other software?
No. Cryptographic software deals with secret data (keys)
Information about secret data must not leak

Most critical for software implementations on “large” CPUs: software
must take constant time (independent of secret data)

Is this the case for the AES implementation?

High-Performance Cryptography in Software
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Cached memory access KA R

Branch Unit

» Memory access goes through a
cache

» Small but fast transparent
memory for frequently used
data

L/S Unit -
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Branch Unit

L/S Unit -

& K A B

Memory access goes through a
cache

Small but fast transparent
memory for frequently used
data

A load from memory places
data also in the cache

Data remains in cache until it's
replaced by other data
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Cached memory access

Branch Unit

L/S Unit -

s S

Memory access goes through a
cache

Small but fast transparent
memory for frequently used
data

A load from memory places
data also in the cache

Data remains in cache until it's
replaced by other data

Loading data is fast if data is in
the cache (cache hit)

Loading data is slow if data is
not in the cache (cache miss)
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Cache-timing attacks

& K A B

» AES and the attackers program run on
the same CPU

» Tables are in cache
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Cache-timing attacks ¥ 5 A R

» AES and the attackers program run on
the same CPU

» Tables are in cache

» The attacker's program replaces some
cache lines
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AES and the attackers program run on
the same CPU
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» The attacker's program replaces some
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High-Performance Cryptography in Software

30



Cache-timing attacks

"
"

"
mn
77

77

"
"

s S

AES and the attackers program run on
the same CPU

» Tables are in cache

» The attacker's program replaces some

cache lines

» AES continues, loads from table again

Attacker loads his data:

High-Performance Cryptography in Software

30



Cache-timing attacks

"

"

s S
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» Tables are in cache

» The attacker's program replaces some

cache lines

» AES continues, loads from table again

Attacker loads his data:

» Fast: cache hit (AES did not just
load from this line)

» Slow: cache miss (AES just loaded
from this line)
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Cache-timing attacks

"

"

s S

AES and the attackers program run on
the same CPU

» Tables are in cache

» The attacker's program replaces some

cache lines

» AES continues, loads from table again

Attacker loads his data:
» Fast: cache hit (AES did not just
load from this line)
» Slow: cache miss (AES just loaded
from this line)
Cache-timing attack by Osvik, Tromer,
Shamir from 2006: 65 ms to steal a
256-bit AES key used for Linux
hard-disk encryption
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More timing attacks ¥ K A B

» Bad news: Loading from secret positions is not the only source for
timing variation
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More timing attacks ¥ K A B

» Bad news: Loading from secret positions is not the only source for
timing variation
» More obvious: Secret branch conditions:
if s then
do A
else
do B
end if
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More timing attacks

Bad news: Loading from secret positions is not the only source for
timing variation
More obvious: Secret branch conditions:
if s then
do A
else
do B
end if
Even if A and B take the same amount of cycles this is not constant
time!
Reason: Conditional branch takes different amount of cycles whether
taken or not
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More timing attacks ¥ K A B

» Bad news: Loading from secret positions is not the only source for
timing variation
» More obvious: Secret branch conditions:
if s then
do A
else
do B
end if

» Even if A and B take the same amount of cycles this is not constant
time!

» Reason: Conditional branch takes different amount of cycles whether
taken or not

» Good news: Loads from secret indices and secret branch conditions
are the only problems (on most processors)
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Eliminating ifs and lookups ¥ 5 A R

Generic technique to eliminate conditional branches

if s then a+s-b+(l—s)-c
a+b

else
ac

end if
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Generic technique to eliminate conditional branches

if s then a+s-b+(l—s)-c
a+b

else
ac

end if

» If computation of b and c is cheap, this may even speed up the code
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Eliminating ifs and lookups ¥ KA B

Generic technique to eliminate conditional branches

if s then a+s-b+(l—s)-c
a+b
else
a4+ c
end if
» If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups

» Load all possible values from the table

» Use arithmetic (similar as for elimination of conditional branches) to
pick the right one
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Eliminating ifs and lookups ¥ KA B

Generic technique to eliminate conditional branches

if s then a+s-b+(l—s)-c
a+b
else
a4+ c
end if
» If computation of b and c is cheap, this may even speed up the code

Generic technique to eliminate lookups

» Load all possible values from the table
» Use arithmetic (similar as for elimination of conditional branches) to
pick the right one

» This is very slow for many table entries
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Bitslicing ¥ KA B

» Every algorithm can be implemented with just AND and XOR gates
» l|dea: Simulate this in software:
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OR, NEG, NAND, etc. if available)
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» Every algorithm can be implemented with just AND and XOR gates
» Idea: Simulate this in software:
> Split each n-bit value across n registers (one bit per register)
» Operate on registers with AND and XOR instructions (may also use
OR, NEG, NAND, etc. if available)
» This is very slow, because we use only one bit of a register but
arithmetic is performed on all register bits in parallel
» Perform m computations in parallel, where m is the register width
> In other words: Treat m-bit registers as vector registers containing m
elements of a single bit
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OR, NEG, NAND, etc. if available)
» This is very slow, because we use only one bit of a register but
arithmetic is performed on all register bits in parallel
» Perform m computations in parallel, where m is the register width
> In other words: Treat m-bit registers as vector registers containing m
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» This can be very fast if there are m independent data streams that
all want the same computations
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» Every algorithm can be implemented with just AND and XOR gates
» l|dea: Simulate this in software:

> Split each n-bit value across n registers (one bit per register)

» Operate on registers with AND and XOR instructions (may also use
OR, NEG, NAND, etc. if available)

» This is very slow, because we use only one bit of a register but
arithmetic is performed on all register bits in parallel

» Perform m computations in parallel, where m is the register width

> In other words: Treat m-bit registers as vector registers containing m
elements of a single bit

» This can be very fast if there are m independent data streams that
all want the same computations

» Performance highly depends on the algorithm and the
microarchitecture
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Bitslicing ¥ KA B

» Every algorithm can be implemented with just AND and XOR gates
» l|dea: Simulate this in software:

> Split each n-bit value across n registers (one bit per register)

» Operate on registers with AND and XOR instructions (may also use
OR, NEG, NAND, etc. if available)

» This is very slow, because we use only one bit of a register but
arithmetic is performed on all register bits in parallel

» Perform m computations in parallel, where m is the register width

> In other words: Treat m-bit registers as vector registers containing m
elements of a single bit

» This can be very fast if there are m independent data streams that
all want the same computations

» Performance highly depends on the algorithm and the
microarchitecture

» Some overhead for transforming input data to bitsliced
representation (transpose data)
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Bitslicing AES & I A KB

» Consider a "good"” architecture for bitslicing
» For example, Intel Core 2: 3 bit-logical operations on 128-bit
registers each cycle (384 bit operations per cycle!)
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» Consider a "good"” architecture for bitslicing

» For example, Intel Core 2: 3 bit-logical operations on 128-bit
registers each cycle (384 bit operations per cycle!)

» Obvious approach: Consider 128 independent input blocks

High-Performance Cryptography in Software

34



Bitslicing AES

» Consider a "good"” architecture for bitslicing

» For example, Intel Core 2: 3 bit-logical operations on 128-bit

vV v vy

registers each cycle (384 bit operations per cycle!)

Obvious approach: Consider 128 independent input blocks
But: Core part of AES (SubBytes) is already 16x parallel
Better for small packets: Consider just 8 independent blocks
Need to pay some attention in ShiftRows and MixColumns
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Bitslicing AES

» Consider a "good"” architecture for bitslicing

» For example, Intel Core 2: 3 bit-logical operations on 128-bit

vV v v vy

registers each cycle (384 bit operations per cycle!)

Obvious approach: Consider 128 independent input blocks
But: Core part of AES (SubBytes) is already 16x parallel
Better for small packets: Consider just 8 independent blocks
Need to pay some attention in ShiftRows and MixColumns

Start with a good hardware implementation of SubBytes (inversion
in Fys): Canright, 2005; Boyar, Peralta, 2009: 117 gates
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Bitslicing AES

» Consider a "good"” architecture for bitslicing

» For example, Intel Core 2: 3 bit-logical operations on 128-bit

vV v v vy

registers each cycle (384 bit operations per cycle!)

Obvious approach: Consider 128 independent input blocks
But: Core part of AES (SubBytes) is already 16x parallel
Better for small packets: Consider just 8 independent blocks
Need to pay some attention in ShiftRows and MixColumns

Start with a good hardware implementation of SubBytes (inversion
in Fys): Canright, 2005; Boyar, Peralta, 2009: 117 gates

Small problems: AMD64 instruction set only has 2-operand
instructions, only 16 128-bit registers

Software implementation needs some more operations than hardware
implementation needs gates
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Bitslicing AES

» Consider a "good"” architecture for bitslicing

» For example, Intel Core 2: 3 bit-logical operations on 128-bit

vV v v vy

registers each cycle (384 bit operations per cycle!)

Obvious approach: Consider 128 independent input blocks

But: Core part of AES (SubBytes) is already 16x parallel

Better for small packets: Consider just 8 independent blocks

Need to pay some attention in ShiftRows and MixColumns

Start with a good hardware implementation of SubBytes (inversion
in Fys): Canright, 2005; Boyar, Peralta, 2009: 117 gates

Small problems: AMD64 instruction set only has 2-operand
instructions, only 16 128-bit registers

Software implementation needs some more operations than hardware
implementation needs gates

Kasper, Schwabe in 2009: 7.58 cycles/byte on Intel Core 2 Q9550
(bitsliced)

Previously fastest: Bernstein, Schwabe in 2008: 10.58 cycles/byte
(with table lookups)

High-Performance Cryptography in Software
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Levels of optimization &+ I A B

» Consider the example of elliptic-curve cryptography
» Various levels of optimization:
> Choice of scalar-multiplication algorithm
» Choice of curve an underlying finite field
» Choice of coordinates and addition and doubling formulas
» Representation of finite-field elements in machine words and related
algorithms (e.g. schoolbook vs. Karatsuba multiplication)
» Low-level optimizations of machine instructions

» These levels are not independent, many subtle interactions
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Finite-field arithmetic & I A R

» With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic
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» With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009
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» With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009

» On most processors there is no instruction for multiplication of
binary polynomials
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Finite-field arithmetic & I A R

v

With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

v

In the context of elliptic-curve cryptography: Bernstein, 2009

On most processors there is no instruction for multiplication of
binary polynomials

v

v

There are instructions to efficiently multiply 32-bit or 64-bit integers
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» With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009

» On most processors there is no instruction for multiplication of
binary polynomials

» There are instructions to efficiently multiply 32-bit or 64-bit integers
» Obvious for large-prime fields: use these instructions
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Finite-field arithmetic & I A R

» With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009

» On most processors there is no instruction for multiplication of
binary polynomials

» There are instructions to efficiently multiply 32-bit or 64-bit integers
» Obvious for large-prime fields: use these instructions

» Consider the example of multiplication in F,, with p = 225° — 19
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Finite-field arithmetic

With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009

v

vV v v v

On most processors there is no instruction for multiplication of
binary polynomials

There are instructions to efficiently multiply 32-bit or 64-bit integers
Obvious for large-prime fields: use these instructions
Consider the example of multiplication in F,, with p = 225 — 19

Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

For schoolbook multiplication: 16 64 x 64-bit integer multiplications
producing 128-bit results
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Finite-field arithmetic

With enough parallel data streams, bitslicing seems to be good for
binary-field arithmetic

> In the context of elliptic-curve cryptography: Bernstein, 2009

v

vV v v v

On most processors there is no instruction for multiplication of
binary polynomials

There are instructions to efficiently multiply 32-bit or 64-bit integers
Obvious for large-prime fields: use these instructions
Consider the example of multiplication in F,, with p = 225 — 19

Typical choice: break 255-bit integers into 4 chunks of 64 bits (or 8
chunks of 32 bits)

For schoolbook multiplication: 16 64 x 64-bit integer multiplications
producing 128-bit results

Obtain result (before reduction) in 8 64-bit chunks

High-Performance Cryptography in Software
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Multiplication in Fy2s5_19 on AMD64

mulx0 = % (uint6d4 *) (xp + 0)
rax = x(uint64 =) (yp + 0)

(uintl128) rdx rax = rax * mulx0
r0 = rax

rl = rdx

rax = x(uint64 =) (yp + 8)
(uintl128) rdx rax = rax * mulx0
carry? rl += rax

r2 =0

r2 += rdx + carry

rax = *(uinté4 x) (yp + 16)

(uintl128) rdx rax = rax * mulx0
carry? r2 += rax
r3 =0

r3 += rdx + carry

rax = *(uint64 *) (yp + 24)
(uint128) rdx rax = rax * mulx0
carry? r3 += rax

r4 += rdx + carry

» Initialization: 4 multiplications,
each with one addition and one
add-with-carry
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Multiplication in Fy2s5_19 on AMD64

mulxl = % (uint64 ) (xp + 8)
rax = x(uint64 «) (yp + 0)

(uintl128) rdx rax = rax * mulxl
carry? rl += rax
mulc = 0

mulc += rdx + carry

rax = *(uint64 x) (yp + 8)
(uintl128) rdx rax = rax * mulxl
carry? r2 += rax

rdx += 0 + carry

carry? r2 += mulc

mulc = 0

mulc += rdx + carry

rax = *(uinté4 x) (yp + 16)
(uintl128) rdx rax = rax * mulxl
carry? r3 += rax

rdx += 0 + carry

carry? r3 += mulc

mulc = 0

mulc += rdx + carry

Initialization: 4 multiplications,
each with one addition and one
add-with-carry

Continue: Each multiplication
comes with 2 adds-with-carry

High-Performance Cryptography in Software

s S

37



Multiplication in Fy2s5_19 on AMD64

mulxl = % (uint64 ) (xp + 8)
rax = x(uint64 «) (yp + 0)

(uintl128) rdx rax = rax * mulxl
carry? rl += rax
mulc = 0

mulc += rdx + carry

rax = *(uint64 x) (yp + 8)
(uintl128) rdx rax = rax * mulxl
carry? r2 += rax

rdx += 0 + carry

carry? r2 += mulc

mulc = 0

mulc += rdx + carry

rax = *(uinté4 x) (yp + 16)
(uintl128) rdx rax = rax * mulxl
carry? r3 += rax

rdx += 0 + carry

carry? r3 += mulc

mulc = 0

mulc += rdx + carry

Initialization: 4 multiplications,
each with one addition and one
add-with-carry

Continue: Each multiplication
comes with 2 adds-with-carry

Intel Nehalem/Westmere: 3
additions per cycles, only 1
add-with-carry every two cycles

Handling carries becomes a
bottleneck!
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A different representation & I AR

» Better approach: Chop 255-bit integers into 5 parts, radix 2°!
» Schoolbook multiplication now needs 25 64 x 64-bit multiplications
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» Better approach: Chop 255-bit integers into 5 parts, radix 2°!
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A different representation & I AR

Better approach: Chop 255-bit integers into 5 parts, radix 2°!
Schoolbook multiplication now needs 25 64 x 64-bit multiplications

»

>

» Intermediary results now have only 102 bits

» Adding lower 64 bits still requires add-with-carry
»

Adding upper parts only needs addition (carries go in extra space)
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A different representation

vV v v vV v v Y

Better approach: Chop 255-bit integers into 5 parts, radix 2°!
Schoolbook multiplication now needs 25 64 x 64-bit multiplications
Intermediary results now have only 102 bits

Adding lower 64 bits still requires add-with-carry

Adding upper parts only needs addition (carries go in extra space)
We have verified that this is faster on Intel Nehalem /Westmere
General lesson: The obvious representation may not be the best
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Adding lower 64 bits still requires add-with-carry

Adding upper parts only needs addition (carries go in extra space)
We have verified that this is faster on Intel Nehalem /Westmere
General lesson: The obvious representation may not be the best

Bernstein, 2006: Use radix 22°® and double-precision floating-point
multiplication on Pentium Il

Costigan, Schwabe 2009: Use radix 2!2-75 and integer-vector
multiplication on Cell SPU

Bernstein, Schwabe 2012: Use radix 22°° and integer-vector
multiplication on ARM NEON
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Concluding remarks ¥ K A B

ghasm

» Syntax | used for assembly is actually ghasm syntax

» Language developed by Bernstein to make programming on the
assembly level easier: http://cr.yp.to/ghasm.html
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Benchmarking your software

» Measuring performance of (cryptographic) software is easy to do
wrong

> Please submit to eBACS: ECRYPT Benchmarking of
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ghasm

» Syntax | used for assembly is actually ghasm syntax

» Language developed by Bernstein to make programming on the
assembly level easier: http://cr.yp.to/ghasm.html

Benchmarking your software

» Measuring performance of (cryptographic) software is easy to do
wrong

> Please submit to eBACS: ECRYPT Benchmarking of
Cryptographic Systems (Bernstein, Lange): http://bench.cr.yp.to

Put software online
> A paper describing software is nice, it's worth much more if it comes
with the software
» Please make your software available!
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