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NEON

I Target of this paper: Make cryptography fast on a large class of
mobile devices, e.g.,

Apple iPhone 3GS, Apple iPhone 4, 3rd generation Apple iPod touch
(late 2009), Apple iPad 1, Nokia N9, Nokia N900, Palm Pre Plus,
Samsung/Google Nexus S, Samsung Galaxy S, . . .

I All these devices have an ARM Cortex-A8 CPU with NEON vector
instruction set

I Many more devices with NEON:

HTC Sensation, HTC 7 Mozart, HTC Desire, HTC/Google Nexus
One, LG Optimus 7, Motorola Droid Bionic, Nokia Lumia,
Samsung/Google Galaxy Nexus, Samsung Galaxy S II and S III, . . .

I Those devices have Cortex-A9 and Qualcomm Snapdragon CPUs

I Rest of this talk: Focus on NEON in Cortex-A8
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crypto

I Obvious target algorithm: AES with 128-bit key

I Best previous result: Krovetz and Rogaway report 25.4 cycles/byte
for implementation by Polyakov, included in OpenSSL

I Not protected against timing attacks

I For constant-time implementation: Bitsliced approach by Käsper
and Schwabe (CHES 2009), logical operations on 8 blocks in parallel

I Per round of AES: 167 logical operations (148 in the last round)

I Total of 9 · (167) + 148 = 1651 logical operations

I NEON can do one logical operation per cycle

I Lower bound of 1651 cycles/8 blocks; 12.898 cycles/byte

I This ignores cost for bitslice transformation, xoring of keystream in
CTR mode . . .

I Our AES NEON speed: 18.94 cycles/byte, constant time
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crypto: there’s more!

I Cryptographic primitives required for secure network communication:

I Symmetric encryption
I Secret-key authentication
I Key exchange (Diffie-Hellman)
I Public-key signatures

I At least 128 bits of security

I Protection against timing attacks

I As fast as possible on ARM Cortex-A8

I Our choice of primitives:
I Salsa20
I Poly1305
I Curve25519
I Ed25519
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Salsa20

I Designed by Bernstein in 2005; recommended in the eSTREAM
software portfolio

I Generates random stream in 64-byte blocks, works on 32-bit integers

I Per block: 20 rounds; each round doing 16 add-rotate-xor
sequences, such as

s4 = x0 + x12

x4 ^= (s4 >>> 25)

I In ARM without NEON: 2 instructions, 1 cycle

I Sounds like total of (20 · 16)/64 = 5 cycles/byte

, but:
I Only 14 integer registers (need at least 17)
I Latencies cause big trouble
I Actual implementations were slower than 15 cycles/byte
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Salsa20 on the Cortex-A8

I Add-rotate-xor sequences are 4-way parallel, good for SIMD

I Rotates are not free, cost 3 instructions:

4x a0 = diag1 + diag0

4x b0 = a0 << 7

4x a0 unsigned >>= 25

diag3 ^= b0

diag3 ^= a0

I This has 9 cycles latency: Need at least (9 · 20 · 4)/64 = 11.25
cycles/byte

I Blocks are independent, interleave two blocks; need at least 6.875
cycles/byte

I . . . interleave three blocks; need at least 6.25 cycles/byte

I The ARM unit is still idle, so interleave ARM with NEON:
I One block on ARM, two blocks on NEON
I Bottleneck: decode at most 2 instructions per cycle

I Final result, including overhead: 5.47 cycles/byte
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Poly1305

I Designed by Bernstein in 2005

I Secret-key one-time authenticator based on arithmetic in Fp with
p = 2130 − 5

I Key k and (padded) 16-byte ciphertext blocks c1, . . . , ck are in Fp

I Main work: initialize authentication tag h with 0, then compute:

for i from 1 to k do
h← h+ ci
h← h · k

end for

I Per 16 bytes: 1 , 1 addition in F2130−5

I Some (fast) finalization to produce 16-byte authentication tag
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Poly1305 on the Cortex-A8

I Fastest NEON multiplier: Two SIMD 32× 32→ 64 bit integer
multiplications every two cycles

I Multiply-accumulate at the same cost as multiply

I NEON additions lose carry bits; we need a carry-safe (redundant)
representation

I Represent an element A of Fp as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai · 226·i

I In multiplication of C = A ·B obtain coefficients c0, c1, . . . , c8
I Reduction: 2130 ≡ 5 (mod p). Hence add 5c5 to c0, 5c6 to c1, etc.
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Poly1305 on the Cortex-A8

I Schoolbook multiplication breaks into 25 32-bit integer
multiplications and 16 64-bit additions

I Many of those are parallel, can perform them in SIMD

, but
I this requires quite a bit of shuffling, and
I latencies in the final carry chain kick in

I Better: Precompute k2

I Compute ((c0 · k) + c1) · k as (c0 · k2) + (c1 · k)
I Always perform two independent multiplications in Fp together in

SIMD

I Final result: 2.20 cycles/byte
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Curve25519 and Ed25519

I Curve25519: ECDH key exchange (Bernstein, PKC 2006)

I Ed25519: Elliptic-curve signatures (Bernstein, Duif, Lange,
Schwabe, Yang, CHES 2011)

I Arithmetic on Montgomery curve or birationally equivalent twisted
Edwards curve over F2255−19

I Again, use redundant representation: A = (a0, . . . , a9), with

A =

9∑
i=0

ai · 2d25.5·ie

I Similar ideas to Poly1305:
I Efficient reduction through 2255 ≡ 19: add 19c10 to c0, etc.
I Whenever possible, perform two independent multiplications or

squarings together

I Constant-time conditional swaps (Curve25519) and table lookups
(Ed25519) to protect against timing attacks

10
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Results & Outlook

I Secret-key authenticated encryption: 7.67 cycles/byte,
> 830 MBit/sec on 800 MHz Cortex-A8

I Salsa20: 5.47 cycles/byte
I Poly1305: 2.20 cycles/byte

I Compute shared secret (ECDH): 492417 cycles (> 1600/sec)

I All software is timing-attack resistant

I Also Cortex-A9 and Qualcomm Snapdragon CPUs benefit from the
software speedups

I Still required: Microarchitecture-specific optimization for those

I Followup result by Hamburg:
I Use similar ECC techniques, slightly smaller curve
I Use more powerful ARM core on Cortex-A9
I Don’t use NEON
I Compute shared secret (ECDH): 616000 cycles

I Obvious question: How far can we go on Cortex-A9 with NEON?

I Future: target low-power energy-efficient Cortex-A7
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NEON crypto online

I The paper is online at
http://cryptojedi.org/papers/#neoncrypto

I NEON AES-128-CTR, Salsa20, Poly1305 now in SUPERCOP:
http://bench.cr.yp.to

I We’re still speeding up Curve25519, Ed25519 but will include them
in SUPERCOP

I All software in the public domain

I Software to be included in the next release of the NaCl library:
http://nacl.cr.yp.to
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