Really fast syndrome-based hashing

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Tanja Lange, Christiane Peters
July 5, 2011

Africacrypt 2011, Dakar, Senegal

Introduction — Hash functions %‘f)ﬁ

v

Function h: {0,1}* — {0,1}"
Preimage resistance: Given h(M), infeasible to find M

v

v

Second preimage resistance: Given M, infeasible to find M’ # M
with h(M) = h(M')

Collision resistance: Infeasible to find M, M’, with M # M’ and
h(M) = h(M')

v

Really fast syndrome-based hashing

2

Introduction — Hash functions %‘f)

» Function h: {0,1}* — {0,1}"

> Preimage resistance: Given h(M), infeasible to find M

» Second preimage resistance: Given M, infeasible to find M’ # M
with h(M) = h(M')

» Collision resistance: Infeasible to find M, M’, with M # M’ and

h(M) = h(M')
» “Trivial” property: Hash functions irreversibly compress arbitrarily
long strings

v

Arbitrarily long usully means: Some sort of iterative process

Really fast syndrome-based hashing 2

- \
Merkle-Damgard iteration %‘%&%

» Use fixed-input-length compression function F': {0,1}* — {0,1}*
with £ > k

padding

[Mo | [M] [M] - [M]

1Y)

» Apply output filter {0,1}* — {0, 1}

Really fast syndrome-based hashing 3

- \
Merkle-Damgard iteration %‘%ﬁ%

» Use fixed-input-length compression function F': {0,1}* — {0,1}*
with £ > k

padding

[Mo | [M] [M] - [M]

1Y)

» Apply output filter {0,1}* — {0, 1}
» In the following: Zoom into F’

Really fast syndrome-based hashing 3

- \,
A simple construction for F’ %‘%ﬁ%

» Consider input of length ¢ = w - b, hence, m = (mqy,ma,...,My),
each m; with b bits
» Take an r x w2 binary (pseudo-)random matrix, decomposed into

w blocks with 2° columns each: C' = (cy,¢a, ..., Cy)
w2°
r C1 C2 C3 Cuw—1| Cy
>

» Define F(m) = c1[m1] & ca[ma] & - - B ¢y [may]

Really fast syndrome-based hashing a

How about collisions? %‘f)

2b

» Resistance obviously depends on b, w, and r
» Larger r makes it harder to find collisions (but reduces compression
factor)

» Smaller w or b makes it harder to find collisions (but reduces
compression factor)

Really fast syndrome-based hashing 5

Specifying the parameters %;%“

» Long history of compression functions with similar constructions
» ... also long history of breaks (see paper)
» In the remainder of this talk consider:

Really fast syndrome-based hashing

6

. A
Specifying the parameters %‘%ﬁ%

» Long history of compression functions with similar constructions
» ... also long history of breaks (see paper)
» In the remainder of this talk consider:

FSB-256

» FSB is a SHA-3 round-1 candidate by Augot, Finiasz, Gaborit,
Manuel, Sendrier
» FSB-256 is designed to provide 2'28 bits of security against collisions

» Parameters: b = 14, w = 128, r = 1024

Really fast syndrome-based hashing 6

. A
Specifying the parameters %‘%ﬁ%

» Long history of compression functions with similar constructions
» ... also long history of breaks (see paper)
» In the remainder of this talk consider:

FSB-256

» FSB is a SHA-3 round-1 candidate by Augot, Finiasz, Gaborit,
Manuel, Sendrier
» FSB-256 is designed to provide 2'28 bits of security against collisions

» Parameters: b = 14, w = 128, r = 1024

RFSB-509

» RFSB is the family of compression functions described in this paper

» RFSB-509 is designed to provide 2'22 bits of security against
collisions

» Parameters: b =8, w = 112, » = 509

Really fast syndrome-based hashing 6

. A
FSB-256 performance %‘%ﬁ%

» FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

» Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

» Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

Really fast syndrome-based hashing 7

. A
FSB-256 performance %‘%ﬁ%

» FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

» Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

» Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

» Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

Really fast syndrome-based hashing 7

. A
FSB-256 performance %‘%ﬁ%

» FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

» Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

» Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

» Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

» Solution (in both FSB and RFSB): Use compressed matrix

Really fast syndrome-based hashing 7

. A
FSB-256 performance %‘%ﬁ%

» FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

» Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

» Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

» Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

» Solution (in both FSB and RFSB): Use compressed matrix

» Idea: Consider columns as elements of Fo[X]/(XP — 1)

Really fast syndrome-based hashing 7

FSB-256 performance %@ﬁy

>

FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

Solution (in both FSB and RFSB): Use compressed matrix

» Idea: Consider columns as elements of Fo[X]/(XP — 1)

For FSB use p = 1061 and construct ¢;[0], ¢;[1],. .., ¢;[16383] as
cl0], «l0]X, al0]X?,..., ci[0] X 1023,
ci[1024], ¢;[1024] X, ¢;[1024] X2, ..., ¢;[1024] X023,

ci[15360], ¢;[15360] X, ¢;[15360] X2, . . ., ¢;[15360] X 1023

Really fast syndrome-based hashing 7

FSB-256 performance %@ﬁy

>

FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

Solution (in both FSB and RFSB): Use compressed matrix

» Idea: Consider columns as elements of Fo[X]/(XP — 1)

For FSB use p = 1061 and construct ¢;[0], ¢;[1],. .., ¢;[16383] as
cl0], «l0]X, al0]X?,..., ci[0] X 1023,
ci[1024], ¢;[1024] X, ¢;[1024] X2, ..., ¢;[1024] X023,

ci[15360], ¢;[15360] X, ¢;[15360] X2, . . ., ¢;[15360] X 1023

Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7

RFSB-509 performance %;%K

» Benchmarks from RFSB-509 with SHA-256 output filter
» 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Really fast syndrome-based hashing

8

. A
RFSB-509 performance %‘%ﬁ)4

» Benchmarks from RFSB-509 with SHA-256 output filter
» 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?

» Compression of the table through ¢;[j] as c[j] X" (or rather
c[j]X128(w=9) instead of ¢;[0]X7: fixed rotation distances

Really fast syndrome-based hashing 8

. A
RFSB-509 performance %‘%ﬁ)4

» Benchmarks from RFSB-509 with SHA-256 output filter
» 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?
» Compression of the table through ¢;[j] as c[j] X" (or rather
c[j]X128(w=9) instead of ¢;[0]X7: fixed rotation distances

» Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

Really fast syndrome-based hashing 8

. A
RFSB-509 performance %‘%ﬁ)4

» Benchmarks from RFSB-509 with SHA-256 output filter
» 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?
» Compression of the table through ¢;[j] as c[j] X" (or rather
c[j]X128(w=9) instead of ¢;[0]X7: fixed rotation distances

» Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

» Hand-optimized assembly implementation (for AMD64)

» Implementation-aware design

Really fast syndrome-based hashing 8

Why is our matrix smaller?

» Short answer: tighter security analysis

Really fast syndrome-based hashing

9

Why is our matrix smaller?

» Short answer: tighter security analysis

» Three types of attacks against FSB/RFSB:

1. Linearization attacks
2. Generalized birthday attacks
3. Information-set decoding

Really fast syndrome-based hashing

9

Why is our matrix smaller? %;%&)9'

» Short answer: tighter security analysis
» Three types of attacks against FSB/RFSB:

1. Linearization attacks
2. Generalized birthday attacks
3. Information-set decoding

» FSB designers overestimated the power of 2. and 3.

Really fast syndrome-based hashing 9

Why is our matrix smaller? %;%&)9'

» Short answer: tighter security analysis
» Three types of attacks against FSB/RFSB:
1. Linearization attacks
2. Generalized birthday attacks
3. Information-set decoding
» FSB designers overestimated the power of 2. and 3.
» Let's look at ways to generate collisions, i.e. 2w columns, 2 per

block, that add up to zero

Really fast syndrome-based hashing 9

The power of birthday attacks %@*’\V

» I|dea: Start with 2¢ lists containing (sums of) columns, proceed in
various levels:

> In each level obtain 27! lists from 2 lists through merging

» List length remains constant, each merging eliminates bits of the
entries

» In the last step, find two vectors adding up to zero

Really fast syndrome-based hashing

10

The power of birthday attacks %@*’\V

>

Idea: Start with 2¢ lists containing (sums of) columns, proceed in
various levels:

> In each level obtain 27! lists from 2 lists through merging

List length remains constant, each merging eliminates bits of the
entries
In the last step, find two vectors adding up to zero

» Problem: huge storage requirements
» Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size

Really fast syndrome-based hashing 10

. A
The power of birthday attacks %‘%ﬁ%

>

Idea: Start with 2¢ lists containing (sums of) columns, proceed in
various levels:

> In each level obtain 27! lists from 2 lists through merging

List length remains constant, each merging eliminates bits of the
entries
In the last step, find two vectors adding up to zero

» Problem: huge storage requirements
» Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size

Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and
Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage

Really fast syndrome-based hashing 10

. A
The power of birthday attacks %‘%ﬁ%

>

Idea: Start with 2¢ lists containing (sums of) columns, proceed in
various levels:

> In each level obtain 27! lists from 2 lists through merging

List length remains constant, each merging eliminates bits of the
entries
In the last step, find two vectors adding up to zero

» Problem: huge storage requirements
» Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size

Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and
Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage
Compression functions of full FSB versions are similarly

over-dimensioned
Really fast syndrome-based hashing 10

- \,
The power of information-set decoding %‘%ﬁ%

» Algorithm from coding theory, find low-weight code words
> In the context of FSB/RFSB: Find 2w columns adding up to zero
» Problem: Very low probability to have exactly two columns per block

Really fast syndrome-based hashing 1

- \’
The power of information-set decoding %‘%ﬁ%

Algorithm from coding theory, find low-weight code words
In the context of FSB/RFSB: Find 2w columns adding up to zero
Problem: Very low probability to have exactly two columns per block

vV v vy

FSB is designed to protect against ISD

Really fast syndrome-based hashing 1

. A
The power of information-set decoding %‘%ﬁ%

Algorithm from coding theory, find low-weight code words

In the context of FSB/RFSB: Find 2w columns adding up to zero
Problem: Very low probability to have exactly two columns per block
FSB is designed to protect against ISD

RFSB is designed to protect against 2-regular ISD

We presented improved 2-regular ISD at IWCC 2011

RFSB is protected against this new improved algorithm

vV vV vV vV v v Y

Really fast syndrome-based hashing 1

. A
The power of information-set decoding %‘%ﬁ%

Algorithm from coding theory, find low-weight code words

In the context of FSB/RFSB: Find 2w columns adding up to zero
Problem: Very low probability to have exactly two columns per block
FSB is designed to protect against ISD

RFSB is designed to protect against 2-regular ISD

We presented improved 2-regular ISD at IWCC 2011

RFSB is protected against this new improved algorithm

vV V.V vV v v v .Yy

Finding 2-regular low-weight codewords is not as well studied as
finding general low-weight codewords

» We encourage the community to try to improve our complexity
bounds

Really fast syndrome-based hashing 1

. A
More in the paper %‘%ﬁ%

» Full specification of RFSB and RFSB-509 (including matrix
generation)

Some more history of designs and breaks
Detailed description of the implementation
Extra speed: incremental hashing

Extra speed: fast batch verification of hashes

vV v.v. vy

Extra security: Elimination of variable-index table lookups (at the
expense of speed)

» Detailed attack analysis with some new generalizations

Really fast syndrome-based hashing 12

. A
Conclusion %‘%ﬁ%

» RFSB-509 is faster than 7 out of 14 SHA-3 round-2 candidates
» RFSB-509 is faster than 3 out of 5 SHA-3 finalists

» Software is in the public domain, submitted to eBASH for public
benchmarking

Paper online: http://eprint.iacr.org/2011/074/

Really fast syndrome-based hashing 13

