
Really fast syndrome-based hashing

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Tanja Lange, Christiane Peters

July 5, 2011

Africacrypt 2011, Dakar, Senegal



Introduction � Hash functions

I Function h : {0, 1}∗ → {0, 1}n

I Preimage resistance: Given h(M), infeasible to find M

I Second preimage resistance: Given M , infeasible to find M ′ 6= M
with h(M) = h(M ′)

I Collision resistance: Infeasible to find M,M ′, with M 6= M ′ and
h(M) = h(M ′)

I “Trivial” property: Hash functions irreversibly compress arbitrarily
long strings

I Arbitrarily long usully means: Some sort of iterative process

Really fast syndrome-based hashing 2



Introduction � Hash functions

I Function h : {0, 1}∗ → {0, 1}n

I Preimage resistance: Given h(M), infeasible to find M

I Second preimage resistance: Given M , infeasible to find M ′ 6= M
with h(M) = h(M ′)

I Collision resistance: Infeasible to find M,M ′, with M 6= M ′ and
h(M) = h(M ′)

I “Trivial” property: Hash functions irreversibly compress arbitrarily
long strings

I Arbitrarily long usully means: Some sort of iterative process

Really fast syndrome-based hashing 2



Merkle-Damgård iteration

I Use fixed-input-length compression function F : {0, 1}` → {0, 1}k
with ` > k

M0

F

I
V

M1

F

M2

. . .

. . .

. . . Mf

F F

padding
message
length

O
u
t

I Apply output filter {0, 1}k → {0, 1}n

I In the following: Zoom into F

Really fast syndrome-based hashing 3



Merkle-Damgård iteration

I Use fixed-input-length compression function F : {0, 1}` → {0, 1}k
with ` > k

M0

F

I
V

M1

F

M2

. . .

. . .

. . . Mf

F F

padding
message
length

O
u
t

I Apply output filter {0, 1}k → {0, 1}n

I In the following: Zoom into F

Really fast syndrome-based hashing 3



A simple construction for F

I Consider input of length ` = w · b, hence, m = (m1,m2, . . . ,mw),
each mi with b bits

I Take an r × w2b binary (pseudo-)random matrix, decomposed into
w blocks with 2b columns each: C = (c1, c2, . . . , cw)

c1 c2 c3 cw−1 cwr

2b

w2b

I Define F (m) = c1[m1]⊕ c2[m2]⊕ · · · ⊕ cw[mw]

Really fast syndrome-based hashing 4



How about collisions?

c1 c2 c3 cw−1 cwr

2b

w2b

I Resistance obviously depends on b, w, and r

I Larger r makes it harder to find collisions (but reduces compression
factor)

I Smaller w or b makes it harder to find collisions (but reduces
compression factor)

Really fast syndrome-based hashing 5



Specifying the parameters

I Long history of compression functions with similar constructions
I . . . also long history of breaks (see paper)
I In the remainder of this talk consider:

FSB-256

I FSB is a SHA-3 round-1 candidate by Augot, Finiasz, Gaborit,
Manuel, Sendrier

I FSB-256 is designed to provide 2128 bits of security against collisions
I Parameters: b = 14, w = 128, r = 1024

RFSB-509

I RFSB is the family of compression functions described in this paper
I RFSB-509 is designed to provide 2128 bits of security against

collisions
I Parameters: b = 8, w = 112, r = 509

Really fast syndrome-based hashing 6



Specifying the parameters

I Long history of compression functions with similar constructions
I . . . also long history of breaks (see paper)
I In the remainder of this talk consider:

FSB-256

I FSB is a SHA-3 round-1 candidate by Augot, Finiasz, Gaborit,
Manuel, Sendrier

I FSB-256 is designed to provide 2128 bits of security against collisions
I Parameters: b = 14, w = 128, r = 1024

RFSB-509

I RFSB is the family of compression functions described in this paper
I RFSB-509 is designed to provide 2128 bits of security against

collisions
I Parameters: b = 8, w = 112, r = 509

Really fast syndrome-based hashing 6



Specifying the parameters

I Long history of compression functions with similar constructions
I . . . also long history of breaks (see paper)
I In the remainder of this talk consider:

FSB-256

I FSB is a SHA-3 round-1 candidate by Augot, Finiasz, Gaborit,
Manuel, Sendrier

I FSB-256 is designed to provide 2128 bits of security against collisions
I Parameters: b = 14, w = 128, r = 1024

RFSB-509

I RFSB is the family of compression functions described in this paper
I RFSB-509 is designed to provide 2128 bits of security against

collisions
I Parameters: b = 8, w = 112, r = 509

Really fast syndrome-based hashing 6



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix
I Idea: Consider columns as elements of F2[X]/(Xp − 1)
I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix
I Idea: Consider columns as elements of F2[X]/(Xp − 1)
I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix

I Idea: Consider columns as elements of F2[X]/(Xp − 1)
I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix
I Idea: Consider columns as elements of F2[X]/(Xp − 1)

I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix
I Idea: Consider columns as elements of F2[X]/(Xp − 1)
I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input

Really fast syndrome-based hashing 7



FSB-256 performance

I FSB is unbroken, but did not make it to round-2 of the SHA-3
competition

I Reason: It is too slow, 95.53 cycles/byte on an Intel Core 2 Quad
Q9550

I Comparison: SHA-256 takes just 15.26 cycles/byte on the same
machine

I Main problem: xors are fast, but loading matrix columns is slow for
a large matrix

I Solution (in both FSB and RFSB): Use compressed matrix
I Idea: Consider columns as elements of F2[X]/(Xp − 1)
I For FSB use p = 1061 and construct ci[0], ci[1], . . . , ci[16383] as

ci[0], ci[0]X, ci[0]X
2, . . . , ci[0]X

1023,

ci[1024], ci[1024]X, ci[1024]X
2, . . . , ci[1024]X

1023,

. . .

ci[15360], ci[15360]X, ci[15360]X
2, . . . , ci[15360]X

1023

I Note that rotation distances (exponents of X) depend on input
Really fast syndrome-based hashing 7



RFSB-509 performance

I Benchmarks from RFSB-509 with SHA-256 output filter
I 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?

I Compression of the table through ci[j] as c[j]Xi (or rather
c[j]X128(w−i)) instead of ci[0]Xj : fixed rotation distances

I Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

I Hand-optimized assembly implementation (for AMD64)
I Implementation-aware design

Really fast syndrome-based hashing 8



RFSB-509 performance

I Benchmarks from RFSB-509 with SHA-256 output filter
I 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?

I Compression of the table through ci[j] as c[j]Xi (or rather
c[j]X128(w−i)) instead of ci[0]Xj : fixed rotation distances

I Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

I Hand-optimized assembly implementation (for AMD64)
I Implementation-aware design

Really fast syndrome-based hashing 8



RFSB-509 performance

I Benchmarks from RFSB-509 with SHA-256 output filter
I 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?

I Compression of the table through ci[j] as c[j]Xi (or rather
c[j]X128(w−i)) instead of ci[0]Xj : fixed rotation distances

I Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

I Hand-optimized assembly implementation (for AMD64)
I Implementation-aware design

Really fast syndrome-based hashing 8



RFSB-509 performance

I Benchmarks from RFSB-509 with SHA-256 output filter
I 10.67 cycles/byte on the same Intel Core 2 Quad Q9550

Why is RFSB-509 so much faster?

I Compression of the table through ci[j] as c[j]Xi (or rather
c[j]X128(w−i)) instead of ci[0]Xj : fixed rotation distances

I Smaller compressed table, 16,384 bytes instead of at least 262,144
bytes (fast implementations of FSB use larger precomputed matrix
parts): matrix fits into L1 cache of most modern microprocessors

I Hand-optimized assembly implementation (for AMD64)
I Implementation-aware design

Really fast syndrome-based hashing 8



Why is our matrix smaller?

I Short answer: tighter security analysis

I Three types of attacks against FSB/RFSB:

1. Linearization attacks

2. Generalized birthday attacks

3. Information-set decoding

I FSB designers overestimated the power of 2. and 3.
I Let’s look at ways to generate collisions, i.e. 2w columns, 2 per

block, that add up to zero

Really fast syndrome-based hashing 9



Why is our matrix smaller?

I Short answer: tighter security analysis
I Three types of attacks against FSB/RFSB:

1. Linearization attacks

2. Generalized birthday attacks

3. Information-set decoding

I FSB designers overestimated the power of 2. and 3.
I Let’s look at ways to generate collisions, i.e. 2w columns, 2 per

block, that add up to zero

Really fast syndrome-based hashing 9



Why is our matrix smaller?

I Short answer: tighter security analysis
I Three types of attacks against FSB/RFSB:

1. Linearization attacks

2. Generalized birthday attacks

3. Information-set decoding

I FSB designers overestimated the power of 2. and 3.

I Let’s look at ways to generate collisions, i.e. 2w columns, 2 per
block, that add up to zero

Really fast syndrome-based hashing 9



Why is our matrix smaller?

I Short answer: tighter security analysis
I Three types of attacks against FSB/RFSB:

1. Linearization attacks

2. Generalized birthday attacks

3. Information-set decoding

I FSB designers overestimated the power of 2. and 3.
I Let’s look at ways to generate collisions, i.e. 2w columns, 2 per

block, that add up to zero

Really fast syndrome-based hashing 9



The power of birthday attacks

I Idea: Start with 2t lists containing (sums of) columns, proceed in
various levels:

I In each level obtain 2i−1 lists from 2i lists through merging
I List length remains constant, each merging eliminates bits of the

entries
I In the last step, find two vectors adding up to zero

I Problem: huge storage requirements
I Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size
I Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and

Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

I This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

I Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage

I Compression functions of full FSB versions are similarly
over-dimensioned

Really fast syndrome-based hashing 10



The power of birthday attacks

I Idea: Start with 2t lists containing (sums of) columns, proceed in
various levels:

I In each level obtain 2i−1 lists from 2i lists through merging
I List length remains constant, each merging eliminates bits of the

entries
I In the last step, find two vectors adding up to zero
I Problem: huge storage requirements
I Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size

I Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and
Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

I This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

I Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage

I Compression functions of full FSB versions are similarly
over-dimensioned

Really fast syndrome-based hashing 10



The power of birthday attacks

I Idea: Start with 2t lists containing (sums of) columns, proceed in
various levels:

I In each level obtain 2i−1 lists from 2i lists through merging
I List length remains constant, each merging eliminates bits of the

entries
I In the last step, find two vectors adding up to zero
I Problem: huge storage requirements
I Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size
I Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and

Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

I This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

I Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage

I Compression functions of full FSB versions are similarly
over-dimensioned

Really fast syndrome-based hashing 10



The power of birthday attacks

I Idea: Start with 2t lists containing (sums of) columns, proceed in
various levels:

I In each level obtain 2i−1 lists from 2i lists through merging
I List length remains constant, each merging eliminates bits of the

entries
I In the last step, find two vectors adding up to zero
I Problem: huge storage requirements
I Many estimates ignore the machine size, assume O(1) for access to

memory of arbitrary size
I Indocrypt 2009 paper by Bernstein, Lange, Niederhagen, Peters, and

Schwabe presented highly optimized generalized birthday attack
against FSB-48 compression function (toy version of FSB)

I This attack took 7 days, 23 hours and 53 minutes on 8 quad-core
machines, using > 5 TB of storage

I Comparison: breaking the FSB-48 hash function takes less than 2
minutes on one core of one of the machines with negligible storage

I Compression functions of full FSB versions are similarly
over-dimensioned

Really fast syndrome-based hashing 10



The power of information-set decoding

I Algorithm from coding theory, find low-weight code words
I In the context of FSB/RFSB: Find 2w columns adding up to zero
I Problem: Very low probability to have exactly two columns per block

I FSB is designed to protect against ISD
I RFSB is designed to protect against 2-regular ISD
I We presented improved 2-regular ISD at IWCC 2011
I RFSB is protected against this new improved algorithm
I Finding 2-regular low-weight codewords is not as well studied as

finding general low-weight codewords
I We encourage the community to try to improve our complexity

bounds

Really fast syndrome-based hashing 11



The power of information-set decoding

I Algorithm from coding theory, find low-weight code words
I In the context of FSB/RFSB: Find 2w columns adding up to zero
I Problem: Very low probability to have exactly two columns per block
I FSB is designed to protect against ISD

I RFSB is designed to protect against 2-regular ISD
I We presented improved 2-regular ISD at IWCC 2011
I RFSB is protected against this new improved algorithm
I Finding 2-regular low-weight codewords is not as well studied as

finding general low-weight codewords
I We encourage the community to try to improve our complexity

bounds

Really fast syndrome-based hashing 11



The power of information-set decoding

I Algorithm from coding theory, find low-weight code words
I In the context of FSB/RFSB: Find 2w columns adding up to zero
I Problem: Very low probability to have exactly two columns per block
I FSB is designed to protect against ISD
I RFSB is designed to protect against 2-regular ISD
I We presented improved 2-regular ISD at IWCC 2011
I RFSB is protected against this new improved algorithm

I Finding 2-regular low-weight codewords is not as well studied as
finding general low-weight codewords

I We encourage the community to try to improve our complexity
bounds

Really fast syndrome-based hashing 11



The power of information-set decoding

I Algorithm from coding theory, find low-weight code words
I In the context of FSB/RFSB: Find 2w columns adding up to zero
I Problem: Very low probability to have exactly two columns per block
I FSB is designed to protect against ISD
I RFSB is designed to protect against 2-regular ISD
I We presented improved 2-regular ISD at IWCC 2011
I RFSB is protected against this new improved algorithm
I Finding 2-regular low-weight codewords is not as well studied as

finding general low-weight codewords
I We encourage the community to try to improve our complexity

bounds

Really fast syndrome-based hashing 11



More in the paper

I Full specification of RFSB and RFSB-509 (including matrix
generation)

I Some more history of designs and breaks
I Detailed description of the implementation
I Extra speed: incremental hashing
I Extra speed: fast batch verification of hashes
I Extra security: Elimination of variable-index table lookups (at the

expense of speed)
I Detailed attack analysis with some new generalizations

Really fast syndrome-based hashing 12



Conclusion

I RFSB-509 is faster than 7 out of 14 SHA-3 round-2 candidates
I RFSB-509 is faster than 3 out of 5 SHA-3 finalists
I Software is in the public domain, submitted to eBASH for public

benchmarking

Paper online: http://eprint.iacr.org/2011/074/

Really fast syndrome-based hashing 13


