Fast elliptic-curve cryptography on the Cell
Broadband Engine

Neil Costigan (DCU), Peter Schwabe (TU/e)
Eindhoven University of Technology

June 24, 2009

Africacrypt 2009, Gammarth

The Cell Broadband Engine

Some general information

» Processor jointly developed by Sony, Toshiba and IBM

» Runs in Playstation 3, QS20 and QS21 blades, supercomputers
(Roadrunner), extension cards

» 1 Power G5 core and 8 (6) Synergistic Processor Units (SPU)
» Clock frequency of 3.2 GHz

Fast elliptic-curve cryptography on the Cell Broadband Engine

The Cell Broadband Engine

Some general information

» Processor jointly developed by Sony, Toshiba and IBM

» Runs in Playstation 3, QS20 and QS21 blades, supercomputers
(Roadrunner), extension cards

» 1 Power G5 core and 8 (6) Synergistic Processor Units (SPU)
» Clock frequency of 3.2 GHz

Cryptography on the CBE

» Cluster of 200 Playstations (1200 SPUs) at EPFL has been used to
find MD5 collisions (best paper award, CRYPTO '09)

» Existing fast implementations of secret-key primitives, e.g. AES-ECB
encrypt: 12.43 cycles/byte on one SPU

Fast elliptic-curve cryptography on the Cell Broadband Engine

How about public-key crypto?

RSA-1024 enc. or dec.: 4,074,000 cycles [Shimizu et al. 2005]
DSA-1024 key generation: 1,331,000 cycles [Shimizu et al. 2005]
DSA-1024 sig. generation: 2,250,000 cycles [Shimizu et al. 2005]
DSA-1024 sig. verification: 4,375,000 cycles [Shimizu et al. 2005]
RSA-2048 sig. generation: 50,035,200 cycles [Costigan, Scott 2007]

vV v.v v .Yy

Fast elliptic-curve cryptography on the Cell Broadband Engine 3

How about public-key crypto?

RSA-1024 enc. or dec.: 4,074,000 cycles [Shimizu et al. 2005]
DSA-1024 key generation: 1,331,000 cycles [Shimizu et al. 2005]
DSA-1024 sig. generation: 2,250,000 cycles [Shimizu et al. 2005]
DSA-1024 sig. verification: 4,375,000 cycles [Shimizu et al. 2005]
RSA-2048 sig. generation: 50,035,200 cycles [Costigan, Scott 2007]

vV v.v v .Yy

As a comparison: Some numbers for some Core 2 (Q9550)

> curve25519: 384,192 cycles for 255-bit ECDH joint key
[Gaudry, Thomé]

> gl1s2127: 318,019 cycles for 256-bit ECDH joint key
[Galbraith, Lin, Scott]

Fast elliptic-curve cryptography on the Cell Broadband Engine

Why is the Cell doing so bad?

Obvious: Comparing apples with oranges

» Modular arithmetic vs. elliptic-curve cryptography

» Signing/encrypting vs. key exchange

Fast elliptic-curve cryptography on the Cell Broadband Engine

Why is the Cell doing so bad?

Obvious: Comparing apples with oranges

» Modular arithmetic vs. elliptic-curve cryptography
» Signing/encrypting vs. key exchange

Some less obvious reasons

Public-key crypto usually relies on large-integer arithmetic
Performance usally bottlenecked by multiplications and squarings
Core 2 supports multiplication of 64-bit integers

Cell only supports multiplication of 16-bit integers

Apparently the Cell is just a bad platform for PKC?

vV vVv.v v Y

Fast elliptic-curve cryptography on the Cell Broadband Engine

Why is the Cell doing so bad?

Obvious: Comparing apples with oranges

» Modular arithmetic vs. elliptic-curve cryptography
» Signing/encrypting vs. key exchange

Some less obvious reasons

Public-key crypto usually relies on large-integer arithmetic
Performance usally bottlenecked by multiplications and squarings
Core 2 supports multiplication of 64-bit integers

Cell only supports multiplication of 16-bit integers

Apparently the Cell is just a bad platform for PKC?

vV vVv.v v Y

Let's try: Implement fast elliptic-curve cryptography for the CBE.

Fast elliptic-curve cryptography on the Cell Broadband Engine

The curve25519 ECDH software

» curve25519 was introduced by Bernstein in 2006
» Setting speed records on various platforms

» Uses Montgomery curve E : y? = 23 4 48666222 + x over the field
Fa2s5 _19

» Two parts: 255-step Montgomery ladder for scalar multiplication
and a field inversion

» One ladder step requires: 5 multiplications, 4 squarings, 8 additions
and 1 multiplication with a constant

> In total: 1276 multiplications, 1020 squarings, 255 multiplications
with a constant, 2040 additions and 1 inversion

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication,
Point addition and doubling,

S
| 4
» Modular operations in F,,
>

Instructions on a w-bit core.

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication (Montgomery ladder),
Point addition and doubling,

S
| 4
» Modular operations in F,,
>

Instructions on a w-bit core.

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication (Montgomery ladder),
Point addition and doubling (Ladder steps using XZ-coordinates),

>
| 4
» Modular operations in F,,
>

Instructions on a w-bit core.

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication (Montgomery ladder),
Point addition and doubling (Ladder steps using XZ-coordinates),
Modular operations in Fp,

vV v vvY

Instructions on a w-bit core (SPU instruction set).

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication (Montgomery ladder),
Point addition and doubling (Ladder steps using XZ-coordinates),
Modular operations in I, ...use some library?,

vV v vvY

Instructions on a w-bit core (SPU instruction set).

Fast elliptic-curve cryptography on the Cell Broadband Engine

Making it fast — a first approach

Standard approach: ECC as pyramid of

Elliptic-curve scalar multiplication (Montgomery ladder),
Point addition and doubling (Ladder steps using XZ-coordinates),
Modular operations in I, ...use some library?,

vV v vvY

Instructions on a w-bit core (SPU instruction set).

IBM’s MPM library

» Multiprecison Math Library for the Cell
> “Big-integer” support optimized for the SPU
» Supports Montgomery modular multiplication

Fast elliptic-curve cryptography on the Cell Broadband Engine

What speed can we get with MPM?

Benchmarks of modular arithmetic

| Operation | Number of cycles |
Addition/Subtraction 86
Montgomery Mul. (original MPM) 1197
Montgomery Mul. (optimized for 256-bit numbers) 892

= at least 2227040 cycles (1276M + 1020S + 2040A)
Ignoring cost for inversion and multiplication with constant

Fast elliptic-curve cryptography on the Cell Broadband Engine 7

What speed can we get with MPM?

Benchmarks of modular arithmetic

| Operation | Number of cycles |
Addition/Subtraction 86
Montgomery Mul. (original MPM) 1197
Montgomery Mul. (optimized for 256-bit numbers) 892

= at least 2227040 cycles (1276M + 1020S + 2040A)
Ignoring cost for inversion and multiplication with constant

Benchmarks of big-integer arithmetic

| Operation | Number of cycles |
Addition/Subtraction 52
Multiplication (original MPM) 594
Multiplication (optimized for 256-bit numbers) 360

= at least 934080 cycles (1276M + 1020S + 2040A)

Fast elliptic-curve cryptography on the Cell Broadband Engine 7

A closer look at the SPU

v

128 registers of width 128 bit

All (arithmetic) instructions are SIMD

16x 8 bit

8x 16 bit

4x 32 bit

Exception: Multiplication is 4x 16 bit, 32-bit results

Can do multiplication and addition (muladd) in one instruction

v

vy vy vYVvYy

At most one arithmetic instruction per cycle
Additional load/store/shuffle instruction per cycle

Fully in-order execution

vV v v v

Relevant instruction latencies between 2 and 7 (mostly 4)

Fast elliptic-curve cryptography on the Cell Broadband Engine

Representing elements of Fo2ss_1g

The standard approach

» 255-bit numbers, 128-bit registers = use 2 registers

Fast elliptic-curve cryptography on the Cell Broadband Engine 9

Representing elements of Fo2ss_1g

The standard approach

» 255-bit numbers, 128-bit registers = use 2 registers
» Schoolbook multiplication then requires at least

v

256 multiplications (64 instructions)

224 (carry-extended) additions (58 instructions)
224 carry generates (58 instructions)

Quite a bit of shifting/shuffling

vvyy

Fast elliptic-curve cryptography on the Cell Broadband Engine

Representing elements of Fo2ss_1g

The standard approach

v

255-bit numbers, 128-bit registers = use 2 registers

v

Schoolbook multiplication then requires at least

v

256 multiplications (64 instructions)

224 (carry-extended) additions (58 instructions)
224 carry generates (58 instructions)

Quite a bit of shifting/shuffling

vvyy

Most of the time we are not multiplying
Huge effort to handle carry bits
Huge effort to move partial results around

vV v . vYvY

Situation is similar for other multiplication algorithms

Fast elliptic-curve cryptography on the Cell Broadband Engine

Representing elements of Fo2ss_1g

Redundant representation

> Represent an element a € Fozss_19 as (ao, .. .,a19) where

19
o= Z ;21127501
i=0

» We call a coefficent a; reduced, if a; € [0,2'3 — 1]

» We call a € Fy2s5_19 reduced if all coefficients are reduced

Fast elliptic-curve cryptography on the Cell Broadband Engine 10

Representing elements of Fo2ss_1g

Redundant representation

> Represent an element a € Fozss_19 as (ao, .. .,a19) where

19
o= Z ;21127501
i=0

» We call a coefficent a; reduced, if a; € [0,2'3 — 1]
» We call a € Fy2s5_19 reduced if all coefficients are reduced
» Multiplication only needs 100 mul/muladd instructions

Fast elliptic-curve cryptography on the Cell Broadband Engine 10

Representing elements of Fo2ss_1g

Redundant representation

> Represent an element a € Fozss_19 as (ao, .. .,a19) where

19
o= Z ;21127501
i=0

We call a coefficent a; reduced, if a; € [0, 213 — 1]

We call a € Fy2s5_19 reduced if all coefficients are reduced

. plus some overhead from non-integer radix

| 4

>

» Multiplication only needs 100 mul/muladd instructions

>

> ... plus some overhead to construct final result (rq, ..., 73s)
>

In total: 145 arithmetic instructions, 145 cycles

Fast elliptic-curve cryptography on the Cell Broadband Engine

10

Hiding latencies during reduction

» During multiplication using SIMD and hiding latencies is easy

» Reduction: non-reduced (1o, ...,r33) — reduced (ro,...,7r19)

Fast elliptic-curve cryptography on the Cell Broadband Engine

11

Hiding latencies during reduction

>

>

During multiplication using SIMD and hiding latencies is easy

Reduction: non-reduced (ro,...,r3s) — reduced (rg,...,T19)

Standard reduction chain

vV v v v

Carry from rog to r21,... from r3g to r3g
Reduce “polynomial”
Carry from rg to r; etc.

Problem: Each instruction depends on result from previous
instruction

» Just do arithmetic about every 4th cycle

» Cannot use SIMD capabilities

Fast elliptic-curve cryptography on the Cell Broadband Engine

11

Hiding latencies during reduction

Interleaved reduction

» Four independet parallel reduction chains

> Carry rog — 721, To4 — T25, T2g — T29, T32 — T33

Fast elliptic-curve cryptography on the Cell Broadband Engine

12

Hiding latencies during reduction

Interleaved reduction
» Four independet parallel reduction chains
> Carry 199 — 21, T24 — T25, T2g — T29, T32 — T33
» Carry 721 — 722, T25 — T26, T29 — T30, 733 — T34

> ...

Fast elliptic-curve cryptography on the Cell Broadband Engine

12

Hiding latencies during reduction

Interleaved reduction

>
>
>
> ...
>
>

Four independet parallel reduction chains
Carry 7o9 — 721, T24 — T25, T2g — T29, T32 — T33

Carry ro1 — 129, T25 — T2g, T29 — T'30, 33 — T'34

Carry rog — 725, T2g — Tg, T32 — T'33, T36 — T'37

Fast elliptic-curve cryptography on the Cell Broadband Engine

12

Hiding latencies during reduction

Interleaved reduction

vV vV V. VvV vV vV VY

Four independet parallel reduction chains
Carry 7o9 — 721, T24 — T25, T2g — T29, T32 — T33

Carry ro1 — 129, T25 — T2g, T29 — T'30, 33 — T'34
Carry rog — 725, T2g — Tg, T32 — T'33, T36 — T'37

Looks stupid (increasing reduction steps from 20 to 32)

But: Do arithmetic every cycle, increase speed by a factor of
4-20/32 =25

Fast elliptic-curve cryptography on the Cell Broadband Engine

12

Hiding latencies during reduction

Interleaved reduction

vV vV V. VvV vV vV VY

Four independet parallel reduction chains
Carry 7o9 — 721, T24 — T25, T2g — T29, T32 — T33

Carry ro1 — 129, T25 — T2g, T29 — T'30, 33 — T'34
Carry rog — 725, T2g — Tg, T32 — T'33, T36 — T'37

Looks stupid (increasing reduction steps from 20 to 32)

But: Do arithmetic every cycle, increase speed by a factor of
4-20/32 =25
We are still not using SIMD capabilities!

Fast elliptic-curve cryptography on the Cell Broadband Engine 12

Optimize EC instead of GF arithmetic

» Consider sequences of finite-field operations instead of single
operations
» Here: Optimize Montgomery ladder step

> Group 2x 4 multiplications together (squarings as multiplications)
Group additions/subtractions in blocks of 4

Do “digit slicing” [Grabher, GroRschadl, Page, 2008]

Leaves just one single multiplication at the end

vvyYyy

Fast elliptic-curve cryptography on the Cell Broadband Engine

13

Optimize EC instead of GF arithmetic

» Consider sequences of finite-field operations instead of single

operations

» Here: Optimize Montgomery ladder step
> Group 2x 4 multiplications together (squarings as multiplications)
> Group additions/subtractions in blocks of 4
> Do “digit slicing” [Grabher, GroBschadl, Page, 2008]
> Leaves just one single multiplication at the end

» Reduces number of arithmetic instructions for 4 multiplications from

580 to 420

Fast elliptic-curve cryptography on the Cell Broadband Engine

13

Optimize EC instead of GF arithmetic

» Consider sequences of finite-field operations instead of single
operations
» Here: Optimize Montgomery ladder step

> Group 2x 4 multiplications together (squarings as multiplications)
> Group additions/subtractions in blocks of 4

> Do “digit slicing” [Grabher, GroBschadl, Page, 2008]

> Leaves just one single multiplication at the end

» Reduces number of arithmetic instructions for 4 multiplications from
580 to 420

» Uses SIMD for reduction: Increasing speed by a factor of 4!

Fast elliptic-curve cryptography on the Cell Broadband Engine

13

Results

Benchmarks used SUPERCOP

hex01 is a Q521 blade at the Chair for Operating Systems, RWTH
Aachen

cosmovoid is a Playstation 3 at the Chair for Operating Systems,
RWTH Aachen

» node001 is a QS22 blade at Research Center Jiilich
| SUPERCOP benchmark | hex01 | node001 | cosmovoid |
crypto_scalarmult 697080 | 697080 697040
crypto_scalarmult_base | 697080 | 697080 697080
crypto_dh_keypair 720120 | 720120 720200
crypto_dh 697080 | 697080 697040
» Including costs for key verification and key compression

Constant time — protected against timing attacks

Fast elliptic-curve cryptography on the Cell Broadband Engine

14

“Comparison”

> gls1271 on a Q9550: 318019 cycles
> curve25519 on a Q9550: 384192 cycles
» curve25519 on a CBE: 697080 cycles

Fast elliptic-curve cryptography on the Cell Broadband Engine

15

“Comparison”

gls1271 on a Q9550: 318019 cycles

curve25519 on a Q9550: 384192 cycles

curve25519 on a CBE: 697080 cycles

Q9550 has 4 cores at 2.83GHz, CBE has 8 (6) cores at 3.2GHz

vV v . v.Y

Fast elliptic-curve cryptography on the Cell Broadband Engine

15

“Comparison”

vV vV vV vV v Vv Y

gls1271 on a Q9550: 318019 cycles

curve25519 on a Q9550: 384192 cycles

curve25519 on a CBE: 697080 cycles

Q9550 has 4 cores at 2.83GHz, CBE has 8 (6) cores at 3.2GHz
gls1271 on a Q9550: 38220 ECDH/second

curve25519 on a Q9550: 31637 ECDH/second

curve25519 on a CBE: 39432 (29574) ECDH/second

Fast elliptic-curve cryptography on the Cell Broadband Engine

15

Some more information

» Software is public domain
» Software: http://www.cryptojedi.org/crypto/#celldh
» SUPERCOP: http://bench.cr.yp.to/

Fast elliptic-curve cryptography on the Cell Broadband Engine

16

