Engineering Cryptographic Software

Symmetric crypto in software

Peter Schwabe
Radboud University, Nijmegen, The Netherlands

é\ga Ny
S
Yerren

MiNe~

Winter 2025/26

Symmetric crypto overview

Primitives and algorithms

> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...
» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...
» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...
» Authenticated encryption: AES-GCM, Poly-1305, CAESAR, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...
» Authenticated encryption: AES-GCM, Poly-1305, CAESAR, ...

Architectures and microarchitectures

» Architectures: x86, AMD64, ARMv6, ARMv7, ARMv8, AVR,
32-bit PowerPC, 64-bit PowerPC, SPARCVY, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...
» Authenticated encryption: AES-GCM, Poly-1305, CAESAR, ...

Architectures and microarchitectures
» Architectures: x86, AMD64, ARMv6, ARMv7, ARMv8, AVR,
32-bit PowerPC, 64-bit PowerPC, SPARCVY, ...

» Microarchitectures: Pentium 4, Penryn, Nehalem, Sandy Bridge,
Haswell, Cortex-A8, Cortex-A9, Cortex-Ab3, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...
» Authenticated encryption: AES-GCM, Poly-1305, CAESAR, ...

Architectures and microarchitectures

» Architectures: x86, AMD64, ARMv6, ARMv7, ARMvS, AVR,
32-bit PowerPC, 64-bit PowerPC, SPARCVO, ...

» Microarchitectures: Pentium 4, Penryn, Nehalem, Sandy Bridge,
Haswell, Cortex-A8, Cortex-A9, Cortex-Ab3, ...

» Instruction-set extensions: SSE, SSE2, SSE3, SSSE3, AVX,
AVX2, AltiVec, NEON, ...

Symmetric crypto overview

Primitives and algorithms
> Block ciphers: AES, Serpent, DES (and 3DES), IDEA, Present,
LED, Prince, Klein, ...

» Stream ciphers: RC4, Salsa20, ChaCha20, HC-128, Rabbit,
SOSEMANUK, Grain, MICKEY, Trivium, ...

» Hash functions: SHA-256, SHA-512, SHA-3, Blake, Blake2, ...
» Authenticated encryption: AES-GCM, Poly-1305, CAESAR, ...

Architectures and microarchitectures

» Architectures: x86, AMD64, ARMv6, ARMv7, ARMvS, AVR,
32-bit PowerPC, 64-bit PowerPC, SPARCVO, ...

» Microarchitectures: Pentium 4, Penryn, Nehalem, Sandy Bridge,
Haswell, Cortex-A8, Cortex-A9, Cortex-Ab3, ...

» Instruction-set extensions: SSE, SSE2, SSE3, SSSE3, AVX,
AVX2, AltiVec, NEON, ...

The Advanced Encryption Standard (AES)

» Block cipher Rijndael proposed by Rijmen, Daemen in 1998
» Selected as AES by NIST in October 2000

The Advanced Encryption Standard (AES)

» Block cipher Rijndael proposed by Rijmen, Daemen in 1998
» Selected as AES by NIST in October 2000

> Block size: 128 bits (AES state: 4 x 4 matrix of 16 bytes)
> Key size 128/192/256 bits (resp. 10/12/14 rounds)

The Advanced Encryption Standard (AES)

» Block cipher Rijndael proposed by Rijmen, Daemen in 1998
» Selected as AES by NIST in October 2000

> Block size: 128 bits (AES state: 4 x 4 matrix of 16 bytes)
> Key size 128/192/256 bits (resp. 10/12/14 rounds)

The Advanced Encryption Standard (AES)

» Block cipher Rijndael proposed by Rijmen, Daemen in 1998

» Selected as AES by NIST in October 2000

> Block size: 128 bits (AES state: 4 x 4 matrix of 16 bytes)

> Key size 128/192/256 bits (resp. 10/12/14 rounds)

» AES with n rounds uses n 4+ 1 16-byte rounds keys Ky, ..., K,

The Advanced Encryption Standard (AES)

vvyVvyVvVYyyvYyy

v

Block cipher Rijndael proposed by Rijmen, Daemen in 1998
Selected as AES by NIST in October 2000

Block size: 128 bits (AES state: 4 x 4 matrix of 16 bytes)

Key size 128/192/256 bits (resp. 10/12/14 rounds)

AES with n rounds uses n 4+ 1 16-byte rounds keys K, ..., K,

Four operations per round: SUBBYTES, SHIFTROWS,
MixCoLUMNS, and ADDROUNDKEY

Last round does not have M1XCOLUMNS

High-level pseudocode AES-128

Require: 128-bit input block B, 128-bit AES round keys K, ..., Kjg
Ensure: 128-bit block of encrypted output
B + ADDROUNDKEY(B, Kj)
for i from 1 to 9 do
B «+ SuBBYTES(B)
B + SHIFTROWS(B)
B + MixCoLUMNS(B)
B + ADDROUNDKEY(B, Kj)
end for
B < SUuBBYTES(B)
B <+ SHIFTROWS(B)
B + ApDROUNDKEY(B, K19)
return B

AES on 32-bit and 64-bit processors

» Idea from the AES proposal: Merge SUBBYTES, SHIFTROWS, and
MixCoOLUMNS

> Use 4 lookup tables TO, T1, T2, and T3 (1 KB each)

AES on 32-bit and 64-bit processors

» Idea from the AES proposal: Merge SUBBYTES, SHIFTROWS, and
MixCoOLUMNS

> Use 4 lookup tables TO, T1, T2, and T3 (1 KB each)

The first round of AES in C
» Input: 32-bit integers yO0, v1, v2, y3
» Output: 32-bit integers z0, z1, z2, z3
» Round keys in 32-bit-integer array rk [44]

z0 = TO[y0 >> 24]~ T1[(yl >> 16) & Oxff] \

A T2([(y2 >> 8) & Oxff] ~ T3[y3 & Oxff] ~ rk[4];
z1 = TO[yl >> 24]~ T1[(y2 >> 16) & Oxff] \

A T2[(y3 >> 8) & Oxff] ~ T3[yO & Oxff] ~ rk[5];
z2 = TO[y2 >> 24] ~ T1[(y3 >> 16) & Oxff] \

A T2[(y0 >> 8) & Oxff] ~ T3[yl & Oxff] ~ rk[6];
z3 = TO[y3 >> 24] A~ T1[(y0 >> 16) & Oxff] \

A T2[(yl >> 8) & Oxff] ~ T3[y2 & Oxff] ~ rk[7];

What a machine is really doing

unsigned char rk[176], TO0[1024], T1[1024], T2[1024], T3[1024];

z0 = *(uint32 *) (rk + 16);
z1l = *x(uint32 *) (rk + 20);
z2 = *(uint32 *) (rk + 24);
z3 = *(uint32 *) (rk + 28);
z0 = x(uint32 x) (TO + ((y0 >> 22) & 0x3fc)) \
A~ % (uint32 %) (T1 + ((yl >> 14) & 0x3fc)) \
*(uint32 *) (T2 + ((y2 >> 6) & 0x3fc)) \
A x(uint32 *) (T3 + ((y3 << 2) & 0x3fc));
z1l ~= x(uint32) (TO + ((yl >> 22) & 0x3fc)) \
A x(uint32) (T1 + ((y2 >> 14) & 0x3fc)) \
A~ % (uint32 x) (T2 + ((y3 >> 6) & 0x3fc)) \
A x(uint32 *) (T3 + ((y0 << 2) & 0x3fc));
z2 ~= x(uint32 %) (TO + ((y2 >> 22) & 0x3fc)) \
A x(uint32) (T1 + ((y3 >> 14) & 0x3fc)) \
A~ % (uint32 x) (T2 + ((y0 >> 6) & 0x3fc)) \
A % (uint32 %) (T3 + ((yl << 2) & 0x3fc));
z3 "= x(uint32 x) (TO + ((y3 >> 22) & 0x3fc)) \
A~ % (uint32 %) (T1 + ((y0 >> 14) & 0x3fc)) \
A~ % (uint32 x) (T2 + ((yl >> 6) & 0x3fc)) \
A % (ulnt32 %) (T3 + ((y2 << 2) & 0x3fc));

AES instruction counts

» Each round has 20 loads, 16 shifts, 16 masks and 16 xors

AES instruction counts

» Each round has 20 loads, 16 shifts, 16 masks and 16 xors
» Last round is slightly different: Needs 16 more mask instructions
» 4 |oad instructions to load input, 4 stores for output

AES instruction counts

Each round has 20 loads, 16 shifts, 16 masks and 16 xors
Last round is slightly different: Needs 16 more mask instructions

4 load instructions to load input, 4 stores for output

...some more overhead

>
>
>
» In CTR mode: 4 xors with the key stream, incrementing the counter
>
» Results in 720 instructions needed to encrypt a block of 16 bytes

>

Specifically: 208 loads, 4 stores, 508 arithmetic instructions

Case study: AES on an UltraSPARC

(My first project as Ph.D. student)

» 64-bit architecture
> Up to 4 instructions per cycle

> At most 2 integer-arithmetic
instructions per cycle

> At most 1 load/store
instruction per cycle

> 24 integer registers available

Case study: AES on an UltraSPARC

(My first project as Ph.D. student)

» 64-bit architecture

> Up to 4 instructions per cycle

> At most 2 integer-arithmetic
instructions per cycle

> At most 1 load/store
instruction per cycle

> 24 integer registers available

» Previous AES speed:

> 20.75 cycles/byte by
Bernstein (public domain)

Case study: AES on an UltraSPARC

(My first project as Ph.D. student)

» 64-bit architecture
> Up to 4 instructions per cycle

> At most 2 integer-arithmetic
instructions per cycle

> At most 1 load/store
instruction per cycle

> 24 integer registers available

» Previous AES speed:

> 20.75 cycles/byte by
Bernstein (public domain)

> 16.875 cycles/byte (270
cycles/block) by Lipmaa
(unpublished)

Making AES fast on an UltraSPARC

(My first project as Ph.D. student)

Computing a lower bound

Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making AES fast on an UltraSPARC

(My first project as Ph.D. student)

Computing a lower bound

Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

> After quite some instruction scheduling: 269 cycles per block

Making AES fast on an UltraSPARC

(My first project as Ph.D. student)

Computing a lower bound

Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

> After quite some instruction scheduling: 269 cycles per block

» My supervisor's reaction:
“...this is no time to relax; you have to not just beat Lipmaa's
code, but beat it to a bloody pulp and dance on its grave. :-)"

Making AES fast on an UltraSPARC

(My first project as Ph.D. student)

Computing a lower bound

Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

> After quite some instruction scheduling: 269 cycles per block

» My supervisor's reaction:
“...this is no time to relax; you have to not just beat Lipmaa's
code, but beat it to a bloody pulp and dance on its grave. :-)"

> After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

Making AES fast on an UltraSPARC

(My first project as Ph.D. student)

Computing a lower bound

Reminder: 208 loads, 4 stores, 508 integer instructions per 16-byte block
» Only one load or store per cycle (= at least 212 cycles)
» Only 2 arithmetic instructions per cycle (= at least 254 cycles)

Making it fast

> After quite some instruction scheduling: 269 cycles per block

» My supervisor's reaction:
“...this is no time to relax; you have to not just beat Lipmaa's
code, but beat it to a bloody pulp and dance on its grave. :-)"

> After writing a simplified simulator and more instruction scheduling:
254 cycles/block, 15.98 cycles/byte

» What now? Is this already a bloody pulp?

Making AES fast on an UltraSPARC

Lowering the lower bound

> We have to reduce the number of (arithmetic) instructions

» Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

» Do that consistently for values in registers, the tables and the round
keys

» Interleave entries in tables TO and T1 and in T2 and T3

10

Making AES fast on an UltraSPARC

Lowering the lower bound

> We have to reduce the number of (arithmetic) instructions
» Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50
» Do that consistently for values in registers, the tables and the round
keys
> Interleave entries in tables TO and T1 and in T2 and T3
Without padded registers With padded registers
t0 = (uint32) yO0 >> 22 t0 = (uinted4) yO0 >> 48
tl = (uint32) y0 >> 14 tl = (uint64) y0 >> 32
t2 = (uint32) y0 >> 6 t2 = (uint64) y0 >> 16
t3 = (uint32) y0 << 2 tl &= OxffO0
t0 &= 0x3fc t2 &= 0Oxff0
tl &= 0x3fc t3 = y0 & Oxff0
t2 &= 0x3fc
t3 &= 0x3fc

10

Making AES fast on an UltraSPARC

Lowering
>
>

>
>

Without padded registers

t0
tl
t2
t3
t0
tl
t2
t3

the lower bound

We have to reduce the number of (arithmetic) instructions

Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

Do that consistently for values in registers, the tables and the round

keys

Interleave entries in tables TO and T1 and in T2 and T3

Instruction set supports 32-bit shifts that zero out the upper 32 bits

= (uint32) yo0
= (uint32) yo0
= (uint32) yo0
= (uint32) yo0
&= 0x3fc
&= 0x3fc
&= 0x3fc
&= 0x3fc

>>
>>
>>
<<

22
14
6
2

With padded registers

t0 =

tl
t2
tl
t£3

& |

(uinte4) y0 >> 48
(uinte4) y0 >> 32
(uint32) y0 >> 16
= 0xff0

yv0 & Oxff0

10

Making AES fast on an UltraSPARC

Lowering the lower bound

>
| 4

v

vvyYyy

We have to reduce the number of (arithmetic) instructions

Idea: The UltraSPARC is a 64-bit architecture, pad 32-bit values
with zeros, i.e.,
0xc66363a5 becomes 0x0c60063006300a50

Do that consistently for values in registers, the tables and the round
keys

Interleave entries in tables TO and T1 and in T2 and T3
Instruction set supports 32-bit shifts that zero out the upper 32 bits
Apply some more optimizations

Final result: AES in CTR mode on UltraSPARC Il at 12.06
cycles/byte

10

More arithmetic tricks for AES |

Combined Shift-and-mask

> Some architectures have combined shift-and-mask instructions (e.g.,
PowerPC)

» Combine 160 shifts and 160 masks and save 160 instructions

11

More arithmetic tricks for AES |

Combined Shift-and-mask

> Some architectures have combined shift-and-mask instructions (e.g.,
PowerPC)

» Combine 160 shifts and 160 masks and save 160 instructions

Scaled-index loads
» Some architectures can combine shift and load (e.g., x86, AMD64)

» Use this to get rid of the mask instruction for top and shift
instruction for bottom byte

» Overall save: 80 instructions

11

More arithmetic tricks for AES Il

Various memory /arithmetic tradeoffs

» Can extract 4 bytes by one store and 4 loads
> Saves 160 mask instructions (or 320 if we have scaled-index loads)
» Costs 40 store and 160 load instructions

12

More arithmetic tricks for AES Il

Various memory /arithmetic tradeoffs

S
S
| 4

Can extract 4 bytes by one store and 4 loads
Saves 160 mask instructions (or 320 if we have scaled-index loads)
Costs 40 store and 160 load instructions

Counter-mode caching

|

>

In CTR mode we encrypt a counter, then XOR keystream with
plaintext

Last counter byte only changes every 256 blocks

Do computations depending on this byte in the first round only
once, cache the state

Similar in second round: only one 32-bit word changes every round

Do computations depending on this word in the second round only
once, cache the state

Overall save: = 100 instructions

12

Now forget everything we just said

Timing attacks

» The lookup-table-based approach is inherently vulnerable to
cache-timing attacks

> Extensive literature on AES cache-timing attacks

» Osvik, Shamir, Tromer, 2006: Obtain AES-256 key in just 65 ms

13

Now forget everything we just said

Timing attacks

» The lookup-table-based approach is inherently vulnerable to
cache-timing attacks

> Extensive literature on AES cache-timing attacks
» Osvik, Shamir, Tromer, 2006: Obtain AES-256 key in just 65 ms

Then why did | tell you this?

» You have to be able to recognize and understand table-based AES
implementations

» Optimizations show how to make best use of the instruction set
» General trick: Change your data representation

13

Looking for an alternative approach

» Remember bitslicing: vectorized “hardware emulation”
» Every algorithm can be implemented with bitslicing

» Bitslicing is inherently protected against timing attacks

14

Looking for an alternative approach

Remember bitslicing: vectorized “hardware emulation”
Every algorithm can be implemented with bitslicing
Bitslicing is inherently protected against timing attacks
Efficiency depends on algorithm and micro-architecture

vvyYyyvyy

Some crypto primitives are designed for efficient bitslicing

14

Looking for an alternative approach

vyVvVvvyvVvYvVvyVvyYVvyy

Remember bitslicing: vectorized “hardware emulation”
Every algorithm can be implemented with bitslicing
Bitslicing is inherently protected against timing attacks
Efficiency depends on algorithm and micro-architecture
Some crypto primitives are designed for efficient bitslicing
AES was designed for table-based implementations
Obvious question: Can bitsliced AES be fast?

Common target for bitslicing AES: Intel Core 2

14

The Intel Core 2 processor

Instruction decode/schedule

b T]

.)

' ALU ALU ALU

| Branch FP Add FP Mul Load Store
: Shuffle

1
N oo ’

> 16 128-bit XMM vector registers
16 64-bit integer registers
SSE (Streaming SIMD Extension) instructions

> followed by SSE2, SSE3, SSSE3 (Intel), SSE4 (Intel), SSE5 (AMD),
AVX, AVX2 (Intel) etc.

Native 128-bit wide execution units

vy

v

» 3 ALUs — up to 3 bit-logical instructions per cycle

v

Some differences between 65 nm (Core) and 45 nm (Penryn)

15

Bitslicing AES on Intel Core 2 |

Matsui & Nakajima, 2007

» Process 128 blocks in parallel

> Performance: 9.2 cycles/byte

> Additional overhead for converting to/from bitsliced representation
» Great for, e.g., hard-disk encryption

» Bad for encryption of small Internet packets

16

Bitslicing AES on Intel Core 2 |

Matsui & Nakajima, 2007

» Process 128 blocks in parallel

> Performance: 9.2 cycles/byte

> Additional overhead for converting to/from bitsliced representation
» Great for, e.g., hard-disk encryption

» Bad for encryption of small Internet packets

Konighofer, 2008

» Process only 4 blocks in parallel
» Use 64-bit integer registers
> Performance: 19.6 cycles/byte

16

Bitslicing AES on Core 2 |l

Kasper & Schwabe, 2009

» Similar idea to Konighofer:
» Most expensive operation in AES is SUBBYTES
> SUBBYTES is already 16-times parallel
» Exploit this parallelism and reduce number of required blocks

17

Bitslicing AES on Core 2 |

Kasper & Schwabe, 2009

» Similar idea to Konighofer:

» Most expensive operation in AES is SUBBYTES

» SUBBYTES is already 16-times parallel

» Exploit this parallelism and reduce number of required blocks
» Different from Kénighofer:

» Use 128-bit XMM registers instead of 64-bit registers

» Factor-2 speedup for doing more bit ops per instruction

» Different optimization (need to use SSE* instructions)

17

Bitslicing AES on Core 2 |

Kasper & Schwabe, 2009

» Similar idea to Konighofer:

» Most expensive operation in AES is SUBBYTES

» SUBBYTES is already 16-times parallel

» Exploit this parallelism and reduce number of required blocks
» Different from Kénighofer:

» Use 128-bit XMM registers instead of 64-bit registers

» Factor-2 speedup for doing more bit ops per instruction

» Different optimization (need to use SSE* instructions)

» Use CTR mode (parallel and does not need decryption)

17

Bitslicing AES on Core 2 |

Kasper & Schwabe, 2009

» Similar idea to Konighofer:

» Most expensive operation in AES is SUBBYTES

» SUBBYTES is already 16-times parallel

» Exploit this parallelism and reduce number of required blocks
» Different from Kénighofer:

» Use 128-bit XMM registers instead of 64-bit registers
» Factor-2 speedup for doing more bit ops per instruction
» Different optimization (need to use SSE* instructions)

» Use CTR mode (parallel and does not need decryption)
» Corresponding decryption later implemented by Azad (2011)

» Further improvements (including CTR-mode caching) by Park and
Lee (2018)

17

The Bitslicing approach

row0O] Tow 3
column 0 column 1 column2 column 3 | ... column 0 column 3
= = = = — = = = = = =
g8 glE|E ElE| g g8 |8 8 =l =} 4|8 =}
S|= o =g =) o =R =] S22 2 L2 =) S| = =
3|2 Z|B|3 2|5 |3 S|3 |3 = N Z|E|...|= 2|B]|... |3

> Process 8 AES blocks (= 128 bytes) in parallel

» Collect bits according to their position in the byte: i.e., the first

register contains least significant bits from each byte, etc.

» AES state stored in 8 XMM registers

» Compute 128 S-Boxes in parallel, using bit-logical instructions

» For a simpler linear layer, collect the 8 bits from identical positions

in each block into the same byte

» Never need to mix bits from different blocks — all instructions

byte-level

18

Implementing the AES S-Box

» Start from the most compact hardware S-box, 117 gates
(Canright 2005; Boyar, Peralta, 2009)

> Use equivalent 128-bit bit-logical instructions

19

Implementing the AES S-Box

» Start from the most compact hardware S-box, 117 gates
(Canright 2005; Boyar, Peralta, 2009)

> Use equivalent 128-bit bit-logical instructions

» Problem 1: instructions are two-operand, output overwrites one
input

» Hence, sometimes need extra register-register moves to preserve
input

19

Implementing the AES S-Box

» Start from the most compact hardware S-box, 117 gates
(Canright 2005; Boyar, Peralta, 2009)

> Use equivalent 128-bit bit-logical instructions

» Problem 1: instructions are two-operand, output overwrites one
Input

» Hence, sometimes need extra register-register moves to preserve
Input

» Problem 2: not enough free registers for intermediate values

» Recompute some values multiple times (alternative: use stack)

19

Implementing the AES S-Box

A\

Start from the most compact hardware S-box, 117 gates
(Canright 2005; Boyar, Peralta, 2009)

Use equivalent 128-bit bit-logical instructions

Problem 1: instructions are two-operand, output overwrites one
Input

Hence, sometimes need extra register-register moves to preserve
Input

Problem 2: not enough free registers for intermediate values
Recompute some values multiple times (alternative: use stack)

Total 163 instructions — 15% shorter than previous results

xor | and/or | mov | TOTAL
Hardware | 82 35 - 117
Software 93 35 35 163

19

Implementing the AES linear layer

v

vvyvVvyvVYyyvyy

Each byte in the bitsliced vector corresponds to a different byte
position in the AES state

Thus, SHIFTROWS is a permutation of bytes

Use SSSE3 dedicated byte-shuffle instruction pshufb

Repeat for each bit position (register) = 8 instructions
MixCOLUMNS uses byte shuffle and XOR, total 43 instructions
ADDROUNDKEY also requires only 8 XORs from memory

Some caveats:

> Bitsliced key is larger — 8 x 128 bits per round, key expansion slower
» SSSE3 available only on Intel, not on AMD processors

20

Putting it all together

xor/and/or | pshufb/d | xor (mem-reg) | mov (reg-reg) | TOTAL
SuBBYTES 128 - - 35 163
SHIFTROWS - 8 - - 8
MixCoLUMNs 27 16 - - 43
ApDROUNDKEY - - 8 — 8
TOTAL 155 24 8 35 222

>
>
>
>

One AES round requires 222 instructions

Last round omits MixColumns: 171 instructions
Input/output transform 84 instructions/each
Excluding data loading etc, we get a lower bound

222 x 9+ 171+ 2 x 84

3% (8-16)

~ 6.1 cycles/byte

» Actual performance on Core 2 (Penryn): 7.58 cycles/byte

21

Back to (small) lookup tables

» AltiVec offers a vperm instruction
> 3 128-bit vector arguments: a, b, ¢
» Replace each byte ¢; in ¢ by a byte from a or b, indexed by lowest 5
bits of ¢;

22

Back to (small) lookup tables

> AltiVec offers a vperm instruction
> 3 128-bit vector arguments: a, b, ¢
» Replace each byte ¢; in ¢ by a byte from a or b, indexed by lowest 5
bits of ¢;
» SSSE3 offers a pshufb instruction

> 2 128-bit vector arguments: a, ¢
» Shuffle bytes in a (in place) according to indices in ¢

22

Back to (small) lookup tables

> AltiVec offers a vperm instruction
> 3 128-bit vector arguments: a, b, ¢
» Replace each byte ¢; in ¢ by a byte from a or b, indexed by lowest 5
bits of ¢;
» SSSE3 offers a pshufb instruction
> 2 128-bit vector arguments: a, ¢
» Shuffle bytes in a (in place) according to indices in ¢

» For constant indices in ¢ these instruction implement a permutation

22

Back to (small) lookup tables

> AltiVec offers a vperm instruction

> 3 128-bit vector arguments: a, b, ¢
» Replace each byte ¢; in ¢ by a byte from a or b, indexed by lowest 5
bits of ¢;

» SSSE3 offers a pshufb instruction

> 2 128-bit vector arguments: a, ¢
» Shuffle bytes in a (in place) according to indices in ¢

» For constant indices in ¢ these instruction implement a permutation

» For constant inputs a, b they implement a lookup table

> 5-bit to 8-bit lookup for vperm (32 entries)
> 4-bit to 8-bit lookup for pshufb (16 entries)

22

How do these lookup tables help?

» ldea by Hamburg (2009):
> Use arithmetic representation of AES S-Box (inversion in Fys)
> Represent Fys as quadratic extension of Fy4
» Use vector-permute lookup tables for arithmetic in Fqa

23

How do these lookup tables help?

» ldea by Hamburg (2009):

> Use arithmetic representation of AES S-Box (inversion in Fys)
> Represent Fys as quadratic extension of Fy4
» Use vector-permute lookup tables for arithmetic in Fqa

» Approach is fully constant time
» Not available on every architecture

23

How do these lookup tables help?

» ldea by Hamburg (2009):

> Use arithmetic representation of AES S-Box (inversion in Fys)
> Represent Fys as quadratic extension of Fy4
» Use vector-permute lookup tables for arithmetic in Fqa

» Approach is fully constant time
» Not available on every architecture

» Can combine with counter-mode caching

23

How do these lookup tables help?

» ldea by Hamburg (2009):

> Use arithmetic representation of AES S-Box (inversion in Fys)
> Represent Fys as quadratic extension of Fy4
» Use vector-permute lookup tables for arithmetic in Fqa

» Approach is fully constant time
» Not available on every architecture
» Can combine with counter-mode caching

» Performance:

> 5.4 cyles/byte on Power G4 (CTR mode, 16 parallel blocks)

> 21.8 cycles/byte on Core 2 (Core microarch, CTR, no parallel blocks)

> 11.1 cycles/byte on Core 2 (Penryn microarch, CTR, no parallel
blocks)

23

AES nowadays

xor %xmm5, %$xmmO
14

aesenc %$xmm6, $%$xmmO
aesenc %$xmm7, $%$xmmO
aesenc %$xmm8, %$xmmO
aesenc %$xmm9, %$xmmO
aesenc %xmml0, %$xmmO
aesenc %xmmll, %$xmmO
aesenc %$xmml2, %$xmmO
aesenc %$xmml3, %$xmmO
aesenc %$xmml4d, %$xmmO
aesenclast %xmml5, %$xmmO

v

AESNI instructions on Intel processors

Introduced with Westmere
microarchitecture

State in $xmm0
Round keys in $xmm5 ... $xmml15

Also instructions for key expansion,
decryption

AES instructions take constant time

For parallel modes up to 0.4
cycles/byte (e.g., Raptor Lake)

24

AES summary

> Best case: hardware support is available (e.g., AESNI)
> If not:

> Bitslicing (performance highly depends on micro-architecture)

> Vector-permute instructions (availability depends on architecture and
instruction-set extensions; performance depends on
micro-architecture)

» Table-based approach is typically fast but vulnerable to timing
attacks (almost everywhere)

25

AES summary

> Best case: hardware support is available (e.g., AESNI)
> If not:
> Bitslicing (performance highly depends on micro-architecture)
> Vector-permute instructions (availability depends on architecture and
instruction-set extensions; performance depends on
micro-architecture)
» Table-based approach is typically fast but vulnerable to timing
attacks (almost everywhere)

Why was Rijndael chosen as AES?

> Faster than, e.g., SERPENT in software (for table-based
implementations)

» From the Report on the Development of the Advanced Encryption
Standard (AES), October 2000:

“Table lookup: not vulnerable to timing attacks; relatively easy to
effect a defense against power attacks by software balancing of the
lookup address.”

25

AES on Cortex-A8 with NEON

Cortex-A8
> 32-bit ARMv7 core (2 instructions per cycle with various restrictions)
» NEON vector coprocessor working on 128-bit vectors

> Present in a large variety of mobile devices, e.g., Apple iPhone 3GS,
Apple iPhone 4, 3rd generation Apple iPod touch (late 2009), Apple
iPad 1, Nokia N9, Nokia N900, Palm Pre Plus, Samsung/Google
Nexus S, Samsung Galaxy S

> Today very cheap (e.g., Allwinner A10 for ~ US$5)

26

AES on Cortex-A8 with NEON

Cortex-A8
> 32-bit ARMv7 core (2 instructions per cycle with various restrictions)
» NEON vector coprocessor working on 128-bit vectors

> Present in a large variety of mobile devices, e.g., Apple iPhone 3GS,
Apple iPhone 4, 3rd generation Apple iPod touch (late 2009), Apple
iPad 1, Nokia N9, Nokia N900, Palm Pre Plus, Samsung/Google
Nexus S, Samsung Galaxy S

> Today very cheap (e.g., Allwinner A10 for ~ US$5)

AES performance

> Table-based (ARM): 28.08 cycles/byte (C code, not optimized for
ARM)

> Bitsliced (NEON): 18.94 cycles/byte
» Both numbers are for counter mode

26

AES on Cortex-A8 with NEON

Cortex-A8
> 32-bit ARMv7 core (2 instructions per cycle with various restrictions)
» NEON vector coprocessor working on 128-bit vectors

> Present in a large variety of mobile devices, e.g., Apple iPhone 3GS,
Apple iPhone 4, 3rd generation Apple iPod touch (late 2009), Apple
iPad 1, Nokia N9, Nokia N900, Palm Pre Plus, Samsung/Google
Nexus S, Samsung Galaxy S

> Today very cheap (e.g., Allwinner A10 for ~ US$5)

AES performance

> Table-based (ARM): 28.08 cycles/byte (C code, not optimized for
ARM)

> Bitsliced (NEON): 18.94 cycles/byte
» Both numbers are for counter mode
» Vector permute: 777

26

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism
» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)

» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)

» Traditional stream cipher: RC4

» Broken by Fluhrer, Mantin, and Shamir in 2001
» More broken by Klein in 2005

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism
» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001
> More broken by Klein in 2005

> Broken even more by AlFardan, Bernstein, Paterson, Poettering,
Schuldt in 2013

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001
» More broken by Klein in 2005
> Broken even more by AlFardan, Bernstein, Paterson, Poettering,

Schuldt in 2013
» ... and even more by Garman, Paterson, and van der Merwe in 2015

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001
» More broken by Klein in 2005
> Broken even more by AlFardan, Bernstein, Paterson, Poettering,
Schuldt in 2013
. and even more by Garman, Paterson, and van der Merwe in 2015
. and by Vanhoef and Piessens in 2015

vy

27

From AES to Salsa20

> High-speed AES is typically for streaming modes (e.g., CTR)
» Simple reason: larger degree of parallelism

» |If we don't need chaining modes, can also use stream cipher (should
be faster)
» Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001
» More broken by Klein in 2005
> Broken even more by AlFardan, Bernstein, Paterson, Poettering,
Schuldt in 2013

» ... and even more by Garman, Paterson, and van der Merwe in 2015
»> ... and by Vanhoef and Piessens in 2015
» ... and by Bricout, Murphy, Paterson, and van der Merwe in 2016

27

From AES to Salsa20

vwvyy

v

v

High-speed AES is typically for streaming modes (e.g., CTR)
Simple reason: larger degree of parallelism

If we don’t need chaining modes, can also use stream cipher (should
be faster)
Traditional stream cipher: RC4
» Broken by Fluhrer, Mantin, and Shamir in 2001
» More broken by Klein in 2005
> Broken even more by AlFardan, Bernstein, Paterson, Poettering,
Schuldt in 2013
» ... and even more by Garman, Paterson, and van der Merwe in 2015
»> ... and by Vanhoef and Piessens in 2015
» ... and by Bricout, Murphy, Paterson, and van der Merwe in 2016
Better candidates are in eSTREAM portfolio:
> Competition to find good stream ciphers organized by ECRYPT
» Running from 2004-2008
» Final decision: 3 ciphers in “hardware” portfolio; 4 in “software”
portfolio
» One cipher in the “software” portfolio: Salsa20 by Bernstein

27

Salsa20

» Generates random stream in 64-byte blocks, works on 32-bit integers
» Blocks are independent
» Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as

s4 = x0 + x12
x4 ~= (s4 >>> 25)

» These sequences are 4-way parallel

28

Salsa20

v

Generates random stream in 64-byte blocks, works on 32-bit integers
Blocks are independent

Per block: 20 rounds; each round doing 16 add-rotate-xor
sequences, such as

s4 = x0 + x12
x4 ~= (s4 >>> 25)

These sequences are 4-way parallel
In ARM without NEON: 2 instructions, 1 cycle
Sounds like total of (20 - 16)/64 = 5 cycles/byte

28

Salsa20

v

Generates random stream in 64-byte blocks, works on 32-bit integers
Blocks are independent
Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as

s4 = x0 + x12
x4 ~= (s4 >>> 25)

These sequences are 4-way parallel
In ARM without NEON: 2 instructions, 1 cycle

Sounds like total of (20 - 16)/64 = 5 cycles/byte, but:

> Only 14 integer registers (need at least 17)
» Latencies cause big trouble
» Actual implementations slower than 15 cycles/byte

28

A first approach in NEON

» Per round do 4x something like:

4x a0 = diagl + diag0
4x b0 a0 << 7
4x a0 unsigned >>= 25
diag3 "= b0
diag3 "*= a0
> + some (free) shuffles

29

A first approach in NEON

» Per round do 4x something like:

4x
4x
4x

a0 = diagl + diagO
b0 a0 << 7
a0 unsigned >>= 25
diag3 "= b0
diag3 "*= a0

> + some (free) shuffles

» Intuitive cycle lower bound:
(5-4-20)/64 = 6.25 cycles/byte

29

A first approach in NEON

» Per round do 4x something like:
4x a0 = diagl + diag0
4x b0 a0 << 7
4x a0 unsigned >>= 25
diag3 *~= b0
diag3 "*= a0
> + some (free) shuffles
» Intuitive cycle lower bound:
(5-4-20)/64 = 6.25 cycles/byte
» Problem: The above sequence has a 9-cycle latency, thus:
(9-4-20)/64 = 11.25 cycles/byte

29

Trading parallelism

» Salsa20 rounds have 4-way data-level parallelism

» In a scalar implementations this turns into 4-way instruction-level
parallelism

30

Trading parallelism

» Salsa20 rounds have 4-way data-level parallelism

» In a scalar implementations this turns into 4-way instruction-level
parallelism

» Good for pipelined and superscalar execution

30

Trading parallelism

» Salsa20 rounds have 4-way data-level parallelism

» In a scalar implementations this turns into 4-way instruction-level
parallelism

» Good for pipelined and superscalar execution

» The vector implementation needs 4-way data parallelism, there is
(almost) no instruction-level parallelism left

» Bad for pipelined and superscalar execution

30

Trading parallelism

» Salsa20 rounds have 4-way data-level parallelism

» In a scalar implementations this turns into 4-way instruction-level
parallelism

» Good for pipelined and superscalar execution

» The vector implementation needs 4-way data parallelism, there is
(almost) no instruction-level parallelism left

» Bad for pipelined and superscalar execution

» Idea: Blocks are independent, use this to re-introduce
instruction-level parallelism

30

Trading parallelism

» Salsa20 rounds have 4-way data-level parallelism

» In a scalar implementations this turns into 4-way instruction-level
parallelism

» Good for pipelined and superscalar execution

» The vector implementation needs 4-way data parallelism, there is
(almost) no instruction-level parallelism left

» Bad for pipelined and superscalar execution

» Idea: Blocks are independent, use this to re-introduce
instruction-level parallelism

» Lower bound when interleaving 2 blocks: 6.875 cycles/byte
» Lower bound when interleaving 3 blocks: 6.25 cycles/byte

30

Going even further

» NEON is basically a coprocessor to the ARM core

» ARM decodes instructions, forwards NEON instructions to the
NEON unit

31

Going even further

» NEON is basically a coprocessor to the ARM core

» ARM decodes instructions, forwards NEON instructions to the
NEON unit

» ldea: Also keep the ARM core busy with Salsa20 computations
» New bottleneck: ARM core decodes at most 2 instructions per cycle

31

Going even further

vy

vvyYyy

NEON is basically a coprocessor to the ARM core

ARM decodes instructions, forwards NEON instructions to the
NEON unit

Idea: Also keep the ARM core busy with Salsa20 computations
New bottleneck: ARM core decodes at most 2 instructions per cycle
Add-rotate-xor is only 2 ARM instructions

Best tradeoff: One block on ARM, two blocks on NEON

31

A flavor of the code

4x a0 = diagl + diagO
4x next_al = next_diagl + next_diag0
s4 x0 + x12
s9 = x5 + x1
4x b0 = a0 << 7
4x next_b0 = next_al << 7
4x a0 unsigned>>= 25
4x next_al unsigned>>= 25
x4 ~= (s4 >>> 25)
x9 = (89 >>> 25)
s8 = x4 + x0
sl3 = x9 + x5
diag3 "= b0
next_diag3 "= next_b0
diag3 "= a0
next_diag3 "= next_al
X8 "= (88 >>> 23)
x13 "= (s13 >>> 23)

Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON

33

References, part |

» Daniel J. Bernstein, Peter Schwabe. New AES software speed
records. Indocrypt 2008.
http://cryptojedi.org/papers/#aesspeed

34

http://cryptojedi.org/papers/#aesspeed

References, part |

» Daniel J. Bernstein, Peter Schwabe. New AES software speed
records. Indocrypt 2008.
http://cryptojedi.org/papers/#aesspeed

» Robert Kénighofer. A Fast and Cache-Timing Resistant
Implementation of the AES. CT-RSA 2008.

34

http://cryptojedi.org/papers/#aesspeed

References, part |

» Daniel J. Bernstein, Peter Schwabe. New AES software speed
records. Indocrypt 2008.
http://cryptojedi.org/papers/#aesspeed

» Robert Kénighofer. A Fast and Cache-Timing Resistant
Implementation of the AES. CT-RSA 2008.

» Mitsuru Matsui, Junko Nakajima. On the Power of Bitslice
Implementation on Intel Core2 Processor. CHES 2007.
www.lacr.org/archive/ches2007/47270121/47270121.ps

34

http://cryptojedi.org/papers/#aesspeed
www.iacr.org/archive/ches2007/47270121/47270121.ps

References, part |

» Daniel J. Bernstein, Peter Schwabe. New AES software speed
records. Indocrypt 2008.
http://cryptojedi.org/papers/#aesspeed

» Robert Kénighofer. A Fast and Cache-Timing Resistant
Implementation of the AES. CT-RSA 2008.

» Mitsuru Matsui, Junko Nakajima. On the Power of Bitslice
Implementation on Intel Core2 Processor. CHES 2007.
www.lacr.org/archive/ches2007/47270121/47270121.ps

» Emilia Kasper, Peter Schwabe. Faster and Timing-Attack Resistant
AES-GCM. CHES 2009.
http://cryptojedi.org/papers/#aesbs

» Vinit Azad. Fast AES decryption.
https://scholarworks.calstate.edu/downloads/gqb98mf58n

» Jin Hyung Park, Dong Hoon Lee. FACE: Fast AES CTR mode
Encryption Techniques based on the Reuse of Repetitive Data.
CHES 2018.
https://tches.iacr.org/index.php/TCHES/article/view/
7283

34

http://cryptojedi.org/papers/#aesspeed
www.iacr.org/archive/ches2007/47270121/47270121.ps
http://cryptojedi.org/papers/#aesbs
https://scholarworks.calstate.edu/downloads/qb98mf58n
https://tches.iacr.org/index.php/TCHES/article/view/7283
https://tches.iacr.org/index.php/TCHES/article/view/7283

References, part |

» Mike Hamburg. Accelerating AES with Vector Permute Instructions.
CHES 20009.

http://mikehamburg.com/papers/vector_aes/vector_aes.

pdf

35

http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

References, part |

» Mike Hamburg. Accelerating AES with Vector Permute Instructions.

CHES 2009.

http://mikehamburg.com/papers/vector_aes/vector_aes.
pdf

» Daniel J. Bernstein, Peter Schwabe. NEON crypto. CHES 2012.
http://cryptojedi.org/papers/#neoncrypto

35

http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf
http://cryptojedi.org/papers/#neoncrypto

