
Post-Quantum Crypto Software – Embedded and
High-Assurance

Peter Schwabe

June 28, 2023



1



Where are we?

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

2



Where are we?

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

2



Should you care now?

“Store now, decrypt later”

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg 3

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg


Should you care now? (part II)

4



What does this mean for systems engineers?

Current situation: ECC

Scalar multiplication takes ≈50K–100K cycles on 64-bit Intel CPU

Kyber and Dilithium
Kyber768 on Intel Haswell

• Keygen: 44 339 cycles

• Encaps: 60 142 cycles

• Decaps: 48 070 cycles

Dilithium3 on Intel Haswell

• Keygen: 173 344 cycles

• Sign: 359 302 cycles

• Verify: 177 284 cycles

5



What does this mean for systems engineers?

Current situation: ECC

Public keys have 32 bytes, signatures have 64 bytes

Kyber and Dilithium
Kyber768 sizes

• Public key: 1184 bytes

• Ciphertext: 1088 bytes

Dilithium3 sizes

• Public key: 1952 bytes

• Signature: 4000 bytes

5



How about embedded? – pqm4

Joint work with Matthias Kannwischer, Richard Petri, Joost Rijneveld, and Ko Stoffelen.

• Library and testing/benchmarking framework
• PQ-crypto on ARM Cortex-M4
• Uses STM32F4 Discovery board

• Easy to add schemes using NIST API

• Benchmark speed and memory

• Optimized SHA3 and AES shared across primitives

6



Kyber and Dilithium in pqm4

Kyber
Cycles

• Keygen: 707 275

• Encaps: 867 363

• Decaps: 788 053

Stack bytes

• Keygen: 2784

• Encaps: 2856

• Decaps: 2872

Dilithium
Cycles

• Keygen: 2 830 024

• Sign: 6 588 465

• Verify: 2 691 283

Stack bytes

• Keygen: 60 836

• Encaps: 68 836

• Decaps: 57 724

7



Kyber and Dilithium in pqm4

Joppe W. Bos, Joost Renes, Amber Sprenkels. Dilithium for Memory Constrained Devices,
Africacrypt 2022.

• Reduce Dilithium3 stack usage to <7 KB for signing, <3 KB for verification

• Significant slowdown, exact performance impact not clear

7



So, are we “done”?

1. Take existing optimized C/asm implementations

2. Possibly tweak for different tradeoffs

3. Possibly use HW accelerators (most important: for Keccak!)

4. Integrate into systems

5. Done.

8



Bugs, bugs everywhere

Dilithium commit on Dec. 28, 2017
• Bug in Dilithium sampler

• Two consecutive coefficients are equal

• Allows key recovery

• Reported by Peter Pessl on Dec. 27, 2017

9



Bugs, bugs everywhere

9



Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

9



Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

9



Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

9



Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

9



Implementation security

Hardware side-channels
• Require physical access to device

• Examples: Power, EM attacks

• Protection through dedicated countermeasures

• Typical slowdown of much more than 100%

• Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
• Leak through microarchitectural side-channels

• No physical access required, can run remotely
• Traditional countermeasure: constant-time

• No branching on secrets
• No memory access at secret location
• No variable-time arithmetic on secrets

10



Implementation security

Hardware side-channels
• Require physical access to device

• Examples: Power, EM attacks

• Protection through dedicated countermeasures

• Typical slowdown of much more than 100%

• Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
• Leak through microarchitectural side-channels

• No physical access required, can run remotely
• Traditional countermeasure: constant-time

• No branching on secrets
• No memory access at secret location
• No variable-time arithmetic on secrets

10



While the cryptographers were busy. . .

11



High-assurance PQC

• Effort to formally verify crypto
• Currently three main projects:

• EasyCrypt proof assistant
• jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with ≈150 people

12



The toolchain and workflow

13



Libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against (certain) Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

14



Libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against (certain) Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

14



Libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against (certain) Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

14



Libjade – Goals

• High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

• Multi-architecture support (first focus on AMD64)

• Easy “drop in” integration for most protocol libraries and systems

• Automated proofs of thread safety and memory safety

• Certified compilation to assembly

• Verified resistance against “classical” timing attacks

• Verified resistance against (certain) Spectre attacks

• Verified memory zeroization on return

• Computer-verified (manual) proofs of functional correctness

• Connection to computer-verified (manual) cryptographic proofs

14



Formally verified Kyber

• Specify Kyber in EasyCrypt

• Two jasmin implementations

• Interactive proofs of functional correctness

• Performance similar to optimized C/asm

• 3-year effort

• Improvements to jasmin/EasyCrypt

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet,
Oliveira, Pacheco, Quaresma, Schwabe, Séré, and Strub.
Formally verifying Kyber – Episode IV: Implementation Cor-
rectness. TCHES 2023-3

KYBER.CCAKEM

KYBER.CPAPKE-Core

Sampling A ←
Parse(SHAKE128(ρ))

Sampling s, e, r, e1, e2 ←
CBDη(SHAKE256(σ, ·))

Uniform sampling of A

Binomial sam-
pling of s, e, r, e1, e2

KYBER.CCAKEM

KYBER.CPAPKE

KYBER.CCAKEM

KYBER.CPAPKE

KYBER.CCAKEM

KYBER.CPAPKE

KYBER.CCAKEM

KYBER.CPAPKE

KYBER.CCAKEM

KYBER.CPAPKE

KYBER.CCAKEM

KYBER.CPAPKE

certified
compilation to

certified
compilation to

extracts to extracts to

functionally equiv.

correctly
implements

random input bytes

correct distribution

random input bytes

correct distribution

EC Specification

EC Jasmin ref. EC Jasmin AVX2

Jasmin ref. impl. Jasmin AVX2 impl.

Assembly ref. impl. Assembly AVX2 impl.

15



Spectre v1 (“Speculative bounds-check bypass”)

stack u8[16] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 16) {

t = public[(int) i] ;
r = leak(t);
...

}

16



Protecting against Spectre v1

• Security type system in jasmin
• Enforce no branching on secrets, no memory access at secret position
• Also enforce this in speculative execution after misspeculated conditional branch

• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typing
High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17



Protecting against Spectre v1

• Security type system in jasmin
• Enforce no branching on secrets, no memory access at secret position
• Also enforce this in speculative execution after misspeculated conditional branch
• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typing
High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17



Protecting against Spectre v1

• Security type system in jasmin
• Enforce no branching on secrets, no memory access at secret position
• Also enforce this in speculative execution after misspeculated conditional branch
• Guide programmer to protect code
• Selective speculative load hardening (selSLH):

• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

• Exploits synergies with protections against “traditional” timing attacks

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typing
High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17



Interested?

https://github.com/mupq/pqm4

https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/

18

https://github.com/mupq/pqm4
https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

