MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Post-Quantum Crypto Software — Embedded and
High-Assurance

Peter Schwabe

June 28, 2023

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer®

Peter W. Shorf

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Where are we?

NIST PQC

NOV. 2017 Round 1 Feb 2019 Round 2 JUI 2020 Round 3 JUI 2022
69 proposals 26 proposals 7+8 proposals 4 “winners

Where are we?

NIST PQC
NOV. 2017 Round 1 Feb 2019 Round 2 JUI 2020 Round 3 JUI 2022
69 proposals 26 proposals 7+8 proposals 4 “winners

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS™. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

Should you care now?

“Store now, decrypt later”
p——

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of _NSA's_Utah_Data_Center.jpg 3

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg

Should you care now? (part II)

=3 MOTORRAD

MOTORRAD Pur Neuheiten Motorrader Bekleidung Zubehdr Reisen Ratgeber Sport & Szene Club Markt

STARTSEITE Ratgeber Verkehr & Wirtschaft Motorrader in Deutschland: Im Schnitt 19 Jahre alt

MOTORRADER IN DEUTSCHLAND SIND MEISTENS ALT

Motorrader: Im Durchschnitt grad erwachsen

Youngtimer dominieren: In Deutschland sind zugelassene Motorrader im Schnitt 19,1 Jahre alt.

ens Kratschmar « 09.08.2022

What does this mean for systems engineers?

Current situation: ECC

Scalar multiplication takes ~50K—100K cycles on 64-bit Intel CPU

Kyber and Dilithium

Kyber768 on Intel Haswell Dilithium3 on Intel Haswell
- Keygen: 44 339 cycles + Keygen: 173344 cycles
+ Encaps: 60 142 cycles + Sign: 359302 cycles

+ Decaps: 48070 cycles - Verify: 177 284 cycles

What does this mean for systems engineers?

Current situation: ECC

Public keys have 32 bytes, signatures have 64 bytes

Kyber and Dilithium

Kyber768 sizes Dilithium3 sizes
+ Public key: 1184 bytes + Public key: 1952 bytes
- Ciphertext: 1088 bytes - Signature: 4000 bytes

How about embedded? — pq

Joint work with Matthias Kannwischer, Richard Petri, Joost Rijneveld, and Ko Stoffelen.

- Library and testing/benchmarking framework

+ PQ-crypto on ARM Cortex-M4
+ Uses STM32F4 Discovery board

- Easy to add schemes using NIST API
- Benchmark speed and memory
+ Optimized SHA3 and AES shared across primitives

Kyber and Dilithium in pgm4

Kyber
Cycles Stack bytes
+ Keygen: 707275 + Keygen: 2784
+ Encaps: 867 363 + Encaps: 2856
+ Decaps: 788053 + Decaps: 2872
Dilithium
Cycles Stack bytes
+ Keygen: 2830024 + Keygen: 60836
+ Sign: 6588465 + Encaps: 68836

+ Verify: 2691283 + Decaps: 57724

Kyber and Dilithium in pgm4

Joppe W. Bos, Joost Renes, Amber Sprenkels. Dilithium for Memory Constrained Devices,
Africacrypt 2022.

- Reduce Dilithium3 stack usage to <7 KB for signing, <3 KB for verification

- Significant slowdown, exact performance impact not clear

So, are we “done™?

Take existing optimized C/asm implementations

Possibly tweak for different tradeoffs

Possibly use HW accelerators (most important: for Keccak!)
Integrate into systems

gk~ =

Done.

Bugs, bugs everywhere

Dilithium commit on Dec. 28, 2017

+ Bug in Dilithium sampler

212 = t = buf[pos];
13 - B 1= (uints2 t)buffpos + 1] << & - Two consecutive coefficients are equal
214 = t |= (uint32_t)buf[pos + 2] << 16;
215 -t &= OXFFFFF; - Allows key recovery
337 + t@ = buf[pos];
338 + tO |= (uint32 t)buf[pos + 1] << 8; + Reported by Peter Pessl on Dec. 27,2017
339 + t0 |= (uint32_t)buf[pos + 2] << 16;
340 + tO &= OXFFFFF;
216 341
217 = t = buf[pos + 2] >> 4;
218 = t |= (uint32_t)buf[pos + 3] << 4;
219 = t |= (uint32_t)buf[pos + 4] << 12;
342+ tl = buf[pos + 2] >> 4;
343 + t1 |= (uint32_t)buf[pos + 3] << 4;
344 + t1 |= (uint32_t)buf[pos + 4] << 12;

Bugs, bugs everywhere

Questions about the range analysis of iINTT for "Faster Kyber and Dilithium on
the Cortex-M4" #226

[GIe{.EECl) JunhaoHuang opened this issue on Mar 3 - 4 comments

JunhaoHuang commented on Mar 3 « edited ~ Assignees

No one assigned
Hi team, | am reading the Kyber code regarding the recent paper "Faster Kyber and Dilithium on the Cortex-M4", and | have a

question about the matrix-vector product and Better Accumulation part regarding the f_stack version code.

Labels
I see that using the better accumulation technigue in the f_speed version code, we can reduce each element of the output vector None yet
of matrix-vector product down to (-g.q). Since poly_invntt is normally used after the matrix-vector product, the range of the input
vector of poly_invntt lies in (-.q) in the f_speed version code. The invntt function works in this situation. Projects
What | wonder is that in the f_stack version code, the matacc function actually uses the previous double basemul accumulation None yet
function, and it should produce the result vector with element in (-ka, ka). k is the security parameter of Kyber. For Kyber1024, the
range of each polynomial element that invntt takes should be (-4g,4q). However, the invntt function is the same as the f_speed Milestone
version code. The first four layers of the light butterflies in invntt involve some additions and subtractions without multiplication Mo miestone

Therefore, For Kyber1024 in the f_stack version code, two layers of addition/subtraction might overflow the int16_t. | wonder how

you deal with this problem in the f_stack code and why does it still work?
Development

N hranchae ar il ranacte

Bugs, bugs everywhere

“...two layers of addition/subtraction might overflow the int16_t. | wonder how you deal with
this problem in the f_stack code and why does it still work?”

Bugs, bugs everywhere

“...two layers of addition/subtraction might overflow the int16_t. | wonder how you deal with
this problem in the f_stack code and why does it still work?”

“... On your question on why it still works, | believe that this is an edge case that does not get
triggered by the testing scripts.”

Bugs, bugs everywhere

vincentvbh commented on Mar 6, 2021 Contributor |~ Author

There is a bug in the inverse of NTT in Saber. But the bug is triggered with a very low probability that it is not triggered on testing.

Bugs, bugs everywhere

vincentvbh commented on Mar 6, 2021 Contributor | Author | =«-

There is a bug in the inverse of NTT in Saber. But the bug is triggered with a very low probability that it is not triggered on testing.

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

Implementation security

Hardware side-channels
- Require physical access to device
+ Examples: Power, EM attacks
+ Protection through dedicated countermeasures
- Typical slowdown of much more than 100%
+ Progress, but no “conclusion”; we don't know how to protect PQC!

Implementation security

Hardware side-channels
- Require physical access to device
+ Examples: Power, EM attacks
+ Protection through dedicated countermeasures
- Typical slowdown of much more than 100%
+ Progress, but no “conclusion”; we don't know how to protect PQC!

Software side-channels

- Leak through microarchitectural side-channels
- No physical access required, can run remotely
- Traditional countermeasure: constant-time

+ No branching on secrets
+ No memory access at secret location
+ No variable-time arithmetic on secrets

While the cryptographers were busy. .

ﬁof @! |

e @
=

\

MELTDOWN

rtzbl
$

CACHE OUT

eed
&
$

EEO

High-assurance PQC

FORMOSA ,
A University of _
CRYPTO BRI BRISTOL wespssesmennors @

T

- Effort to formally verify crypto | dea PORTO

+ Currently three main projects:
+ EasyCrypt proof assistant Radboud University :&5
Y iR/
+ jasmin programming language INESC %
+ Libjade (PQ-)crypto library
. o TU UNIVERSITY OF
+ Core community of ~ 30—40 people 5 7 (I
74@"

- Discussion forum with ~150 people NVENTEURS DL HONDE NUMERIQUE

The toolchain and workflow

Jasmin code
.jazz, .jinc

!

automatic

safety
K) checker

Easycrypt Model

fil S ERERERE Jasmin Compiler
-CCTes extracts to
interactive : - .
proofs ' certifiably-compiles to
for all kinds of v
properties Q\‘

EasyCrypt assembly

Libjade — Goals

+ High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

- Multi-architecture support (first focus on AMD64)
+ Easy “drop in” integration for most protocol libraries and systems

Libjade — Goals

+ High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

- Multi-architecture support (first focus on AMD64)

+ Easy “drop in” integration for most protocol libraries and systems
- Automated proofs of thread safety and memory safety

- Certifled compilation to assembly

Libjade — Goals

+ High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

- Multi-architecture support (first focus on AMD64)

+ Easy “drop in” integration for most protocol libraries and systems
- Automated proofs of thread safety and memory safety

- Certifled compilation to assembly

- Verified resistance against “classical” timing attacks

- Verified resistance against (certain) Spectre attacks

- Verified memory zeroization on return

Libjade — Goals

+ High-performance implementations of all NIST PQC primitives
(first focus on Kyber and Dilithium)

- Multi-architecture support (first focus on AMD64)

+ Easy “drop in” integration for most protocol libraries and systems
- Automated proofs of thread safety and memory safety

- Certifled compilation to assembly

- Verified resistance against “classical” timing attacks

- Verified resistance against (certain) Spectre attacks

- Verified memory zeroization on return

- Computer-verified (manual) proofs of functional correctness

+ Connection to computer-verified (manual) cryptographic proofs

Formally verified Kyber

+ Specify Kyber in EasyCrypt

+ Two jasmin implementations

Interactive proofs of functional correctness

+ Performance similar to optimized C/asm

3-year effort

+ Improvements to jasmin/EasyCrypt

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet,
Oliveira, Pacheco, Quaresma, Schwabe, Séré, and Strub.
Formally verifying Kyber — Episode IV: Implementation Cor-
rectness. TCHES 2023-3

EC Specification

KYBER.CCAKEM

KYBER.CPAPKE-Core

Sampling A «+
Parse(SHAKE128(p))

Sampling s, e,r,e;, €5 +
CBD,,(SHAKE256(0, -))

I KYBER.CCAKEM

KYBER CPAPKE

! extracts to

Jasmin ref. impl.

KYBER.CCAKEM

KYBER.CPAPKE

certified
| compilation to

KYBER.CCAKEM

KYBER.CPAPKE

--| Assembly ref. impl. |- - -,

correct distribution

random input bytes

correct distribution

random input bytes

functionally equiv.

Uniform sampling of A

Binomial sam-
pling of s,e,r,e;, e

,----|EC Jasmin AVX2 |- ---

KYBER.CCAKEM

KYBER.CPAPKE

! extracts to

Jasmin AVX2 impl.

KYBER.CCAKEM

KYBER.CPAPKE

| certified
| Compiiation to

i KYBER.CCAKEM

KYBER CPAPKE

,--1{Assembly AVX2 impl. | - -,

Spectre v1 (“Speculative bounds-check bypass”)

stack u8[16] public;
stack u8[32] secret;
reg u8 t;

reg u64 r, i;

i=0;

while(i < 16) {
t = public[(int) i]
r = leak(t);

)

Protecting against Spectre v1

+ Security type system in jasmin
- Enforce no branching on secrets, no memory access at secret position
- Also enforce this in speculative execution after misspeculated conditional branch

Protecting against Spectre v1

+ Security type system in jasmin
- Enforce no branching on secrets, no memory access at secret position
- Also enforce this in speculative execution after misspeculated conditional branch
+ Guide programmer to protect code
- Selective speculative load hardening (selSLH):
- Misspeculation flag in register
+ Mask “transient” values with flag before leaking them

Protecting against Spectre v1

+ Security type system in jasmin
- Enforce no branching on secrets, no memory access at secret position
- Also enforce this in speculative execution after misspeculated conditional branch
+ Guide programmer to protect code
- Selective speculative load hardening (selSLH):
- Misspeculation flag in register
+ Mask “transient” values with flag before leaking them
+ Overhead for Kyber768 (on Intel Comet Lake):
+ 0.28% for Keypair
+ 0.55% for Encaps
+ 0.75% for Decaps
- Exploits synergies with protections against “traditional” timing attacks

High-Speed Cryptography against Spectre v1. |IEEE S&P 2023.

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typing]

Interested?

https://github.com/mupq/pqmé
https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/

https://github.com/mupq/pqm4
https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

