FSBday:
Implementing Wagner’s Generalized Birthday Attack against the round-1 SHA-3 Candidate FSB

Christiane Peters, Peter Schwabe
joint work with Dan Bernstein, Tanja Lange and Ruben Niederhagen

Eindhoven University of Technology

September 10, 2009

SHARCS 2009
Wagner’s generalized birthday attack

Given 2^{i-1} lists containing B-bit strings.

Generalized birthday problem:
The 2^{i-1}-sum problem consists of finding 2^{i-1} elements—exactly one per list—such that their sum equals 0 (modulo 2).

Wagner (CRYPTO ’02)
We can expect a solution to the generalized birthday problem after one run of an algorithm using time $O((i - 1) \cdot 2^{B/i})$ and lists of size $O(2^{B/i})$.
Wagner’s tree algorithm

Given 4 lists containing each about $2^{B/3}$ elements which are chosen uniform at random from $\{0, 1\}^B$.

- On level 0 take two lists and compare their elements on their least significant $B/3$ bits.

 Merge: If two elements coincide on those $B/3$ bits; put the xor of both elements into a new list. Proceed in the same manner with the other two lists.

 Uniform randomness of the elements \Rightarrow both lists will contain about $2^{B/3}$ elements.

- On level 1 take the remaining two lists. Compare their elements by considering the remaining $2B/3$ bits.

 Expect to get 1 match after the merge step.
Tree algorithm for 2^{i-1} lists

The tree algorithm generalizes to 2^{i-1} lists as follows:

- Compare lists — always two at a time — by looking at the least significant B/i bits of elements.

- On level $i - 2$ we are left with two lists whose elements need to be compared on $2B/i$ remaining bits.
Precomputation step

Suppose that there is space for lists of size only 2^c with $c < B/i$.

Bernstein (SHARCS ’07):

- Generate $2^{c \cdot (B - ic)}$ entries and only consider those of which the least significant $B - ic$ bits are zero.

- Then apply Wagner’s algorithm with lists of size 2^c and clamp away c bits on each level.

Wagner

\[
\begin{array}{cccccc}
B/i & B/i & B/i & \cdots & B/i \\
\end{array}
\]

Bernstein

\[
\begin{array}{cccccc}
c & c & c & \cdots & B - ic \\
\end{array}
\]
Precomputation step

Suppose that there is space for lists of size only 2^c with $c < B/i$.

Bernstein (SHARCS '07):

- Generate $2^{c \cdot (B-ic)}$ entries and only consider those of which the least significant $B - ic$ bits are zero.

- Then apply Wagner’s algorithm with lists of size 2^c and clamp away c bits on each level.

Generalization:

- The least significant $B - ic$ bits can have an arbitrary value

- **Clamping value** does not have to be the same on all lists (but: sum of all clamping values has to be 0).

- If an attack does not produce a collision we simply restart the attack with different clamping values.
Repeating (parts of) the tree algorithm

- When performing the algorithm with smaller lists some bits are left “uncontrolled” at the end.

- Deal with the lower success probability by repeatedly running the attack with different clamping values.

- We can apply the same idea of changing clamping values to an arbitrary merge step of the tree algorithm.
Target: the compression function of FSB\textsubscript{48}

Given a binary random 192×393216 matrix H; number of blocks: $w = 24$.

Input: a regular weight-24 bit string of length 393216, i.e., there is exactly a single 1 in each interval $[(i - 1) \cdot 16384, i \cdot 16834]_{1 \leq i \leq 24}$.

Output: Xor the 48 columns indicated by the input bit string.

Goal: Find a collision in FSB\textsubscript{48}'s compression function; i.e., find 48 columns—exactly 2 per block—which add up to 0.
Applying Wagner to FSB\textsubscript{48}

Determine the number of lists for a Wagner attack on FSB\textsubscript{48}.

- We choose 16 lists to solve this particular 48-sum problem. (16 is the highest power of 2 dividing 48).

- Each list entry will be the xor of three columns coming from one and a half blocks (no overlaps!)

Straightforward Wagner

- Applying Wagner’s attack with 16 lists in a straightforward way means that we need to have at least $2^{\lceil 192/5 \rceil}$ entries per list.

- By clamping away 39 bits in each step we expect to get at least one collision after one run of the tree algorithm.
List entries

- For each list we generate more than twice the amount needed for a straightforward attack.

- Reduce amount of data by clamping away 2 bits $\Rightarrow 2^{38}$ entries per list (clamp 38 bits on each level)

- Ultimately we are not interested in the value of the entry; but in the column positions in the matrix that lead to this all-zero value.
 - Value-only representation
 - Positions-only representation: keep full positions; if we need the value (or parts of it) it can be dynamically recomputed from the positions.

- Note: Unlike storage requirements for values the number of bytes for positions increases with increasing levels.
Storing positions

- Encode column positions of each entry in 40 bits (5 bytes) for the first level.

- The expected number of entries per list remains the same but the number of lists halves; so the total amount of data is the same on each level when using dynamic recomputation.

- Storing 16 lists with 2^{38} entries, each entry encoded in 5 bytes requires 20480 GB of storage space.

- The Coding and Cryptography Computer Cluster at Eindhoven University of Technology only has a total hard disk space of about 5440 GB, so we have to adapt our attack strategy to this limitation.
Adapt attack strategy

- Can handle at most $5 \cdot 2^{40}/2^4/5 = 2^{36}$ entries per list.

- A straightforward implementation would use lists of size 2^{36}: clamp 4 bits during list generation; this leads to 2^{36} values for each of the 16 lists.

- We expect to run the attack 256.5 times until we find a collision.
Attack in two phases

Idea

- First phase: Figure out which clamping constants yield collision
- Second phase: Compute matrix positions yielding collision
- During phase one we do not have to store positions of entries
- On each level compress entries to shortest possible representation
 - Level 0: 5 bytes (positions only)
 - Level 1: 10 bytes (positions only)
 - Level 2: 13 bytes (values only)
 - Level 3: 9 bytes (values only)
- Use lists of size 2^{37}
- Clamp 3 bits through precomputation
- This leaves 4 bits “uncontrolled”
Attack Strategy

\[\Rightarrow 1152 \text{ GB} + 1664 \text{ GB} + 2560 \text{ GB} = 5376 \text{ GB} \]
Our Strategy

- Continue the computation with different clamping constants until $L_{4,0}$ contains at least one entry
- Store the values in $L_{3,0}$ and $L_{3,1}$ that yield the collision
- Recompute $L_{3,0}$ and $L_{3,1}$ using positions-only representation to find positions in the matrix
- Expected:
 - $1 \times$ Computation of $L_{3,0}$ (values only)
 - $1 \times$ Computation of $L_{2,2}$ (values only)
 - $16.5 \times$ Computation of $L_{2,3}$, $L_{3,1}$, $L_{4,0}$ (values only)
 - $1 \times$ Computation of $L_{3,0}$ (positions only)
 - $1 \times$ Computation of $L_{3,1}$ (positions only)
Finding the bottleneck(s)

- Basically every byte needs to be stored, sent, and loaded.
- Possible performance bottlenecks
 - CPU computation power
 - Network throughput
 - Hard-disk throughput
Finding the bottleneck(s)

- Basically every byte needs to be stored, sent, and loaded.
- Possible performance bottlenecks
 - CPU computation power
 - Network throughput
 - Hard-disk throughput
- If the CPU is too slow we have to write faster code
- Determine network throughput: IBM MPI benchmark
- Determine hard-disk throughput: our own hard-disk benchmark
 - Direct I/O, no filesystem
 - Sequential and randomized access patterns
Finding the bottleneck(s)

![Graph showing bandwidth in MByte/s against packet size in bytes for hdd sequential, hdd randomized, and mpi.]
Finding the bottleneck(s)

- Basically every byte needs to be stored, sent, and loaded.
- Possible performance bottlenecks
 - CPU computation power
 - Network throughput
 - Hard-disk throughput
- If the CPU is too slow we have to write faster code
- Determine network throughput: IBM MPI benchmark
- Determine hard-disk throughput: our own hard-disk benchmark
 - Direct I/O, no filesystem
 - Sequential and randomized access patterns

⇒ Mainly bottlenecked by hard-disk throughput
Parallelization

- Distribute *fractions* of lists to nodes according to some of the bits relevant for sorting and merging on the next level
- Each node on each level holds two fractions of two lists
- Each node performs sort-and-merge on its list fractions
Parallelization
Parallelization

- Split fractions further into 512 parts of 640 MB each (presort, according to 9 bits)
- Sort and merge parts independently in memory
- Pipeline
 - Loading from hard disk into memory
 - Sorting of two parts
 - Merging of previously sorted parts
- Requires 6 parts in memory at the same time (3.75 GB)
Parallelization

- Split fractions further into 512 parts of 640 MB each (presort, according to 9 bits)
- Sort and merge parts independently in memory
- Pipeline
 - Loading from hard disk into memory
 - Sorting of two parts
 - Merging of previously sorted parts
- Requires 6 parts in memory at the same time (3.75 GB)
- Two blocks of operations:
 - Load, Sort, Merge, Send
 - Receive, Presort, Store
Parallelization

- Split fractions further into 512 parts of 640 MB each (presort, according to 9 bits)
- Sort and merge parts independently in memory
- Pipeline
 - Loading from hard disk into memory
 - Sorting of two parts
 - Merging of previously sorted parts
- Requires 6 parts in memory at the same time (3.75 GB)
- Two blocks of operations:
 - Load, Sort, Merge, Send
 - Receive, Presort, Store
- Observe: Bits known through node and presorting do not have to be stored in value-only representation
- That’s how we get down to 13 and 9 bytes on levels 2 and 3 respectively
Ales instead of Files

- Each node uses a large data partition `/dev/sda1`
- Opened with `O_DIRECT` (without caching)
- Organize data in chunks of 1,198,080 Bytes ("ales")
- This value is a multiple of 9, 13, 40 (entry sizes) and 512 (for DMA)
- AleSystem also stores number of elements per part
- Throughput with sequential access (during list generation): \(~90\) MB/sec
- Throughput with random access: \(~40\) MB/sec
Timing Results

- Current benchmarks for phase 1:
 - Computation of list $L_{3,0}$: ~ 32 h (once)
 - Computation of list $L_{2,2}$: ~ 14 h (once)
 - Computation of list $L_{2,3}$: ~ 14 h (exp. $16.5 \times$)
 - Computation of list $L_{3,1}$: ~ 4 h (exp. $16.5 \times$)
 - Check for collision in $L_{3,0}$ and $L_{3,1}$: ~ 3.5 h (exp. $16.5 \times$)

- Expected time for phase 1: $32 + 14 + 16.5 \cdot (14 + 4 + 3.5) = 400.7$ h or 17 days

- Time for phase 2: ~ 33 h per half-tree, in total ~ 66 h

- Expected time in total: ~ 19.5 days.
Timing Results

- Current benchmarks for phase 1:
 - Computation of list $L_{3,0}$: ~ 32 h (once)
 - Computation of list $L_{2,2}$: ~ 14 h (once)
 - Computation of list $L_{2,3}$: ~ 14 h (exp. 16.5×)
 - Computation of list $L_{3,1}$: ~ 4 h (exp. 16.5×)
 - Check for collision in $L_{3,0}$ and $L_{3,1}$: ~ 3.5 h (exp. 16.5×)

- Expected time for phase 1: $32 + 14 + 16.5 \cdot (14 + 4 + 3.5) = 400.7$ h or 17 days

- Time for phase 2: ~ 33 h per half-tree, in total ~ 66 h

- Expected time in total: ~ 19.5 days.

- Some parts of the code might be optimized further

- The attack is stateful so it is easy to exchange code with faster version
Further information

Cluster: http://www.win.tue.nl/cccc/

Code: Will be available (public domain)