Introduction to lattice-based KEMs

May 4, 2022
<table>
<thead>
<tr>
<th>Row Labels</th>
<th>Key Exchange</th>
<th>Signature</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Braids</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Chebychev</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Codes</td>
<td>19</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Finite Automata</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hash</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Hypercomplex Numbers</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Isogeny</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lattice</td>
<td>24</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Mult. Var</td>
<td>6</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Rand. walk</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>RSA</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Grand Total</td>
<td>57</td>
<td>23</td>
<td>80</td>
</tr>
</tbody>
</table>
All the way back in 2016...

“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the researchers who developed “New Hope”, the post-quantum algorithm that we selected for this experiment.”

All the way back in 2016...

“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/
All the way back in 2016...

“The deployed algorithm is a variant of “New Hope”, a quantum-resistant cryptosystem”

Learning with errors (LWE)

• Given uniform $A \in \mathbb{Z}_q^{k \times \ell}$
• Given “noise distribution” χ
• Given samples $As + e$, with $e \leftarrow \chi$
Learning with errors (LWE)

• Given uniform $A \in \mathbb{Z}_q^{k \times \ell}$
• Given “noise distribution” χ
• Given samples $As + e$, with $e \leftarrow \chi$
• Search version: find s
• Decision version: distinguish from uniform random
• Given uniform $A \in \mathbb{Z}_q^{k \times \ell}$
• Given samples $\lceil A_s \rceil_p$, with $p < q$
Learning with rounding (LWR)

• Given uniform $A \in \mathbb{Z}_q^{k \times \ell}$
• Given samples $\lfloor As \rfloor_p$, with $p < q$
• Search version: find s
• Decision version: distinguish from uniform random
Using structured lattices

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Only NIST candidate exclusively using standard LWE: FrodoKEM
• Idea to solve this: allow structured matrix A, e.g.,

\[
A = \begin{pmatrix}
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\beta_1 & \beta_2 & \cdots & \beta_n \\
\end{pmatrix}
\]
• Problem with LWE-based cryptosystems: public-key size
• Only NIST candidate exclusively using standard LWE: FrodoKEM
• Idea to solve this: allow structured matrix A, e.g.,
 • NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
Using structured lattices

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - 1)$; n prime, q a power of 2
• Problem with LWE-based cryptosystems: public-key size
• Only NIST candidate exclusively using standard LWE: FrodoKEM
• Idea to solve this: allow structured matrix A, e.g.,
 • NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 • NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - 1)$; n prime, q a power of 2
 • NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - X - 1)$; q prime, n prime
Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Only NIST candidate exclusively using standard LWE: FrodoKEM
• Idea to solve this: allow structured matrix \(A \), e.g.,
 • NewHope: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1) \); \(n \) a power of 2, \(q \) prime
 • NTRU: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - 1) \); \(n \) prime, \(q \) a power of 2
 • NTRU Prime: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - X - 1) \); \(q \) prime, \(n \) prime
 • Kyber/Saber: use small-dimension matrices and vectors over \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256} + 1) \)
Using structured lattices

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix \(\mathbf{A} \), e.g.,
 - NewHope: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1) \); \(n \) a power of 2, \(q \) prime
 - NTRU: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - 1) \); \(n \) prime, \(q \) a power of 2
 - NTRU Prime: work in \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n - X - 1) \); \(q \) prime, \(n \) prime
 - Kyber/Saber: use small-dimension matrices and vectors over \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256} + 1) \)
- Perform arithmetic on (vectors of) polynomials instead of vectors/matrices over \(\mathbb{Z}_q \)
How to build a KEM?

<table>
<thead>
<tr>
<th>Alice (server)</th>
<th>Bob (client)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s, e \xleftarrow{$} \chi$</td>
<td>$s', e' \xleftarrow{$} \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$b \rightarrow u \leftarrow as' + e'$</td>
</tr>
</tbody>
</table>

Alice has $v = us = ass' + e's$

Bob has $v' = bs' = ass' + es'$

- Secret and noise polynomials s, s', e, e' are small
- v and v' are *approximately* the same
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s, e \leftarrow \chi$</td>
<td>$s', e' \leftarrow \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>(b)</td>
</tr>
<tr>
<td>$v' \leftarrow us$</td>
<td>(u)</td>
</tr>
<tr>
<td>$a \leftarrow Parse(XOF(seed))$</td>
<td></td>
</tr>
<tr>
<td>$u \leftarrow as' + e'$</td>
<td></td>
</tr>
<tr>
<td>$v \leftarrow bs'$</td>
<td></td>
</tr>
</tbody>
</table>

This is LPR encryption, written as KEM (except for generation of a).
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>$seed \leftarrow {0, 1}^{256}$</td>
<td>$s', e' \leftarrow \chi$</td>
</tr>
<tr>
<td>$a \leftarrow \text{Parse}(ext{XOF}(seed))$</td>
<td>$a \leftarrow \text{Parse}(ext{XOF}(seed))$</td>
</tr>
<tr>
<td>$s, e \leftarrow \chi$</td>
<td>$s', e' \leftarrow \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$a \leftarrow \text{Parse}(ext{XOF}(seed))$</td>
</tr>
<tr>
<td>$v' \leftarrow us$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$v \leftarrow bs'$</td>
</tr>
</tbody>
</table>
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{seed} \leftarrow {0, 1}^{256}$</td>
<td>$\text{s}', \text{e}' \leftarrow \chi$</td>
</tr>
<tr>
<td>$\text{a} \leftarrow \text{Parse} (\text{XOF} (\text{seed}))$</td>
<td>$\text{a} \leftarrow \text{Parse} (\text{XOF} (\text{seed}))$</td>
</tr>
<tr>
<td>$\text{s}, \text{e} \leftarrow \chi$</td>
<td>$\text{u} \leftarrow \text{as}' + \text{e}'$</td>
</tr>
<tr>
<td>$\text{b} \leftarrow \text{as} + \text{e}$</td>
<td>$\text{v} \leftarrow \text{bs}'$</td>
</tr>
<tr>
<td>$\text{v}' \leftarrow \text{us}$</td>
<td>$\text{k} \leftarrow {0, 1}^n$</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>$\text{k} \leftarrow \text{Encode} (\text{k})$</td>
</tr>
<tr>
<td>$\leftarrow \text{c}$</td>
<td>$\text{c} \leftarrow \text{v} + \text{k}$</td>
</tr>
</tbody>
</table>
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seed ← $\{0, 1\}^{256}</code></td>
<td><code>s’, e’, e'' ← $\chi</code></td>
</tr>
<tr>
<td><code>a ← Parse(XOF(seed))</code></td>
<td><code>a ← Parse(XOF(seed))</code></td>
</tr>
<tr>
<td><code>s, e ← $\chi</code></td>
<td><code>s’, e’, e'' ← $\chi</code></td>
</tr>
<tr>
<td><code>b ← as + e</code></td>
<td><code>a ← Parse(XOF(seed))</code></td>
</tr>
<tr>
<td><code>v’ ← us</code></td>
<td><code>c ← v + k</code></td>
</tr>
</tbody>
</table>
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed $\leftarrow {0, 1}^{256}$</td>
<td></td>
</tr>
<tr>
<td>$a \leftarrow \text{Parse}(\text{XOF}(\text{seed}))$</td>
<td>$s', e', e'' \leftarrow \chi$</td>
</tr>
<tr>
<td>$s, e \leftarrow \chi$</td>
<td></td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$a \leftarrow \text{Parse}(\text{XOF}(\text{seed}))$</td>
</tr>
<tr>
<td></td>
<td>$u \leftarrow as' + e'$</td>
</tr>
<tr>
<td></td>
<td>$v \leftarrow bs' + e''$</td>
</tr>
<tr>
<td></td>
<td>$k \leftarrow {0, 1}^n$</td>
</tr>
<tr>
<td>$v' \leftarrow us$</td>
<td>$k \leftarrow \text{Encode}(k)$</td>
</tr>
<tr>
<td>$k' \leftarrow c - v'$</td>
<td>$c \leftarrow v + k$</td>
</tr>
</tbody>
</table>
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>$seed \leftarrow {0, 1}^{256}$</td>
<td>$s', e', e'' \leftarrow \chi$</td>
</tr>
<tr>
<td>$a \leftarrow \text{Parse}(\text{XOF}(seed))$</td>
<td>$a \leftarrow \text{Parse}(\text{XOF}(seed))$</td>
</tr>
<tr>
<td>$s, e \leftarrow \chi$</td>
<td>$s', e', e'' \leftarrow \chi$</td>
</tr>
<tr>
<td>$b \leftarrow as + e$</td>
<td>$a \leftarrow \text{Parse}(\text{XOF}(seed))$</td>
</tr>
<tr>
<td>$v' \leftarrow us$</td>
<td>$u \leftarrow as' + e'$</td>
</tr>
<tr>
<td>$k' \leftarrow c - v'$</td>
<td>$v \leftarrow bs' + e''$</td>
</tr>
<tr>
<td>$\mu \leftarrow \text{Extract}(k')$</td>
<td>$k \leftarrow \text{Encode}(k)$</td>
</tr>
<tr>
<td>$k \leftarrow \text{Encode}(k)$</td>
<td>$k \leftarrow \text{Encode}(k)$</td>
</tr>
<tr>
<td>$v' \leftarrow us$</td>
<td>$c \leftarrow v + k$</td>
</tr>
<tr>
<td>$\mu \leftarrow \text{Extract}(k)$</td>
<td>$\mu \leftarrow \text{Extract}(k)$</td>
</tr>
</tbody>
</table>
How to build a KEM, part 2

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>seed ← ({0, 1}^{256})</td>
<td>s’, e’, e’’ ← (\chi)</td>
</tr>
<tr>
<td>a←Parse(XOF(seed))</td>
<td>a←Parse(XOF(seed))</td>
</tr>
<tr>
<td>s, e ← (\chi)</td>
<td>(b, seed) →</td>
</tr>
<tr>
<td>b←as + e</td>
<td>a←Parse(XOF(seed))</td>
</tr>
<tr>
<td>s’, e’, e’’ ← (\chi)</td>
<td>u←as’ + e’</td>
</tr>
<tr>
<td>v’←us</td>
<td>v←bs’ + e’’</td>
</tr>
<tr>
<td>k’←c − v’</td>
<td>k ← {0, 1}^n</td>
</tr>
<tr>
<td>μ←Extract(k’)</td>
<td>μ←Extract(k</td>
</tr>
</tbody>
</table>

This is LPR encryption, written as KEM (except for generation of a)
• Encoding in LPR encryption: map n bits to n coefficients:
 • A zero bit maps to 0
 • A one bit maps to $q/2$
• Idea: Noise affects low bits of coefficients, put data into high bits
• Encoding in LPR encryption: map \(n \) bits to \(n \) coefficients:
 • A zero bit maps to 0
 • A one bit maps to \(q/2 \)

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into \([−q/2, q/2]\)
 • Closer to 0 (i.e., in \([−q/4, q/4]\)): set bit to zero
 • Closer to \(±q/2\): set bit to one
From passive to CCA security

- The base scheme does not have active security
- Attacker can choose arbitrary noise, learns s from failures
From passive to CCA security

- The base scheme does not have active security
- Attacker can choose arbitrary noise, learns s from failures
- Fujisaki-Okamoto transform (sketched):

<table>
<thead>
<tr>
<th>Alice (Server)</th>
<th>Bob (Client)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen():</td>
<td>Enc(seed, b):</td>
</tr>
<tr>
<td>$\text{pk, sk} \leftarrow \text{KeyGen()}$</td>
<td>$x \leftarrow {0, \ldots, 255}^{32}$</td>
</tr>
<tr>
<td>seed, $b \leftarrow \text{pk}$</td>
<td>$k, \text{coins} \leftarrow \text{SHA3-512}(x)$</td>
</tr>
</tbody>
</table>

Dec($s, (u, v)$):

- $x' \leftarrow \text{Decrypt}(s, (u, v))$
- $k', \text{coins}' \leftarrow \text{SHA3-512}(x')$
- $u', v' \leftarrow \text{Encrypt}((\text{seed}, b), x', \text{coins}')$
- **verify if** $(u', v') = (u, v)$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$
- **Keygen:**
 - Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 - public key: $h = pf_qg$, secret key: (f, f_p)
Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and $p = 3$
• Keygen:
 • Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 • public key: $h = p f_q g$, secret key: (f, f_p)
• Encrypt:
 • Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 • Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
 • Compute ciphertext $e = r \cdot h + m$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$
- **Keygen:**
 - Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 - Public key: $h = pf_qg$, secret key: (f, f_p)
- **Encrypt:**
 - Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- **Decrypt:**
 - Compute $v = f \cdot e$
Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and $p = 3$

• **Keygen:**
 • Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 • public key: $h = pf_q g$, secret key: (f, f_p)

• **Encrypt:**
 • Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 • Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
 • Compute ciphertext $e = r \cdot h + m$

• **Decrypt:**
 • Compute $v = f \cdot e = f \cdot (r \cdot h + m)$

• Advantages/Disadvantages compared to LPR:
 • Asymptotically weaker than Ring-LWE approach
 • Slower keygen, but faster encryption/decryption
Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and $p = 3$

• **Keygen:**
 - Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 - public key: $h = pf_qg$, secret key: (f, f_p)

• **Encrypt:**
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $\mathbf{e} = \mathbf{r} \cdot h + \mathbf{m}$

• **Decrypt:**
 - Compute $\mathbf{v} = f \cdot \mathbf{e} = f \cdot (\mathbf{r} \cdot h + \mathbf{m}) = f(\mathbf{r} \cdot (pf_qg) + \mathbf{m})$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$

Keygen:
- Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
- public key: $h = pf_qg$, secret key: (f, f_p)

Encrypt:
- Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
- Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
- Compute ciphertext $e = r \cdot h + m$

Decrypt:
- Compute $v = f \cdot e = f \cdot (r \cdot h + m) = f(r \cdot (pf_qg) + m) = prg + f \cdot m$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$

Keygen:
- Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
- public key: $h = pf_q g$, secret key: (f, f_p)

Encrypt:
- Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
- Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
- Compute ciphertext $e = r \cdot h + m$

Decrypt:
- Compute $v = f \cdot e = f \cdot (r \cdot h + m) = f(r \cdot (pf_q g) + m) = prg + f \cdot m$
- Compute $m = v \cdot f_p \mod p$
Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and $p = 3$
- **Keygen:**
 - Find $f, g \in \mathcal{R}_q$ and $f_q = f^{-1} \mod q$, $f_p = f^{-1} \mod p$
 - public key: $h = pf_q g$, secret key: (f, f_p)
- **Encrypt:**
 - Map message m to $m \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $r \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- **Decrypt:**
 - Compute $v = f \cdot e = f \cdot (r \cdot h + m) = f(r \cdot (pf_q g) + m) = prg + f \cdot m$
 - Compute $m = v \cdot f_p \mod p$
- Advantages/Disadvantages compared to LPR:
 - Asymptotically weaker than Ring-LWE approach
 - Slower keygen, but faster encryption/decryption
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
Design space 1: What ring?

- Structured lattice-based schemes use ring $R_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option**: $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
- **Second option**: $q = 2^k, f = (X^n + 1), n = 2^m$ (Saber)
- Third option:
- Fourth option:
- Fifth option:
- Sixth option:

No proof that any option is more or less secure

NTRU Prime advertises “less structure” in their R_q

NewHope and Kyber have fastest (NTT-based) arithmetic
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n - 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, $n + 1$ prime (Round5)
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option**: $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
- **Second option**: $q = 2^k, f = (X^n + 1), n = 2^m$ (Saber)
- **Third option**: $q = 2^k, f = \Phi_{n+1}, n + 1$ prime (Round5)
- **Fourth option**: q prime, $f = (X^n + 1) = \Phi_{2n}, n = 2^m$ (NewHope, Kyber, LAC)
- **Sixth option**: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises “less structure” in their \mathcal{R}_q
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option:** $q = 2^k$, $f = (X^n - 1)$, n prime (NTRU)
- **Second option:** $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- **Third option:** $q = 2^k$, $f = \Phi_{n+1}$, $n + 1$ prime (Round5)
- **Fourth option:** q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- **Fifth option:** q prime, $f = (X^n - X - 1)$ irreducible, n prime (NTRU Prime)
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option:** $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
- **Second option:** $q = 2^k, f = (X^n + 1), n = 2^m$ (Saber)
- **Third option:** $q = 2^k, f = \Phi_{n+1}, n + 1$ prime (Round5)
- **Fourth option:** q prime, $f = (X^n + 1) = \Phi_{2n}, n = 2^m$ (NewHope, Kyber, LAC)
- **Fifth option:** q prime, $f = (X^n - X - 1)$ irreducible, n prime (NTRU Prime)
- **Sixth option:** ThreeBears works on large integers instead of polynomials

- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their \mathcal{R}_q
- NewHope and Kyber have fastest (NTT-based) arithmetic
Design space 1: What ring?

• Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 • q typically either prime or a power of two
 • f typically of degree between 512 and 1024
• First option: $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
• Second option: $q = 2^k, f = (X^n + 1), n = 2^m$ (Saber)
• Third option: $q = 2^k, f = \Phi_{n+1}, n+1$ prime (Round5)
• Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}, n = 2^m$ (NewHope, Kyber, LAC)
• Fifth option: q prime, $f = (X^n - X - 1)$ irreducible, n prime (NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of polynomials
• No proof that any option is more or less secure
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option**: $q = 2^k$, $f = (X^n - 1)$, n prime (NTRU)
- **Second option**: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- **Third option**: $q = 2^k$, $f = \Phi_{n+1}$, $n + 1$ prime (Round5)
- **Fourth option**: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- **Fifth option**: q prime, $f = (X^n - X - 1)$ irreducible, n prime (NTRU Prime)
- ** Sixth option**: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises “less structure” in their \mathcal{R}_q
Design space 1: What ring?

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- **First option**: $q = 2^k, f = (X^n - 1), n$ prime (NTRU)
- **Second option**: $q = 2^k, f = (X^n + 1), n = 2^m$ (Saber)
- **Third option**: $q = 2^k, f = \Phi_{n+1}, n + 1$ prime (Round5)
- **Fourth option**: q prime, $f = (X^n + 1) = \Phi_{2n}, n = 2^m$ (NewHope, Kyber, LAC)
- **Fifth option**: q prime, $f = (X^n - X - 1)$ irreducible, n prime (NTRU Prime)
- **Sixth option**: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises “less structure” in their \mathcal{R}_q
- NewHope and Kyber have fastest (NTT-based) arithmetic
Design space 2: module vs. ring?

• “Traditionally”, work directly with elements of \mathcal{R}_q (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):
 • Choose smaller n, e.g., $n = 256$ (Kyber, Saber, ThreeBears)
 • Work with small-dimension matrices and vectors over \mathcal{R}_q
Design space 2: module vs. ring?

- “Traditionally”, work directly with elements of \mathcal{R}_q (“Ring-LWE”)
- Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., $n = 256$ (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE
Design space 2: module vs. ring?

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., $n = 256$ (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE
Design space 2: module vs. ring?

• “Traditionally”, work directly with elements of \mathcal{R}_q (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):
 • Choose smaller n, e.g., $n = 256$ (Kyber, Saber, ThreeBears)
 • Work with small-dimension matrices and vectors over \mathcal{R}_q
• MLWE encrypts shorter messages than Ring-LWE
• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):
 • Optimize arithmetic in \mathcal{R}_q once
 • Use same optimized \mathcal{R}_q arithmetic for all security levels
Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means
 • more security from the underlying hard problem
 • higher failure probability of decryption
Design space 3: what noise?

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - more security from the underlying hard problem
 - higher failure probability of decryption
- Three main choices to make:
 - **Narrow or wide noise**
 - Narrow noise (e.g., in \{-1, 0, 1\}) not conservative
 - Wide noise requires larger q (or more failures)
 - Larger q means larger public key and ciphertext

LWE or LWR
- LWE considered more conservative (independent noise)
- LWR easier to implement (no noise sampling)
- LWR allows more compact public key and ciphertext

Fixed-weight noise or not?
- Fixed-weight noise needs random permutation (sorting)
- Naive implementations leak secrets through timing
- Advantage of fixed-weight: easier to bound (or eliminate) decryption failures
Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means
 • more security from the underlying hard problem
 • higher failure probability of decryption
• Three main choices to make:
 • Narrow or wide noise
 • Narrow noise (e.g., in \{-1, 0, 1\}) not conservative
 • Wide noise requires larger q (or more failures)
 • Larger q means larger public key and ciphertext
 • LWE or LWR
 • LWE considered more conservative (independent noise)
 • LWR easier to implement (no noise sampling)
 • LWR allows more compact public key and ciphertext
Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means
 • more security from the underlying hard problem
 • higher failure probability of decryption
• Three main choices to make:
 • Narrow or wide noise
 • Narrow noise (e.g., in \{-1, 0, 1\}) not conservative
 • Wide noise requires larger q (or more failures)
 • Larger q means larger public key and ciphertext
 • LWE or LWR
 • LWE considered more conservative (independent noise)
 • LWR easier to implement (no noise sampling)
 • LWR allows more compact public key and ciphertext
 • Fixed-weight noise or not?
 • Fixed-weight noise needs random permutation (sorting)
 • Naive implementations leak secrets through timing
 • Advantage of fixed-weight: easier to bound (or eliminate) decryption failures
Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)
Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)
- For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext
Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)
- For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext
- Active (CCA) security needs negligible failure probability
Design space 5: public parameters?

• “Traditional” approach to choosing \(a \) in LWE/LWR schemes:

 “Let \(a \) be a uniformly random . . . ”
Design space 5: public parameters?

• “Traditional” approach to choosing \(a \) in LWE/LWR schemes:
 “Let \(a \) be a uniformly random…”

• Before NewHope: real-world approach: generate fixed \(a \) once
“Traditional” approach to choosing a in LWE/LWR schemes: “Let a be a uniformly random...”

Before NewHope: *real-world* approach: generate fixed a once

What if a is backdoored?

Parameter-generating authority can break key exchange

“Solution”: Nothing-up-my-sleeves (involves endless discussion!)
Design space 5: public parameters?

• “Traditional” approach to choosing \(a \) in LWE/LWR schemes:
 “Let \(a \) be a uniformly random . . .”

• Before NewHope: real-world approach: generate fixed \(a \) once

• What if \(a \) is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
 • Perform massive precomputation based on \(a \)
 • Use precomputation to break all key exchanges
 • Infeasible today, but who knows. . .
 • Attack in the spirit of Logjam
Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
 “Let a be a uniformly random . . .”

• Before NewHope: real-world approach: generate fixed a once

• What if a is backdoored?

• Parameter-generating authority can break key exchange

• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
 • Perform massive precomputation based on a
 • Use precomputation to break all key exchanges
 • Infeasible today, but who knows . . .
 • Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time

• Server can cache a for some time (e.g., 1h)

• All NIST PQC candidates now use this approach
• Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
• “Encrypt” messages of > 256 bits
• **Need to encrypt** only 256-bit key
• Question: How do we put those additional bits to use?
• Answer: Use error-correcting code (ECC) to reduce failure probability
Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- “Encrypt” messages of > 256 bits
- **Need to encrypt** only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- NewHope: very simple threshold decoding
Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- “Encrypt” messages of > 256 bits
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- NewHope: very simple threshold decoding
- LAC, Round5: more advanced ECC
 - Correct more errors, obtain smaller public key and ciphertext
 - More complex to implement, in particular without leaking through timing
Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security
• Can offer passively secure version
• Protocols will combine this with signatures for authentication
Design space 7: CCA security?

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
- Protocols will combine this with signatures for authentication
- **Advantages:**
 - Higher failure probability → more compact
 - Simpler to implement, no CCA transform
 - More flexibility for secret/noise generation
- **Disadvantages:**
 - Less robust (will somebody reuse keys?)
 - More options (CCA vs. CPA): easier to make mistakes
Ephemeral key exchange does not need CCA security
Can offer passively secure version
Protocols will combine this with signatures for authentication

Advantages:
- Higher failure probability → more compact
- Simpler to implement, no CCA transform
- More flexibility for secret/noise generation

Disadvantages:
- Less robust (will somebody reuse keys?)
- More options (CCA vs. CPA): easier to make mistakes
Design space 8: CCA transforms

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
• General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)

• Tweaks to FO transform:
 • Hash public-key into coins: multitarget protection (for non-zero failure probability)
 • Hash public-key into shared key: KEM becomes contributory
Design space 8: CCA transforms

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - Hash ciphertext into shared key: more robust (?)

How to handle rejection?
- Return special symbol (-1): explicit
- Return $H(s, C)$ for secret s: implicit

As of round 2, no proposal uses explicit rejection
- Would break some security reduction
- More robust in practice (return value always 0)
Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)

• Tweaks to FO transform:
 • Hash public-key into coins: multitarget protection (for non-zero failure probability)
 • Hash public-key into shared key: KEM becomes contributory
 • Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
 • Return special symbol (return -1): explicit
 • Return H(s, C) for secret s: implicit
• General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
• Tweaks to FO transform:
 • Hash public-key into coins: multitarget protection (for non-zero failure probability)
 • Hash public-key into shared key: KEM becomes contributory
 • Hash ciphertext into shared key: more robust (?)
• How to handle rejection?
 • Return special symbol (return -1): explicit
 • Return H(s, C) for secret s: implicit
• As of round 2, no proposal uses explicit rejection
 • Would break some security reduction
 • More robust in practice (return value alwas 0)
Summary

- Lattice-based KEMs offer best overall performance in the PQ world
- Many tradeoffs between
 - Security (including passive vs. active)
 - Failure rate
 - Size
 - Speed
- More information about NIST PQC:
 - https://pqc-wiki.fau.edu/
Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure “LPR KEM”, see slide 7
- Work in polynomial ring \(\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1) \)
- Parameters \(q = 4096, n = 1024 \)
- Centered binomial noise with \(k = 8 \)
- “Messages” have \(n \) bits \(\Rightarrow \) trivial encoding (see slide 8)
Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure “LPR KEM”, see slide 7
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters $q = 4096, n = 1024$
- Centered binomial noise with $k = 8$
- “Messages” have n bits \Rightarrow trivial encoding (see slide 8)

1. Implement arithmetic in \mathcal{R}_q (file `poly.c`)
2. Implement the Wookie KEM (file `kem.c`)
Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure “LPR KEM”, see slide 7
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters $q = 4096$, $n = 1024$
- Centered binomial noise with $k = 8$
- “Messages” have n bits \Rightarrow trivial encoding (see slide 8)

1. Implement arithmetic in \mathcal{R}_q (file poly.c)
2. Implement the Wookie KEM (file kem.c)

- make builds various unit tests in test/ subdirectory
- Running test.sh in test/ subdirectory runs all tests
Centered binomial noise with $k = 8$

- Let $HW(b)$ be the Hamming weight of a byte b
Let $\text{HW}(b)$ be the Hamming weight of a byte b.

To sample one coefficient $p[i]$ of a polynomial in \mathcal{R}_q:

- Sample two uniformly random bytes a and b.
- Set $p[i] = \text{HW}(a) - \text{HW}(b)$.
Centered binomial noise with \(k = 8 \)

- Let \(\text{HW}(b) \) be the Hamming weight of a byte \(b \)
- To sample one coefficient \(p[i] \) of a polynomial in \(\mathcal{R}_q \):
 - Sample two uniformly random bytes \(a \) and \(b \)
 - Set \(p[i] = \text{HW}(a) - \text{HW}(b) \)
- Resulting coefficient will be in \(\{-8, \ldots, 8\} \)
- Sampling a polynomial needs \(2n = 2048 \) uniformly random bytes
Some remarks

- Software skeleton assumes Linux system
- Need basic build tools (\texttt{make, gcc, ...}) installed:
 \begin{verbatim}
 apt install build-essential
 \end{verbatim}
- Some unit tests and \texttt{test.sh} script assume Sage to be installed
 \begin{verbatim}
 apt install sagemath
 \end{verbatim}
- Can also download pre-compiled binaries of Sage:
 \url{https://doc.sagemath.org/html/en/installation/binary.html}