
Some lessons learned from NIST PQC

Peter Schwabe

April 23, 2025

This talk is biased – after all, NIST PQC is a competition.

• Based on invited talk at PQCRYPTO 2022

• Not much on signature on-ramp

• Cryptographic engineering point of view
• Looking back after 9 years of NIST PQC:

• What went well
• What went not so well

(in “our submissions”)

1

This talk is biased – after all, NIST PQC is a competition.

• Based on invited talk at PQCRYPTO 2022

• Not much on signature on-ramp

• Cryptographic engineering point of view
• Looking back after 9 years of NIST PQC:

• What went well
• What went not so well

(in “our submissions”)

1

This talk is biased – after all, NIST PQC is a competition.

• Based on invited talk at PQCRYPTO 2022

• Not much on signature on-ramp

• Cryptographic engineering point of view

• Looking back after 9 years of NIST PQC:
• What went well
• What went not so well

(in “our submissions”)

1

This talk is biased – after all, NIST PQC is a competition.

• Based on invited talk at PQCRYPTO 2022

• Not much on signature on-ramp

• Cryptographic engineering point of view
• Looking back after 9 years of NIST PQC:

• What went well
• What went not so well

(in “our submissions”)

1

This talk is biased – after all, NIST PQC is a competition.

• Based on invited talk at PQCRYPTO 2022

• Not much on signature on-ramp

• Cryptographic engineering point of view
• Looking back after 9 years of NIST PQC:

• What went well
• What went not so well (in “our submissions”)

1

Our submissions

CRYSTALS-Kyber
Roberto Avanzi
Joppe Bos
Jintai Ding
Léo Ducas
Eike Kiltz
Tancrède Lepoint
Vadim Lyubashevsky
John M. Schanck
Peter Schwabe
Gregor Seiler
Damien Stehle

CRYSTALS-Dilithium
Léo Ducas
Eike Kiltz
Tancrède Lepoint
Vadim Lyubashevsky
Peter Schwabe
Gregor Seiler
Damien Stehlé
Shi Bai

SPHINCS+

Jean-Philippe Aumasson
Daniel J. Bernstein
Ward Beullens
Christoph Dobraunig
Maria Eichlseder
Scott Fluhrer
Stefan-Lukas Gazdag
Andreas Hülsing
Panos Kampanakis
Stefan Kölbl
Tanja Lange
Martin M. Lauridsen
Florian Mendel
Ruben Niederhagen
Christian Rechberger
Joost Rijneveld
Peter Schwabe
Bas Westerbaan 2

1. Designing

“A complete written specification of the algorithms shall be included, consisting of all
necessary mathematical operations, equations, tables, diagrams, and parameters that are
needed to implement the algorithms. The document shall include design rationale and an
explanation for all the important design decisions that are made”

—Dustin Moody, February 24, 2016 (PQCRYPTO 2016)

3

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – so many decisions!

“Oh, you mean numbers?!”

—Giulio Malavolta, September 2022

• Choose concrete parameters for different security levels

• All randomness from randombytes or just a seed?

• Fix sampling algorithms (e.g., constant-time sorting)

• Select symmetric primitives

• Concretize domain separation

• Tradeoffs, tradeoffs, tradeoffs. . .

4

1. Designing – Exhibit A

Dilithium – v3.0 vs. v3.1
• Message hash only 384 bits

• 192 bits of sec. against collisions

• Not sufficient for NIST level 5

5

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM-SPR (Distinct-function multi-target second preimage resistance)
of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM-SPR (Distinct-function multi-target second preimage resistance)
of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Exhibit B

SPHINCS+, round 3
• Security relies on DM-SPR (Distinct-function multi-target second preimage resistance)
of underlying hash function

• Three different choices of hash function: SHA-256, SHAKE-256, Haraka

• Sydney Antonov, April 20, 2022: attack against DM-SPR of SHA-256

• Attack cost higher than NIST level 1, but lower than level 3 and 5

“This is an interesting attack that does demonstrate that our real hash functions do not
perfectly behave like random oracles”

—Andreas Hülsing, April 21, 2022

6

1. Designing – Two questions

1. Will the schemes selected now be widely used?

2. Will those schemes survive in the long run?

7

1. Designing – Two questions

Deployment of ML-KEM
• Integrated into Firefox, Chrome, Brave. . .

• Server-side supported by, e.g., Google and Cloudflare

• More than 100 billion connections per day at Cloudflare alone

• Also deployed in Signal, iMessage, by AWS. . .

• Certified smartcard by Infineon

Deployment of ML-DSA and SLH-DSA
• SLH-DSA for secure boot on OpenTitan

• First cars with ML-DSA-secured software updates soon

7

1. Designing – Two questions

Deployment of ML-KEM
• Integrated into Firefox, Chrome, Brave. . .

• Server-side supported by, e.g., Google and Cloudflare

• More than 100 billion connections per day at Cloudflare alone

• Also deployed in Signal, iMessage, by AWS. . .

• Certified smartcard by Infineon

Deployment of ML-DSA and SLH-DSA
• SLH-DSA for secure boot on OpenTitan

• First cars with ML-DSA-secured software updates soon

7

1. Designing – Two questions

Deployment of ML-KEM
• Integrated into Firefox, Chrome, Brave. . .

• Server-side supported by, e.g., Google and Cloudflare

• More than 100 billion connections per day at Cloudflare alone

• Also deployed in Signal, iMessage, by AWS. . .

• Certified smartcard by Infineon

Deployment of ML-DSA and SLH-DSA
• SLH-DSA for secure boot on OpenTitan

• First cars with ML-DSA-secured software updates soon

7

2. Proving

“Submitters are not required to provide a proof of security, although such proofs will be
considered if they are available.”

—NIST PQC, Call for Proposals

8

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform
• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform

• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit A

Kyber round 1
• LPR scheme’s public key is t = As + e
• This is an (R/M)LWE sample and assumed to be uniform in the proof

• Kyber in round 1 compressed this (round off low bits)

• t′ = Decompress(Compress(t)) is not uniform
• Reduction from MLWE in round-1 Kyber was invalid:

“We note that a potential issue is that the security proof does not directly apply to Kyber itself,
but rather to a modified version of the scheme which does not compress the public key.”

—NIST IR 8240

9

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – Exhibit B

SPHINCS+ – original proof
• Reduce from second-preimage resistance

• Place challenge x = H(y) inside hash chains

• Forgery produces preimage of x with certain prob.

• Reduction hopes to obtain second preimage y′ ̸= y with x = H(y′)

• Problem: len(x) = len(y)

• Second preimage does not exist with high probablity

• Forger can refuse to forge if there is a second preimage

10

2. Proving – so many failure modes

• Proof is wrong

• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct

• Theorem is also wrong
• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme

• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

2. Proving – so many failure modes

• Proof is wrong
• Theorem is correct
• Theorem is also wrong

• Scheme is still (possibly) secure
• Scheme is efficiently broken

• Proof doesn’t apply to the scheme
• Proof correct, but theorem “insufficient”

• Example: attack hides in non-tightness

• Proof (and possibly theorem) too vague

• Theorem and proof correct, but not very useful

“A is secure if A is secure”

11

3. Implementing

“NISTPQC, despite being an important and timely project, has produced the largest regression
ever in the quality of cryptographic software. This will not be easy to fix.”

—Daniel J. Bernstein, October 5, 2018

12

3. Implementing – Exhibit A

Dilithium commit on Dec. 28, 2017
• Bug in Dilithium sampler

• Two consecutive coefficients are equal

• Allows key recovery

• Reported by Peter Pessl on Dec. 27, 2017

13

3. Implementing – Exhibit B

PQClean
• Joint work with Matthias Kannwischer, Joost Rijneveld, John Schanck, Douglas Stebila,
Goutam Tamvada, Thom Wiggers

• Test harness for PQC implementations
• Integrate reference implementations

• Run through test harness
• “clean up”

14

3. Implementing – Exhibit B

Flaw KEMs Sigs Flaw KEMs Sigs

Memory safety 3 4 Endianness assumptions 7 2
Signed integer overflow 3 1 Platform-specific behavior 4 0
Alignment assumptions 4 4 Variable-Length Arrays 4 1
Other Undefined Behavior 1 1 Compiler extensions 5 2
Dead code 3 4 Integer sizes 6 3
Global state 2 1 Non-constant time 4 0
Licensing unclear 3 1

14

3. Implementing – Exhibit B

“In almost every scheme we identified “unclean” code, ranging from missing casts to
memory safety problems and other forms of undefined behavior.”

—https://eprint.iacr.org/2022/337

14

https://eprint.iacr.org/2022/337

3. Implementing – Exhibit C

15

3. Implementing – Exhibit C

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15

3. Implementing – Exhibit C

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with
this problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”

15

3. Implementing – Exhibit C

15

4. Benchmarking

Two main benchmarking frameworks
• eBACS/SUPERCOP (https://bench.cr.yp.to)

• Run by Bernstein and Lange
• Overlap with submissions: Classic McEliece, NTRU Prime, PQ-RSA, SPHINCS+

• Benchmark on variety of “large” platforms
• Need to run Linux/UNIX OS

• pqm4 (https://github.com/mupq/pqm4)
• Run by Kannwischer, Petri, Rijneveld, Schwabe, Stoffelen
• Overlap with submissions: Classic McEliece, Kyber, Dilithium, NTRU,MQDSS, NewHope,
SPHINCS+,MAYO, UOV

• Benchmark on Arm Cortex M4

16

https://bench.cr.yp.to
https://github.com/mupq/pqm4

4. Benchmarking

Two main benchmarking frameworks
• eBACS/SUPERCOP (https://bench.cr.yp.to)

• Run by Bernstein and Lange
• Overlap with submissions: Classic McEliece, NTRU Prime, PQ-RSA, SPHINCS+

• Benchmark on variety of “large” platforms
• Need to run Linux/UNIX OS

• pqm4 (https://github.com/mupq/pqm4)
• Run by Kannwischer, Petri, Rijneveld, Schwabe, Stoffelen
• Overlap with submissions: Classic McEliece, Kyber, Dilithium, NTRU,MQDSS, NewHope,
SPHINCS+,MAYO, UOV

• Benchmark on Arm Cortex M4

16

https://bench.cr.yp.to
https://github.com/mupq/pqm4

4. Benchmarking – some thoughts

Lack of independent benchmarking
• Benchmarking in the hands of submitters

• Much more desirable: Independent benchmarking by competition “hosts”

17

4. Benchmarking – some thoughts

APIs matter
• NIST-API: serialization part of keypair, encaps, decaps, sign, sign_open
• Deployments use API with seperate serialization

• Ephemeral deployments never serialize secret keys
• Static deployments amortize de-serialization

• Massive impact on performance and design choices!

17

4. Benchmarking – some thoughts

Consider HW acceleration for symmetric crypto
• Many PQC schemes bottlenecked by Keccak
• Example: ML-KEM-768 encapsulation on OpenTitan1

• Software Keccak takes 66% of total cycles
• With hardware acceleration: 3% of total cycles

• Recommendation: benchmark also with HW Keccak, AES, SHA-2, SM3, SM4, ZUC

• Alternative: use very fast fake symmetric crypto for benchmarks

1A. Abdulrahman, F. Oberhansl, H. Pham, J. Philipoom, P. Schwabe, T. Stelzer, A. Zankl. Towards ML-KEM & ML-DSA
on OpenTitan, IEEE S&P 2025, to appear

17

4. Benchmarking – some thoughts

Consider HW acceleration for symmetric crypto
• Many PQC schemes bottlenecked by Keccak
• Example: ML-KEM-768 encapsulation on OpenTitan1

• Software Keccak takes 66% of total cycles
• With hardware acceleration: 3% of total cycles

• Recommendation: benchmark also with HW Keccak, AES, SHA-2, SM3, SM4, ZUC

• Alternative: use very fast fake symmetric crypto for benchmarks

1A. Abdulrahman, F. Oberhansl, H. Pham, J. Philipoom, P. Schwabe, T. Stelzer, A. Zankl. Towards ML-KEM & ML-DSA
on OpenTitan, IEEE S&P 2025, to appear

17

5. Attacking

“The idea is that participants put their algorithms into the ring, and then we all spend a few
years beating on each other’s submissions.”

—Bruce Schneier, August 8, 2022

18

5. Attacking – Guessed Once

def recover_bit(ct, bit):
assert bit < len(ct) // 4000
ts = [struct.unpack('BB', ct[i:i+2]) for i in range(4000*bit, 4000*(bit+1), 2)]
xs, ys = [a for a, b in ts if b == 1], [a for a, b in ts if b == 2]
return sum(xs) / len(xs) >= sum(ys) / len(ys)

def decrypt(ct):
res = sum(recover_bit(ct, b) << b for b in range(len(ct) // 4000))
return int.to_bytes(res, len(ct) // 4000 // 8, 'little')

—Lorenz Panny, December 21, 2017

19

5. Attacking in 2022

ia.cr/2022/975

Yet, full break without any “warning”

20

5. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

20

5. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

20

5. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

20

5. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

20

5. Attacking in 2022

Castryck, Decru: An efficient key recovery attack on SIDH

• SIDH was “A decade unscathed” (Craig Costello, ePrint 2021/543)

• SIKE lowered parameters during NIST PQC
(following Jaques, Schanck: Quantum cryptanalysis in the RAM model: Claw-finding
attacks on SIKE (ePrint 2019/103))

• Competent, smart people tried to break it
(e.g., Martindale, Panny: How to not break SIDH (ePrint 2019/558))

Yet, full break without any “warning”

20

5. Attacking – even more attacks!

21

6. Communicating

“I don’t know if you’re familiar with this website, twitter.com? If you like crypto drama, this is
where you go. Except if you go to the pqc-forum, which is also. . . generally. . . it’s even better”.

—Bor de Kock, August 17, 2022

https://www.youtube.com/watch?v=kXcYy8LOI9s, starting at 20:22.

22

https://www.youtube.com/watch?v=kXcYy8LOI9s

6. Communicating

“I don’t know if you’re familiar with this website, twitter.com? If you like crypto drama, this is
where you go. Except if you go to the pqc-forum, which is also. . . generally. . . it’s even better”.

—Bor de Kock, August 17, 2022

https://www.youtube.com/watch?v=kXcYy8LOI9s, starting at 20:22.

22

https://www.youtube.com/watch?v=kXcYy8LOI9s

6. Communicating – pqc-forum

23

6. Communicating – pqc-forum

“Follow the ”Rule of 1” and the ”Rule of n”: When you speak, make 1 point and then let others
speak, and when in a group of ”n” people, speak ”1/nth” of the time.”

—Aspiration Participants:Guidelines

https://facilitation.aspirationtech.org/index.php?title=Participants:Guidelines

23

https://facilitation.aspirationtech.org/index.php?title=Participants:Guidelines

6. Communicating – pqc-forum

Download all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I 2805 mails (first one from Nov. 2, 2016)

23

6. Communicating – pqc-forum

Download almost all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I 2805 mails (first one from Nov. 2, 2016)

23

6. Communicating – pqc-forum

Download almost all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I have 2805 mails (first one from Nov. 2, 2016)

23

6. Communicating – pqc-forum

Download almost all mails, run statistics

• pqc-forum had 666 threads (“conversations”) on Sep. 14, 2022

• First mail by Dustin Moody from Aug. 1, 2016

• I havehad 2805 mails (first one from Nov. 2, 2016)

23

6. Communicating – pqc-forum

for i in mails/*;do
FROM=$(grep ^From: $i | head -n 1 | sed "s/From:\ //" | sed "s/.*<\([^>]*\)>/\1/")
if ["$FROM" = "pqc-forum@list.nist.gov"]; then

FROM=$(grep ^X-Original-From: $i | head -n 1 | \
sed "s/X-Original-From:\ //" | sed "s/.*<\([^>]*\)>/\1/")

fi
echo $FROM

done | sort | uniq -c | sort -n

• 369 sender addresses

• Sometimes multiple addresses for one person

• 131 addresses sent just one mail

• 275 addresses sent at most 5 mails

23

6. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. address2 146
3. address3 113
4. address4 106
5. address5 100
6. address6 81
7. address7 69
8. address8 68
9. address9 50

10. address10 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

23

6. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. address10 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

23

6. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. peter@cryptojedi.org 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

23

6. Communicating – pqc-forum

The “Top 10”

1. address1 407
2. dustin.moody@nist.gov 146
3. address3 113
4. address4 106
5. daniel.apon@nist.gov 100
6. jacob.alperin-sheriff@nist.gov 81
7. address7 69
8. ray.perlner@nist.gov 68
9. address9 50

10. peter@cryptojedi.org 47
10. address11 47

>50% of mails sent
by only 15 people.

>30% of all words by
non-NIST authors are
from one address.

23

So, what are the lessons learned?

1. Employ state-of-the-art software engineering techniques

2. Use mechanized proof techniques as early and extensively as possible

3. Real-world test deployments as early as possible

4. Use a different communication platform than Google Groups

5. Enjoy the ride and be nice to each other!

24

So, what are the lessons learned?

1. Employ state-of-the-art software engineering techniques

2. Use mechanized proof techniques as early and extensively as possible

3. Real-world test deployments as early as possible

4. Use a different communication platform than Google Groups

5. Enjoy the ride and be nice to each other!

24

So, what are the lessons learned?

1. Employ state-of-the-art software engineering techniques

2. Use mechanized proof techniques as early and extensively as possible

3. Real-world test deployments as early as possible

4. Use a different communication platform than Google Groups

5. Enjoy the ride and be nice to each other!

24

So, what are the lessons learned?

1. Employ state-of-the-art software engineering techniques

2. Use mechanized proof techniques as early and extensively as possible

3. Real-world test deployments as early as possible

4. Use a different communication platform than Google Groups

5. Enjoy the ride and be nice to each other!

24

So, what are the lessons learned?

1. Employ state-of-the-art software engineering techniques

2. Use mechanized proof techniques as early and extensively as possible

3. Real-world test deployments as early as possible

4. Use a different communication platform than Google Groups

5. Enjoy the ride and be nice to each other!

24

