
The migration to post-quantum cryptography

Peter Schwabe
Max Planck Institute for Security and Privacy

October 9, 2025



1

[A small demo]



2



3

See https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025

https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025


4

Post-quantum crypto (PQC)

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum
computers.

5 main directions
▶ Lattice-based crypto (PKE and Sigs)
▶ Code-based crypto (mainly PKE)
▶ Multivariate-based crypto (mainly Sigs)
▶ Hash-based signatures (only Sigs)
▶ Isogeny-based crypto (it’s complicated. . . )



4

Post-quantum crypto (PQC)

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum
computers.

5 main directions
▶ Lattice-based crypto (PKE and Sigs)
▶ Code-based crypto (mainly PKE)
▶ Multivariate-based crypto (mainly Sigs)
▶ Hash-based signatures (only Sigs)
▶ Isogeny-based crypto (it’s complicated. . . )



5

Should you care now?

“Harvest now, decrypt later”

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg

Mosca’s theorem
X + Y > Z

▶ X : For how long do you need encrypted data to be secure?
▶ Y : How long does it take you to migrate to PQC
▶ Z : Time it will take to build a cryptographically relevant quantum computer

If X + Y > Z , you should worry.

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg


5

Should you care now?

“Harvest now, decrypt later”

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg

Mosca’s theorem
X + Y > Z

▶ X : For how long do you need encrypted data to be secure?
▶ Y : How long does it take you to migrate to PQC
▶ Z : Time it will take to build a cryptographically relevant quantum computer

If X + Y > Z , you should worry.

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg


6

NIST PQC – how it started

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.



7

NIST PQC – how it went

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1



7

NIST PQC – how it went

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1



8

[Back to our demo]



9

So, all good? Is the world safe again?



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place

▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest

▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions

▶ 2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



10

A bit of history: the case of MD5

▶ MD5 is a cryptographic hash function
▶ Hash functions are used as building blocks all over the place
▶ 1991: MD5 is proposed by Rivest
▶ 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
▶ 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5
▶ 2004: Wang presents MD5 collisions
▶ 2008: Rogue CA certificate using MD5

(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)
▶ 2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!



11

Challenge 1: Performance

X25519 speed
▶ keygen: 28187 Skylake cycles
▶ shared: 87942 Skylake cycles

Kyber-768 speed
▶ keygen: 39750 Skylake cycles
▶ encaps: 53936 Skylake cycles
▶ decaps: 42339 Skylake cycles

X25519 sizes
▶ public key: 32 bytes

Kyber-768 sizes
▶ public key: 1184 bytes
▶ ciphertext: 1088 bytes



11

Challenge 1: Performance

X25519 speed
▶ keygen: 28187 Skylake cycles
▶ shared: 87942 Skylake cycles

Kyber-768 speed
▶ keygen: 39750 Skylake cycles
▶ encaps: 53936 Skylake cycles
▶ decaps: 42339 Skylake cycles

X25519 sizes
▶ public key: 32 bytes

Kyber-768 sizes
▶ public key: 1184 bytes
▶ ciphertext: 1088 bytes



12

Challenge 2: A KEM is not DH!

Alice Bob

A← ga B ← gb

A

B

K ← Ba = (gb)a = gab K ← Ab = (ga)b = gab



12

Challenge 2: A KEM is not DH!

Alice Bob

A← ga B ← gb

B

A

K ← Ba = (gb)a = gab K ← Ab = (ga)b = gab



12

Challenge 2: A KEM is not DH!

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K ← KEM.Dec(ct, sk)



13

Challenge 3: Bugs, bugs everywhere

Dilithium commit on Dec. 28, 2017

▶ Bug in Dilithium sampler
▶ Two consecutive coefficients are equal
▶ Allows key recovery
▶ Reported by Peter Pessl on Dec. 27, 2017



13

Challenge 3: Bugs, bugs everywhere



13

Challenge 3: Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with this
problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”



13

Challenge 3: Bugs, bugs everywhere

“. . . two layers of addition/subtraction might overflow the int16_t. I wonder how you deal with this
problem in the f_stack code and why does it still work?”

“. . .On your question on why it still works, I believe that this is an edge case that does not get
triggered by the testing scripts.”



13

Challenge 3: Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)



13

Challenge 3: Bugs, bugs everywhere

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)



14

Challenge 4: Implementation Security

▶ Attackers see more than input/output:
▶ Power consumption
▶ Electromagnetic radiation
▶ Timing

▶ Side-channel attacks:
▶ Measure information
▶ Use to obtain secret data



14

Challenge 4: Implementation Security

▶ Attackers see more than input/output:
▶ Power consumption
▶ Electromagnetic radiation
▶ Timing

▶ Side-channel attacks:
▶ Measure information
▶ Use to obtain secret data



15

Challenge 4: Side-channel countermeasures

Hardware side-channels
▶ Require physical access to device
▶ Examples: Power, EM attacks
▶ Protection through dedicated countermeasures
▶ Typical slowdown of much more than 100%
▶ Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
▶ Leak through microarchitectural side-channels
▶ No physical access required, can run remotely
▶ Traditional countermeasure: constant-time

▶ No branching on secrets
▶ No memory access at secret location
▶ No variable-time arithmetic on secrets



15

Challenge 4: Side-channel countermeasures

Hardware side-channels
▶ Require physical access to device
▶ Examples: Power, EM attacks
▶ Protection through dedicated countermeasures
▶ Typical slowdown of much more than 100%
▶ Progress, but no “conclusion”; we don’t know how to protect PQC!

Software side-channels
▶ Leak through microarchitectural side-channels
▶ No physical access required, can run remotely
▶ Traditional countermeasure: constant-time

▶ No branching on secrets
▶ No memory access at secret location
▶ No variable-time arithmetic on secrets



16

An arms race with compilers

“KyberSlash”
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;

▶ Division by constant usually turns into multiplications
▶ Turns into DIV instructions for certain compiler flags
▶ DIV with secret divident leaks

Compiler (re-)introduced secret branch
for(j=0;j<8;j++) {
mask = -(int16_t)((msg[i] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);

}
▶ Carefully hand-crafted to avoid secret branch
▶ Secret branch re-introduced by clang ≥15



17

Advanced microarchitectural attacks



18

High-assurance PQC

▶ Effort to formally verify crypto
▶ Currently three main projects:

▶ EasyCrypt proof assistant
▶ jasmin programming language
▶ Libjade (PQ-)crypto library

▶ Core team of ≈ 30–40 people
▶ Discussion forum with >350 people



19

The toolchain and workflow



20

End-to-end formally verified ML-KEM

▶ Reference and AVX2-optimized implementations in Jasmin
▶ Proven (memory-/type-)safety of implementations
▶ Future-proof constant-time (using Intel’s DOIT)
▶ Principled erasure of sensitive stack/register data at termination
▶ Systematic protections against Spectre v1
▶ (Extension to all Spectre variants needs merging)

▶ ML-KEM specification in EasyCrypt
▶ Implementations proven functionally correct (EasyCrypt)
▶ Reductionist proof of IND-CCA security (EasyCrypt)
▶ Ongoing work: wrap in ML-KEM “crypto agent”
▶ Ongoing work: real-world production deployment

https://github.com/pq-code-package/mlkem-libjade

https://github.com/pq-code-package/mlkem-libjade


20

End-to-end formally verified ML-KEM

▶ Reference and AVX2-optimized implementations in Jasmin
▶ Proven (memory-/type-)safety of implementations
▶ Future-proof constant-time (using Intel’s DOIT)
▶ Principled erasure of sensitive stack/register data at termination
▶ Systematic protections against Spectre v1
▶ (Extension to all Spectre variants needs merging)
▶ ML-KEM specification in EasyCrypt
▶ Implementations proven functionally correct (EasyCrypt)
▶ Reductionist proof of IND-CCA security (EasyCrypt)

▶ Ongoing work: wrap in ML-KEM “crypto agent”
▶ Ongoing work: real-world production deployment

https://github.com/pq-code-package/mlkem-libjade

https://github.com/pq-code-package/mlkem-libjade


20

End-to-end formally verified ML-KEM

▶ Reference and AVX2-optimized implementations in Jasmin
▶ Proven (memory-/type-)safety of implementations
▶ Future-proof constant-time (using Intel’s DOIT)
▶ Principled erasure of sensitive stack/register data at termination
▶ Systematic protections against Spectre v1
▶ (Extension to all Spectre variants needs merging)
▶ ML-KEM specification in EasyCrypt
▶ Implementations proven functionally correct (EasyCrypt)
▶ Reductionist proof of IND-CCA security (EasyCrypt)
▶ Ongoing work: wrap in ML-KEM “crypto agent”
▶ Ongoing work: real-world production deployment

https://github.com/pq-code-package/mlkem-libjade

https://github.com/pq-code-package/mlkem-libjade


21

Learn more

NIST PQC
▶ NIST PQC website:

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
▶ NIST mailing list:

https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

Formosa Crypto
▶ Main website: https://formosa-crypto.org
▶ Team chat: https://formosa-crypto.zulipchat.com/

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/


22

Learn even more

Papers related to high-assurance ML-KEM (1/2)
▶ Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma,

Schwabe, Séré, and Strub. Formally verifying Kyber – Episode IV: Implementation
Correctness. CHES 2023. https://eprint.iacr.org/2023/215

▶ Almeida, Arranz Olmos, Barbosa, Barthe, Dupressoir, Grégoire, Laporte, Léchenet, Low,
Oliveira, Pacheco, Quaresma, Schwabe, and Strub. Formally verifying Kyber – Episode V:
Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt. Crypto
2024. https://eprint.iacr.org/2024/843

▶ Barbosa and Schwabe. Kyber terminates. Polynesian Journal of Mathematics.
https://eprint.iacr.org/2023/708

▶ Barbosa, Kannwischer, Lim, Schwabe, and Strub. Formally Verified Correctness Bounds
for Lattice-Based Cryptography. ACM CCS 2025. https://eprint.iacr.org/2025/1562

https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2024/843
https://eprint.iacr.org/2023/708
https://eprint.iacr.org/2025/1562


22

Learn even more

Papers related to high-assurance ML-KEM (2/2)
▶ Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and

Tabary-Maujean. Typing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.
https://eprint.iacr.org/2022/1270

▶ Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, and Schwabe.
High-assurance zeroization., CHES 2024. https://eprint.iacr.org/2023/1713

▶ Arranz-Olmos, Barthe, Grégoire, Jancar, Laporte, Oliveira, and Schwabe. Let’s DOIT: Using
Intel’s Extended HW/SW Contract for Secure Compilation of Crypto Code. CHES 2025.
https://eprint.iacr.org/2025/759

▶ Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, and
Zhang. Protecting Cryptographic Code Against Spectre-RSB (and, in Fact, All Known
Spectre Variants). ASPLOS 2025. https://eprint.iacr.org/2024/1070

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2023/1713
https://eprint.iacr.org/2025/759
https://eprint.iacr.org/2024/1070

