The migration to post-quantum cryptography

Peter Schwabe

Max Planck Institute for Security and Privacy

October 9, 2025

[A small demo]

Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer™

Peter W. Shor’

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers
factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for
these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Development Roadmap

2016-2019 ® 2020e 2021e 2022 2023e 2024 2025 2026 2027 2028

Ronquantum reits oo e Elwedcsrun Seubdremc Ehasdasiun npmequun Glaveqsun Jooeasaun Inpoeqeron e ann
T Qo At i | casiauedk oteeeecs ey oeonweed crun toitliyie” | | ceitmairis | | frmiaulirts
skt
oate Plttorn
cote ® funcions Maoping Spacif brarss
seasnt colactan
Rosoarchore piddoware
Quantum
physicsts

Flamingo Fi Flamin

@ sty ion
® ontargst

See https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025

1BM Quantum

2029 2033+

Starling Blue Jay,
(1oom) 8)

https://www.ibm.com/quantum/blog/ibm-quantum-roadmap-2025

Post-quantum crypto (PQC)

Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum
computers.

Post-quantum crypto (PQC)

Post-quantum crypto is (asymmetric) crypto that resists attacks using classical and quantum
computers.

5 main directions
> |attice-based crypto (PKE and Sigs)
» Code-based crypto (mainly PKE)
> Multivariate-based crypto (mainly Sigs)
>
>

Hash-based signatures (only Sigs)
Isogeny-based crypto (it's complicated. . .)

A\

Should you care now?

‘Harvest now, decrypt later”

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of NSA's_Utah_Data_Center.jpg

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg

Should you care now?

‘Harvest now, decrypt later”

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of NSA's_Utah_Data_Center.jpg

Mosca's theorem

X+Y >Z7

> X: For how long do you need encrypted data to be secure?
> Y: How long does it take you to migrate to PQC
» 7: Time it will take to build a cryptographically relevant quantum computer

If X +Y > Z, you should worry.

https://en.wikipedia.org/wiki/Utah_Data_Center#/media/File:EFF_photograph_of_NSA's_Utah_Data_Center.jpg

NIST PQC — how it started

? 1 1
Braids 1 1 2
Chebychev 1 1
Codes 19 5 24
Finite Automata 1 1 2
Hash 4 4
Hypercomplex Numbers 1 1
Isogeny 1 1
Lattice 24 4 28
Mult. Var 6 7 13
Rand. walk 1 1
RSA 1 1 2
Grand Total 57 23 80

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

NIST PQC — how it went

Nov. 2017
69 proposals

Round 1
—

Feb. 2019
26 proposals

Round 2
—

Jul. 2020
7+8 proposals

Round 3
—_—

Jul. 2022
4 “winners”

@7

Ny

Nov. 2017 Round 1 Feb. 2019 Round 2 Jul. 2020 Round3 | Jul. 2022
69 proposals 26 proposals 7+8 proposals 4 “winners

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS™. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd

[Back to our demo]

So, all good? Is the world safe again?

A bit of history: the case of MD5

» MDS5 is a cryptographic hash function
» Hash functions are used as building blocks all over the place

A bit of history: the case of MD5

» MDS5 is a cryptographic hash function
» Hash functions are used as building blocks all over the place
> 1991: MD5 is proposed by Rivest

A bit of history: the case of MD5

» MDS5 is a cryptographic hash function

» Hash functions are used as building blocks all over the place

> 1991: MD5 is proposed by Rivest

> 1993: Collisions in MD5 compression function (den Boer, Bosselaers)

A bit of history: the case of MD5

» MDS5 is a cryptographic hash function

» Hash functions are used as building blocks all over the place

> 1991: MD5 is proposed by Rivest

> 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
> 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

A bit of history: the case of MD5

» MDS5 is a cryptographic hash function

» Hash functions are used as building blocks all over the place

> 1991: MD5 is proposed by Rivest

> 1993: Collisions in MD5 compression function (den Boer, Bosselaers)
> 1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

> 2004: Wang presents MD5 collisions

A bit of history: the case of MD5

VVvyVvyVvYVYyYYVvYyYy

MD5 is a cryptographic hash function

Hash functions are used as building blocks all over the place

1991: MD5 is proposed by Rivest

1993: Collisions in MD5 compression function (den Boer, Bosselaers)
1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

2004: Wang presents MD5 collisions

2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

A bit of history: the case of MD5

VVvyVvyVvYVYyYYVvYyYy

v

MD5 is a cryptographic hash function

Hash functions are used as building blocks all over the place

1991: MD5 is proposed by Rivest

1993: Collisions in MD5 compression function (den Boer, Bosselaers)
1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

2004: Wang presents MD5 collisions

2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

2012: Flame malware exploits MD5 weaknesses

A bit of history: the case of MD5

VVvyVvyVvYVYyYYVvYyYy

v

MD5 is a cryptographic hash function

Hash functions are used as building blocks all over the place

1991: MD5 is proposed by Rivest

1993: Collisions in MD5 compression function (den Boer, Bosselaers)
1996: Dobbertin, Bosselaers, Preneel: concerns about MD5

2004: Wang presents MD5 collisions

2008: Rogue CA certificate using MD5
(Sotirov, Stevens, Appelbaum, Lenstra, Molnar, Osvik, de Weger)

2012: Flame malware exploits MD5 weaknesses

Replacing MD5 was “easy”!

Challenge 1: Performance

X25519 speed Kyber-768 speed
» keygen: 28187 Skylake cycles > keygen: 39750 Skylake cycles
» shared: 87942 Skylake cycles > encaps: 53936 Skylake cycles
» decaps: 42339 Skylake cycles

Challenge 1: Performance @

Ny

X25519 speed Kyber-768 speed

» keygen: 28187 Skylake cycles > keygen: 39750 Skylake cycles
» shared: 87942 Skylake cycles > encaps: 53936 Skylake cycles
» decaps: 42339 Skylake cycles

Kyber-768 sizes
> public key: 32 bytes > public key: 1184 bytes

> ciphertext: 1088 bytes

Challenge 2: A KEM is not DH!

Alice Bob

A(—ga B(—gb

A\

K « B® — (gb)a — gab K <« Ab — (ga)b :gab

Challenge 2: A KEM is not DH!

Alice Bob

A(—ga B(—gb

A

K « B® = (gb)a :gab K « Ab — (ga)b :gab

Challenge 2: A KEM is not DH!

Initiator Responder

(pk, sk) «<— KEM.Gen

pk

(ct, K) < KEM.Enc(pk)

ct

K <+ KEM.Dec(ct, sk)

Challenge 3: Bugs, bugs everywhere

Dilithium commit on Dec. 28, 2017

212
213
214
215

216
217
218
219

337
338
339
340
341

342
343
344

= buf[pos];

|= (uint32_t)buf[pos + 1] << 8;
|= (uint32_t)buf[pos + 2] << 16;
&= OXFFFFF;
t@ = buf[pos];
t0 |= (uint32_t)buf[pos + 1] << 8;
te |= (uint32_t)buf[pos + 2] << 16;
tO &= OXFFFFF;

t
t
t
t

t = buf[pos + 2] >> 4;

t |= (uint32_t)buf[pos + 3] << 4;

t |= (uint32_t)buf[pos + 4] << 12;

tl = buf[pos + 2] >> 4;

t1 |= (uint32_t)buf[pos + 3] << 4;
tl1 |= (uint32_t)buf[pos + 4] << 12;

» Bug in Dilithium sampler

> Two consecutive coefficients are equal

> Allows key recovery

> Reported by Peter Pessl on Dec. 27, 2017

Challenge 3: Bugs, bugs ev

Questions about the range analysis of INTT for "Faster Kyber and Dilithium on
the Cortex-M4" #226

[OJeLLELRY JunhacHuang opened this issue on Mar 3 - 4 comments

.

JunhaoHuang commented on Mar 3 - edited ~ os

Hi team, | am reading the Kyber code regarding the recent paper "Faster Kyber and Dilithium on the Cortex-M4", and | have a
question about the matrix-vector product and Better Accumulation part regarding the {_stack version code.

| see that using the better accumulation technigue in the f_speed version code, we can reduce each element of the output vector
of matrix-vector product down to (-q,g). Since poly_invntt is normally used after the matrix-vector product, the range of the input
vector of poly_invntt lies in (-g,q) in the f_speed version code. The invntt function works in this situation.

What | wonder is that in the {_sfack version code, the matacc function actually uses the previous double basemul accumulation
function, and it should produce the result vector with element in (-kq, ka), k is the security parameter of Kyber. For Kyber1024, the
range of each polynomial element that invntt takes should be (-4q.4q). However, the invntt function is the same as the f_speed
version code. The first four layers of the light butterflies in invntt invelve some additions and subtractions without multiplication.
Therefore, For Kyber1024 in the {_stack version code, two layers of addition/subtraction might overflow the int16_t. | wonder how
you deal with this problem in the f_stack code and why does it still work?

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

i hranshas ar mull ramnacte

Challenge 3: Bugs, bugs everywhere

“...two layers of addition/subtraction might overflow the int16_t. | wonder how you deal with this
problem in the f_stack code and why does it still work?”

Challenge 3: Bugs, bugs everywhere

“...two layers of addition/subtraction might overflow the int16_t. | wonder how you deal with this
problem in the f_stack code and why does it still work?”

“...On your question on why it still works, | believe that this is an edge case that does not get
triggered by the testing scripts.”

Challenge 3: Bugs, bugs everywhere

vincentvbh commented on Mar 6, 2021 Contributor | | Author

There is a bug in the inverse of NTT in Saber. But the bug is triggered with a very low probability that it is not triggered on testing.

Challenge 3: Bugs, bugs everywhere

vincentvbh commented on Mar 6, 2021 Contributor | Author | ==«

There is a bug in the inverse of NTT in Saber. But the bug is triggered with a very low probability that it is not triggered on testing.

Both NTT bugs found by Yang, Liu, Shi, Hwang, Tsai, Wang, and Seiler (TCHES 2022/4)

Challenge 4: Implementation Security

Challenge 4: Implementation Security @

Ay

o

» Attackers see more than input/output:
» Power consumption
» Electromagnetic radiation
> Timing
» Side-channel attacks:
» Measure information
» Use to obtain secret data

Challenge 4: Side-channel countermeasures @

Ny

Hardware side-channels
> Require physical access to device
> Examples: Power, EM attacks
» Protection through dedicated countermeasures
> Typical slowdown of much more than 100%
> Progress, but no “conclusion’; we don't know how to protect PQC!

Challenge 4: Side-channel countermeasures

Hardware side-channels
> Require physical access to device
> Examples: Power, EM attacks
» Protection through dedicated countermeasures
> Typical slowdown of much more than 100%
> Progress, but no “conclusion’; we don't know how to protect PQC!

Software side-channels
> [eak through microarchitectural side-channels
» No physical access required, can run remotely

» Traditional countermeasure: constant-time

» No branching on secrets
» No memory access at secret location
> No variable-time arithmetic on secrets

| \

An arms race with compilers

“KyberSlash”
t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;
» Division by constant usually turns into multiplications
» Turns into DIV instructions for certain compiler flags
> DIV with secret divident leaks

Compiler (re-)introduced secret branch

for(j=0;j<8;j++) {
mask = -(int16_t) ((msgli] >> j)&1);
r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);
}
» Carefully hand-crafted to avoid secret branch

» Secret branch re-introduced by clang >15

Advanced microarchitectural attacks

@ @x@@

Hertzbleed @
MELTDOWN . - #\i \
S\s_l &

¥ &
l‘- CACHE OUT

@18

FORMOSA
CRYPTO

» Effort to formally verify crypto
» Currently three main projects:

» EasyCrypt proof assistant
» jasmin programming language
» Libjade (PQ-)crypto library

» Core team of ~ 30-40 people
» Discussion forum with >350 people

BOSTON
UNIVERSITY

.% University of
SE] BRISTOL

& INESC
&tua/-
’I N

Universidade do Minho

MAX PLANCK INSTITUTE @‘
FOR SECURITY AND PRIVACY

N/

[APORTO

- FACULDADE DE CiENCiAS
UNIVERSIDADE DO PORTO

Ay

PQSHIELD

Radboud Unlverslty

iﬁ

ROSeNPass
SANDBOX
TU/e &t
B UCLouvain

The toolchain and workflow E@@a

Jasmin code
.jazz, .jinc

$ type check

safety proof

Easyt;rgz:el\;lodel D ERRRRN Jasmin Compiler
* extracts to
interactive : B .
proofs ' certifiably-compiles to
for all kinds of v
properties P

EasyCrypt assembly

End-to-end formally verified ML-KEM @

Reference and AVX2-optimized implementations in Jasmin
Proven (memory-/type-)safety of implementations

Future-proof constant-time (using Intel's DOIT)

Principled erasure of sensitive stack/register data at termination
Systematic protections against Spectre v1

>
>
>
>
>
> (Extension to all Spectre variants needs merging)

https://github.com/pq-code-package/mlkem-libjade

End-to-end formally verified ML-KEM @@

Ny

Reference and AVX2-optimized implementations in Jasmin
Proven (memory-/type-)safety of implementations

Future-proof constant-time (using Intel's DOIT)

Principled erasure of sensitive stack/register data at termination
Systematic protections against Spectre v1

(Extension to all Spectre variants needs merging)

ML-KEM specification in EasyCrypt

Implementations proven functionally correct (EasyCrypt)
Reductionist proof of IND-CCA security (EasyCrypt)

VVvVyVYyVYyVYyVYVYYVYY

https://github.com/pq-code-package/mlkem-libjade

End-to-end formally verified ML-KEM @

Ny

Reference and AVX2-optimized implementations in Jasmin
Proven (memory-/type-)safety of implementations
Future-proof constant-time (using Intel's DOIT)

Principled erasure of sensitive stack/register data at termination
Systematic protections against Spectre v1

(Extension to all Spectre variants needs merging)

ML-KEM specification in EasyCrypt

Implementations proven functionally correct (EasyCrypt)
Reductionist proof of IND-CCA security (EasyCrypt)
Ongoing work: wrap in ML-KEM “crypto agent”

Ongoing work: real-world production deployment

VVYyVVVVYyVVYVYYVYY

https://github.com/pg-code-package/mlkem-libjade

https://github.com/pq-code-package/mlkem-libjade

Ay

@;

> NIST PQC website:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

> NIST mailing list:
https://csrc.nist.gov/projects/post-quantum-cryptography/email-1list
https://groups.google.com/a/list.nist.gov/g/pqc-forum

| .

Formosa Crypto
> Main website: https://formosa-crypto.org
> Team chat: https://formosa-crypto.zulipchat.com/

.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

Learn even more

Papers related to high-assurance ML-KEM (1/2)

» Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma,
Schwabe, Séré, and Strub. Formally verifying Kyber — Episode IV: Implementation
Correctness. CHES 2023. https://eprint.iacr.org/2023/215

» Almeida, Arranz Olmos, Barbosa, Barthe, Dupressoir, Grégoire, Laporte, Léchenet, Low,
Oliveira, Pacheco, Quaresma, Schwabe, and Strub. Formally verifying Kyber — Episode V:
Machine-checked IND-CCA security and correctness of ML-KEM in EasyCrypt. Crypto
2024. https://eprint.iacr.org/2024/843

»> Barbosa and Schwabe. Kyber terminates. Polynesian Journal of Mathematics.
https://eprint.iacr.org/2023/708

» Barbosa, Kannwischer, Lim, Schwabe, and Strub. Formally Verified Correctness Bounds
for Lattice-Based Cryptography. ACM CCS 2025. https://eprint.iacr.org/2025/1562

https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2024/843
https://eprint.iacr.org/2023/708
https://eprint.iacr.org/2025/1562

Learn even more

Papers related to high-assurance ML-KEM (2/2)

» Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and
Tabary-Maujean. Typing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.
https://eprint.iacr.org/2022/1270

» Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, and Schwabe.
High-assurance zeroization., CHES 2024. https://eprint.iacr.org/2023/1713

» Arranz-Olmos, Barthe, Grégoire, Jancar, Laporte, Oliveira, and Schwabe. Let's DOIT: Using
Intel's Extended HW/SW Contract for Secure Compilation of Crypto Code. CHES 2025.
https://eprint.iacr.org/2025/759

» Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, and
Zhang. Protecting Cryptographic Code Against Spectre-RSB (and, in Fact, All Known
Spectre Variants). ASPLOS 2025. https://eprint.iacr.org/2024/1070

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2023/1713
https://eprint.iacr.org/2025/759
https://eprint.iacr.org/2024/1070

