McBits: Fast code-based cryptography

Peter Schwabe
Radboud University Nijmegen, The Netherlands

Joint work with Daniel Bernstein, Tung Chou

December 17, 2013
IMA International Conference on Cryptography and Coding
Introduction: the bigger context

Public-key encryption

- Alice generates a key pair \((sk, pk)\), publishes \(pk\), keeps \(sk\) secret
- Bob takes some message \(M\) and \(pk\) and computes an ciphertext \(C\), sends \(C\) to Alice
- Alice uses \(sk\) to decrypt \(C\) and obtain \(M\)

Implementation targets

- Secure
- Fast
- (Small, low energy, low-power, ...)

McBits: Fast code-based cryptography
Introduction: the bigger context

Public-key encryption

- Alice generates a key pair \((sk, pk)\), publishes \(pk\), keeps \(sk\) secret
- Bob takes some message \(M\) and \(pk\) and computes an ciphertext \(C\), sends \(C\) to Alice
- Alice uses \(sk\) to decrypt \(C\) and obtain \(M\)

Implementation targets

- Secure
- Fast
- \((\text{Small, low energy, low-power, ...})\)
Secure Implementations

- “Traditional” cryptographic security: all attacks take $\geq 2^{128}$ operations
Secure Implementations

- “Traditional” cryptographic security: all attacks take $\geq 2^{128}$ operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
 - Secret information influences time taken by software
 - Attacker measures time, computes influence $^{-1}$ to obtain secret information
Secure Implementations

▶ “Traditional” cryptographic security: all attacks take $\geq 2^{128}$ operations
▶ Implementation security: no leakage through side channels
▶ Most relevant for desktops and servers: timing attacks
▶ Idea:
 ▶ Secret information influences time taken by software
 ▶ Attacker measures time, computes influence $^{-1}$ to obtain secret information
▶ Constant-time software avoids such timing leaks:
Secure Implementations

▶ “Traditional” cryptographic security: all attacks take \(\geq 2^{128} \) operations
▶ Implementation security: no leakage through side channels
▶ Most relevant for desktops and servers: timing attacks
▶ Idea:
 ▶ Secret information influences time taken by software
 ▶ Attacker measures time, computes influence \(^{-1}\) to obtain secret information
▶ Constant-time software avoids such timing leaks:
 ▶ No secret branch conditions
Secure Implementations

- “Traditional” cryptographic security: all attacks take \(\geq 2^{128} \) operations
- Implementation security: no leakage through side channels
- Most relevant for desktops and servers: timing attacks
- Idea:
 - Secret information influences time taken by software
 - Attacker measures time, computes influence to obtain secret information
- **Constant-time** software avoids such timing leaks:
 - No secret branch conditions
 - No memory access with secret address (cache timing)
Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures
Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All “large” processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
 - Three 32-bit additions per cycle
 - Two 4×32-bit vector additions per cycle
Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All “large” processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
 - Three 32-bit additions per cycle
 - Two 4×32-bit vector additions per cycle
- Also fast: full-vector loads
- Low performance for branches, independent vector-element loads
Fast Implementation

- This talk: focus on high throughput for servers
- Target micro-architecture: Intel Sandy Bridge/Ivy Bridge
- Techniques also interesting for other (micro-)architectures

Vector arithmetic

- All “large” processors offer arithmetic on vectors of data
- Highest arithmetic throughput, example (Sandy Bridge):
 - Three 32-bit additions per cycle
 - Two 4×32-bit vector additions per cycle
- Also fast: full-vector loads
- Low performance for branches, independent vector-element loads
- Synergie between efficient vectorization and timing-attack protection

McBits: Fast code-based cryptography
Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND

McBits: Fast code-based cryptography
Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called *bitslicing*, introduced by Biham in 1997 for DES
Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called *bitslicing*, introduced by Biham in 1997 for DES
- Other views on bitslicing:
 - Computations on a transposition of data
 - Simulation of hardware implementations in software
Bitslicing

- Any n-bit register is a vector register with n 1-bit elements
- Operations on such bit vectors are XOR, OR, AND
- This is called *bitslicing*, introduced by Biham in 1997 for DES
- Other views on bitslicing:
 - Computations on a transposition of data
 - Simulation of hardware implementations in software
- Needs large degree of data-level parallelism (e.g., $128 \times$)
- Size of active data set increases massively (e.g., $128 \times$)
- Typical consequence: more loads and stores (that easily become the performance bottleneck)
A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
 - $n \leq 2^m$
 - $k = n - mt$
 - $t \geq 2$

Example

- $m = 12,$
 - $n = 4096$
 - $k = 3604$
 - $t = 41$
A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
 - $n \leq 2^m$
 - $k = n - mt$
 - $t \geq 2$
- An s-bit-key stream cipher S

Example

- $m = 12$,
 - $n = 4096$
 - $k = 3604$
 - $t = 41$
- $S = \text{Salsa20} \ (s = 256)$
A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
 - $n \leq 2^m$
 - $k = n - mt$
 - $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A

Example

- $m = 12$, $n = 4096$, $k = 3604$, $t = 41$
- $S = $ Salsa20 ($s = 256$)
- $A = $ Poly1305 ($a = 256$)
A code-based cryptosystem

System parameters

- Integers m, n, t, k, such that
 - $n \leq 2^m$
 - $k = n - mt$
 - $t \geq 2$
- An s-bit-key stream cipher S
- An a-bit-key authenticator (MAC) A
- An $(s + a)$-bit-output hash function H

Example

- $m = 12,$
 - $n = 4096$
 - $k = 3604$
 - $t = 41$
- $S = $ Salsa20 ($s = 256$)
- $A = $ Poly1305 ($a = 256$)
- $H = $ SHA-512
Key generation

Secret key

- A random sequence \((\alpha_1, \ldots, \alpha_n)\) of distinct elements in \(\mathbb{F}_{2^m}\)
- An irreducible degree-\(t\) polynomial \(g \in \mathbb{F}_{2^m}[x]\)
Key generation

Secret key

- A random sequence \((\alpha_1, \ldots, \alpha_n)\) of distinct elements in \(\mathbb{F}_{2^m}\)
- An irreducible degree-\(t\) polynomial \(g \in \mathbb{F}_{2^m}[x]\)
- Compute the secret matrix

\[
\begin{pmatrix}
\frac{1}{g(\alpha_1)} & \frac{1}{g(\alpha_2)} & \cdots & \frac{1}{g(\alpha_n)} \\
\alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n)
\end{pmatrix}
\in \mathbb{F}_{2^m}^{t \times n}
\]
Key generation

Secret key

- A random sequence $(\alpha_1, \ldots, \alpha_n)$ of distinct elements in \mathbb{F}_{2^m}
- An irreducible degree-t polynomial $g \in \mathbb{F}_{2^m}[x]$
- Compute the secret matrix

$$
\begin{pmatrix}
\frac{1}{g(\alpha_1)} & \frac{1}{g(\alpha_2)} & \cdots & \frac{1}{g(\alpha_n)} \\
\frac{\alpha_1}{g(\alpha_1)} & \frac{\alpha_2}{g(\alpha_2)} & \cdots & \frac{\alpha_n}{g(\alpha_n)} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\alpha_1^{t-1}}{g(\alpha_1)} & \frac{\alpha_2^{t-1}}{g(\alpha_2)} & \cdots & \frac{\alpha_n^{t-1}}{g(\alpha_n)}
\end{pmatrix} \in \mathbb{F}_{2^m}^{t \times n}
$$

- Replace all entries by a column of m bits in a standard basis of \mathbb{F}_{2^m} over \mathbb{F}_2
- Obtain a matrix $H_{sec} \in \mathbb{F}_2^{mt \times n}$
Key generation

Secret key

- A random sequence \((\alpha_1, \ldots, \alpha_n)\) of distinct elements in \(\mathbb{F}_{2^m}\)
- An irreducible degree-\(t\) polynomial \(g \in \mathbb{F}_{2^m}[x]\)
- Compute the secret matrix

\[
\begin{pmatrix}
1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\
\alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n)
\end{pmatrix}
\in \mathbb{F}_{2^m}^{t \times n}
\]

- Replace all entries by a column of \(m\) bits in a standard basis of \(\mathbb{F}_{2^m}\) over \(\mathbb{F}_2\)
- Obtain a matrix \(H_{sec} \in \mathbb{F}_2^{mt \times n}\)
- \(H_{sec}\) is a secret parity-check matrix of the Goppa code \(\Gamma = \Gamma_2(\alpha_1, \ldots, \alpha_n, g)\)
Key generation

Secret key

- A random sequence \((\alpha_1, \ldots, \alpha_n)\) of distinct elements in \(\mathbb{F}_{2^m}\)
- An irreducible degree-\(t\) polynomial \(g \in \mathbb{F}_{2^m}[x]\)
- Compute the secret matrix

\[
\begin{pmatrix}
1/g(\alpha_1) & 1/g(\alpha_2) & \cdots & 1/g(\alpha_n) \\
\alpha_1/g(\alpha_1) & \alpha_2/g(\alpha_2) & \cdots & \alpha_n/g(\alpha_n) \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{t-1}/g(\alpha_1) & \alpha_2^{t-1}/g(\alpha_2) & \cdots & \alpha_n^{t-1}/g(\alpha_n)
\end{pmatrix} \in \mathbb{F}_{2^m}^{t \times n}
\]

- Replace all entries by a column of \(m\) bits in a standard basis of \(\mathbb{F}_{2^m}\) over \(\mathbb{F}_2\)
- Obtain a matrix \(H_{sec} \in \mathbb{F}_2^{mt \times n}\)
- \(H_{sec}\) is a secret parity-check matrix of the Goppa code \(\Gamma = \Gamma_2(\alpha_1, \ldots, \alpha_n, g)\)
- The secret key is \((\alpha_1, \ldots, \alpha_n, g)\)
Key generation

Public key

- Perform Gaussian elimination on H_{sec} to obtain a matrix H_{pub} whose left $tm \times tm$ submatrix is the identity matrix
- H_{pub} is a public parity-check matrix for Γ
- The public key is H_{pub}
Encryption

- Generate a random weight-\(t\) vector \(e \in \mathbb{F}_2^n\)
- Compute \(w = H_{\text{pub}}e\)
- Compute \(H(e)\) to obtain an \((s + a)\)-bit string \((k_{\text{enc}}, k_{\text{auth}})\)
- Encrypt the message \(M\) with the stream cipher \(S\) under key \(k_{\text{enc}}\) to obtain ciphertext \(C\)
- Compute authentication tag \(a\) on \(C\) using \(A\) with key \(k_{\text{auth}}\)
- Send \((a, w, C)\)
Decryption

- Receive \((a, w, C)\)
- Decode \(w\) to obtain weight-\(t\) string \(e\)
- Hash \(e\) with \(H\) to obtain \((k_{\text{enc}}, k_{\text{auth}})\)
- Verify that \(a\) is a valid authentication tag on \(C\) using \(A\) with \(k_{\text{auth}}\)
- Use \(S\) with \(k_{\text{enc}}\) to decrypt and obtain \(M\)
Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of m bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns

This talk: ignore implementation of H, S, and A

Decryption

- Decryption is mainly decoding, lots of operations in F_2^m
- Decryption has to run in constant time!
- Obviously, decoding of w is the interesting part
Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of mt bits each
Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up \(t \) columns of \(mt \) bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns
Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of mt bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns
- This talk: ignore implementation of H, S, and A
Software implementation, first considerations

Key generation

- Key generation is not performance critical
- Some hassle to make constant-time, but possible

Encryption

- Typical view: adding up t columns of mt bits each
- Column positions are secret, need to load all columns
- Arithmetic (masking) to xor the desired columns
- This talk: ignore implementation of H, S, and A

Decryption

- Decryption is mainly decoding, lots of operations in \mathbb{F}_{2^m}
- Decryption has to run in constant time!
- Obviously, decoding of w is the interesting part
A closer look at decoding

- Start with some $v \in \mathbb{F}_2^n$, such that $H_{pub}v = w$
A closer look at decoding

- Start with some $v \in \mathbb{F}_2^n$, such that $H_{pub}v = w$
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp’s algorithm to obtain error-locator polynomial f of degree t
A closer look at decoding

- Start with some \(v \in \mathbb{F}_2^n \), such that \(H_{pub}v = w \)
- Compute a Goppa syndrome \(s_0, \ldots, s_{2t-1} \)
- Use Berlekamp’s algorithm to obtain error-locator polynomial \(f \) of degree \(t \)
- Compute \(t \) roots of this polynomial
- For each root \(r_j = \alpha_i \), set error bit at position \(i \) in \(e \)
A closer look at decoding

- Start with some $v \in \mathbb{F}_2^n$, such that $H_{pub}v = w$
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp’s algorithm to obtain error-locator polynomial f of degree t
- Compute t roots of this polynomial
- For each root $r_j = \alpha_i$, set error bit at position i in e
- All these computation work on medium-size polynomials over \mathbb{F}_{2^m}
A closer look at decoding

- Start with *some* $v \in \mathbb{F}_2^n$, such that $H_{pub}v = w$
- Compute a Goppa syndrome s_0, \ldots, s_{2t-1}
- Use Berlekamp’s algorithm to obtain *error-locator polynomial* f of degree t
- Compute t roots of this polynomial
- For each root $r_j = \alpha_i$, set error bit at position i in e
- All these computation work on medium-size polynomials over \mathbb{F}_{2^m}
- Let’s now fix the example parameters from above
 $(n = 2^m = 4096, t = 41)$
Representing elements of \mathbb{F}_{2^m}

Option I

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
Representing elements of \mathbb{F}_{2^m}

Option 1

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)
Representing elements of \mathbb{F}_{2^m}

Option I

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)
 - Use carryless multiplier, e.g., pclmulqdq (not available on most architectures, again ignores most of the 64×64-bit multiplication)
Representing elements of \mathbb{F}_{2^m}

Option I

- Use 16-bit integer values (unsigned short)
- Addition is simply XOR (we really XOR 64 bits, but ignore most of those)
- Multiplication:
 - Use table lookups (not constant time!)
 - Use carryless multiplier, e.g., `pclmulqdq` (not available on most architectures, again ignores most of the 64×64-bit multiplication)
 - Squaring uses the same algorithm as multiplication
Representing elements of \mathbb{F}_{2^m}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
Representing elements of \mathbb{F}_{2^m}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vector XORs for 256 parallel additions (much faster!)
Representing elements of \mathbb{F}_{2^m}

Option II

- Use bitsliced representation in 256-bit YMM (or 128-bit XMM registers)
- Needs many parallel computations, obtain parallelism from independent decryption operations
- We only really care about speed when we have many decryptions
- Addition is 12 vector XORs for 256 parallel additions (much faster!)
- Multiplication is easily constant time, but is it fast?
- How about squaring, can it be faster?
Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs

Refined Karatsuba uses $M_{2n} = 3M_n + 7n - 3$ instead of $M_{2n} = 3M_n + 8n - 4$ bit operations

For details see Bernstein, “Batch binary Edwards”, Crypto 2009
Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: Karatsuba
 - Karatsuba:
 \[
 (a_0 + x^n a_1)(b_0 + x^n b_1) \\
 = a_0 b_0 + x^n ((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) + x^{2n} a_1 b_1
 \]
Bitsliced multiplication in $\mathbb{F}_{2^{12}}$

- Split into 12-coefficient polynomial multiplication and subsequent reduction
- Reduction trinomial $x^{12} + x^3 + 1$
- Schoolbook multiplication needs 144 ANDs and 121 XORs
- Much better: refined Karatsuba
 - Karatsuba:
 \[
 (a_0 + x^n a_1)(b_0 + x^n b_1) = a_0 b_0 + x^n((a_0 + a_1)(b_0 + b_1) - a_0 b_0 - a_1 b_1) + x^{2n} a_1 b_1
 \]
 - Refined Karatsuba:
 \[
 (a_0 + x^n a_1)(b_0 + x^n b_1) = (1 - x^n)(a_0 b_0 - x^n a_1 b_1) + x^n(a_0 + a_1)(b_0 + b_1)
 \]
- Refined Karatsuba uses $M_{2n} = 3M_n + 7n - 3$ instead of $M_{2n} = 3M_n + 8n - 4$ bit operations
- For details see Bernstein, “Batch binary Edwards”, Crypto 2009
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Summary:

- Bitsliced *addition* is much faster than non bitsliced
- Bitsliced *multiplication* is faster
- Bitsliced squaring is much faster (not very relevant)
Bitsliced performance

- One level of refined Karatsuba: 114 XORs, 108 ANDs
- 222 bit operations are worse than 208 by Bernstein 2009, but better scheduling
- Reduction takes 24 XORs, a total of 246 bit operations
- On Ivy Bridge: 247 cycles for 256 multiplications
- Bitsliced squaring is only reduction: 7 XORs

Summary:

- Bitsliced addition is much faster than non bitsliced
- Bitsliced multiplication is faster
- Bitsliced squaring is much faster (not very relevant)
- In the following: High-level algorithms that drastically reduce the number of multiplications
Root finding, the classical way

- Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \cdots + c_0$
Root finding, the classical way

- Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \cdots + c_0$
- Try all elements of F_{2^m}, Horner scheme takes 41 mul, 41 add per element
Root finding, the classical way

- Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \cdots + c_0$
- Try all elements of F_{2^m}, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_ig^i, c_ig^{2i}, c_ig^{3i}$ etc.
- Same operation count but different structure
Root finding, the classical way

- Task: Find all t roots of a degree-t error-locator polynomial f
- Let $f = c_{41}x^{41} + c_{40} + x^{40} + \cdots + c_0$
- Try all elements of F_{2^m}, Horner scheme takes 41 mul, 41 add per element
- Chien search: Compute $c_i g^i, c_i g^{2i}, c_i g^{3i}$ etc.
- Same operation count but different structure
- Berlekamp’s trace algorithm: not constant time
Multipoint evaluation via FFT

- Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
 - Write polynomial f as $f_0(x^2) + x f_1(x^2)$
Multipoint evaluation via FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) at all \(n \)-th roots of unity
- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(x^2) + x f_1(x^2) \)
 - Huge overlap between evaluating

\[
 f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \quad \text{and} \\
 f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)
\]
Multipoint evaluation via FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) at all \(n \)-th roots of unity
- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(x^2) + x f_1(x^2) \)
 - Huge overlap between evaluating
 \[
 f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \quad \text{and} \quad
 f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)
 \]
- Problem: We have a binary field, and \(\alpha = -\alpha \)
Multipoint evaluation via FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) at all \(n \)-th roots of unity
- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(x^2) + xf_1(x^2) \)
 - Huge overlap between evaluating
 \[
 f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \quad \text{and}\quad f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)
 \]
- Problem: We have a binary field, and \(\alpha = -\alpha \)
- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)
Multipoint evaluation via FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) at all \(n \)-th roots of unity

- Divide-and-conquer approach
 - Write polynomial \(f \) as \(f_0(x^2) + xf_1(x^2) \)
 - Huge overlap between evaluating
 \[
 f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \quad \text{and} \\
 f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)
 \]

- Problem: We have a binary field, and \(\alpha = -\alpha \)

- Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)

- von zur Gathen 1996: some improvements (still slow)
Multipoint evaluation via FFT

▶ Evaluate a polynomial \(f = c_0 + c_1x + \cdots + c_{n-1}x^{n-1} \) at all \(n \)-th roots of unity

▶ Divide-and-conquer approach
 ▶ Write polynomial \(f \) as \(f_0(x^2) + xf_1(x^2) \)
 ▶ Huge overlap between evaluating

\[
 f(\alpha) = f_0(\alpha^2) + \alpha f_1(\alpha^2) \quad \text{and} \\
 f(-\alpha) = f_0(\alpha^2) - \alpha f_1(\alpha^2)
\]

▶ Problem: We have a binary field, and \(\alpha = -\alpha \)

▶ Wang, Zhu 1988, and independently Cantor 1989: additive FFT in characteristic 2 (quite slow)

▶ von zur Gathen 1996: some improvements (still slow)

▶ Gao, Mateer 2010: Much faster additive FFT
Gao-Mateer additive FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) on a size-\(n \) \(\mathbb{F}_2 \)-linear space \(S \)
- Idea: Write polynomial \(f \) as \(f_0(x^2 + x) + x f_1(x^2 + x) \)
Gao-Mateer additive FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) on a size-\(n \) \(\mathbb{F}_2 \)-linear space \(S \)
- Idea: Write polynomial \(f \) as \(f_0(x^2 + x) + xf_1(x^2 + x) \)
- Big overlap between evaluating

\[
f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \quad \text{and} \\
f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1) f_1(\alpha^2 + \alpha)
\]
Gao-Mateer additive FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) on a size-\(n \) \(\mathbb{F}_2 \)-linear space \(S \)
- Idea: Write polynomial \(f \) as \(f_0(x^2 + x) + x f_1(x^2 + x) \)
- Big overlap between evaluating

\[
\begin{align*}
 f(\alpha) &= f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \quad \text{and} \\
 f(\alpha + 1) &= f_0(\alpha^2 + \alpha) + (\alpha + 1) f_1(\alpha^2 + \alpha)
\end{align*}
\]

- Evaluate \(f_0 \) and \(f_1 \) at \(\alpha^2 + \alpha \), obtain \(f(\alpha) \) and \(f(\alpha + 1) \) with only 1 multiplication and 2 additions
Gao-Mateer additive FFT

- Evaluate a polynomial $f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$ on a size-n \mathbb{F}_2-linear space S
- Idea: Write polynomial f as $f_0(x^2 + x) + x f_1(x^2 + x)$
- Big overlap between evaluating $f(\alpha) = f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha)$ and $f(\alpha + 1) = f_0(\alpha^2 + \alpha) + (\alpha + 1) f_1(\alpha^2 + \alpha)$
- Evaluate f_0 and f_1 at $\alpha^2 + \alpha$, obtain $f(\alpha)$ and $f(\alpha + 1)$ with only 1 multiplication and 2 additions
- Again: apply the idea recursively
Gao-Mateer additive FFT

- Evaluate a polynomial \(f = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \) on a size-\(n \) \(\mathbb{F}_2 \)-linear space \(S \)
- Idea: Write polynomial \(f \) as \(f_0(x^2 + x) + xf_1(x^2 + x) \)
- Big overlap between evaluating

\[
\begin{align*}
 f(\alpha) &= f_0(\alpha^2 + \alpha) + \alpha f_1(\alpha^2 + \alpha) \\
 f(\alpha + 1) &= f_0(\alpha^2 + \alpha) + (\alpha + 1)f_1(\alpha^2 + \alpha)
\end{align*}
\]

- Evaluate \(f_0 \) and \(f_1 \) at \(\alpha^2 + \alpha \), obtain \(f(\alpha) \) and \(f(\alpha + 1) \) with only 1 multiplication and 2 additions
- Again: apply the idea recursively
- Our paper: generalize the idea to small-degree \(f \)
 - Recursion can stop much earlier
 - Various speedups at the end of the recursion
Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

\[
M = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1}
\end{pmatrix}
\]
Syndrome computation, the classical way

- Receive n-bit input word, scale bits by Goppa constants
- Apply linear map

\[
M = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1}
\end{pmatrix}
\]

- Can precompute matrix mapping bits to syndrome
- Yields pretty large secret key, larger than L1 cache
Another look at syndrome computation

Look at the syndrome-computation map again:

\[M = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{2t-1} & \alpha_2^{2t-1} & \cdots & \alpha_n^{2t-1}
\end{pmatrix} \]

Consider the linear map \(M^\top \):

\[
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_t
\end{pmatrix} =
\begin{pmatrix}
1 & \alpha_1 & \cdots & \alpha_1^{2t-1} \\
1 & \alpha_2 & \cdots & \alpha_2^{2t-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha_n & \cdots & \alpha_n^{2t-1}
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_t
\end{pmatrix}
\]

\[
= \begin{pmatrix}
v_1 + v_2 \alpha_1 + \cdots + v_t \alpha_1^{2t-1} \\
v_1 + v_2 \alpha_2 + \cdots + v_t \alpha_2^{2t-1} \\
\vdots \\
v_1 + v_2 \alpha_n + \cdots + v_t \alpha_n^{2t-1}
\end{pmatrix}
= \begin{pmatrix}
f(\alpha_1) \\
f(\alpha_2) \\
\vdots \\
f(\alpha_n)
\end{pmatrix}
\]

- This transposed linear map is actually doing multipoint evaluation
- Syndrome computation is a transposed multipoint evaluation
Transposing linear algorithms

A linear map: $a_0, a_1 \rightarrow a_0 b_0, a_0 b_1 + a_1 b_0, a_1 b_1$

\[
\begin{align*}
in_1 &= a_0 & b_0 &\rightarrow & a_0 b_0 &\rightarrow & out_1 &= a_0 b_0 \\
&\downarrow & & & \downarrow & & \\
a_0 + a_1 &\rightarrow & b_0 + b_1 &\rightarrow & out_2 &= a_0 b_1 + a_1 b_0 \\
&\downarrow & & & \downarrow & & \\
in_2 &= a_1 & b_1 &\rightarrow & a_1 b_1 &\rightarrow & out_3 &= a_1 b_1
\end{align*}
\]
Transposing linear algorithms

▶ A linear map: \(a_0, a_1 \rightarrow a_0b_0, a_0b_1 + a_1b_0, a_1b_1 \)

\[
\begin{align*}
\text{in}_1 &= a_0 & b_0 & \rightarrow & a_0b_0 & \rightarrow & \text{out}_1 &= a_0b_0 \\
\downarrow & & & & & & & \\
a_0 + a_1 & b_0 + b_1 & \rightarrow & \text{out}_2 &= a_0b_1 + a_1b_0 \\
\downarrow & & & & & & & \\
\text{in}_2 &= a_1 & b_1 & \rightarrow & a_1b_1 & \rightarrow & \text{out}_3 &= a_1b_1 \\
\end{align*}
\]

▶ Reversing the edges: \(c_0, c_1, c_2 \rightarrow b_0c_0 + b_1c_1, b_0c_1 + b_1c_2 \)

\[
\begin{align*}
\text{out}_1 &= b_0c_0 + b_1c_1 & b_0 & \rightarrow & c_0 + c_1 & \rightarrow & \text{in}_1 &= c_0 \\
\downarrow & & & & & & & \\
(b_0 + b_1)c_1 & b_0 + b_1 & \rightarrow & \text{in}_2 &= c_1 \\
\downarrow & & & & & & & \\
\text{out}_2 &= b_0c_1 + b_1c_2 & b_1 & \rightarrow & c_1 + c_2 & \rightarrow & \text{in}_3 &= c_2 \\
\end{align*}
\]
What did we just do?

- The original linear map:

\[
\begin{pmatrix}
 a_0 b_0 \\
 a_0 b_1 + a_1 b_0 \\
 a_1 b_1
\end{pmatrix}
= \begin{pmatrix}
 b_0 & 0 \\
 b_1 & b_0 \\
 0 & b_1
\end{pmatrix}
\begin{pmatrix}
 a_0 \\
 a_1
\end{pmatrix}
\]

- The transposed map:

\[
\begin{pmatrix}
 b_0 c_0 + b_1 c_1 \\
 b_0 c_1 + b_1 c_2
\end{pmatrix}
= \begin{pmatrix}
 b_0 & b_1 & 0 \\
 0 & b_0 & b_1
\end{pmatrix}
\begin{pmatrix}
 c_0 \\
 c_1 \\
 c_2
\end{pmatrix}
\]

- Reversing the edges automatically gives an algorithm for the transposed map.

- This is called the transposition principle.

- Preserves number of multiplications.

What did we just do?

▶ The original linear map:

\[
\begin{pmatrix}
 a_0 b_0 \\
 a_0 b_1 + a_1 b_0 \\
 a_1 b_1
\end{pmatrix}
=
\begin{pmatrix}
 b_0 & 0 \\
 b_1 & b_0 \\
 0 & b_1
\end{pmatrix}
\begin{pmatrix}
 a_0 \\
 a_1
\end{pmatrix}
\]

▶ The transposed map:

\[
\begin{pmatrix}
 b_0 c_0 + b_1 c_1 \\
 b_0 c_1 + b_1 c_2
\end{pmatrix}
=
\begin{pmatrix}
 b_0 & b_1 & 0 \\
 0 & b_0 & b_1
\end{pmatrix}
\begin{pmatrix}
 c_0 \\
 c_1 \\
 c_2
\end{pmatrix}
\]

▶ Reversing the edges automatically gives an algorithm for the transposed map

▶ This is called the *transposition principle*
What did we just do?

- The original linear map:

\[
\begin{pmatrix}
a_0b_0 \\
a_0b_1 + a_1b_0 \\
a_1b_1
\end{pmatrix}
=
\begin{pmatrix}
b_0 & 0 \\
b_1 & b_0 \\
0 & b_1
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1
\end{pmatrix}
\]

- The transposed map:

\[
\begin{pmatrix}
b_0c_0 + b_1c_1 \\
b_0c_1 + b_1c_2
\end{pmatrix}
=
\begin{pmatrix}
b_0 & b_1 & 0 \\
0 & b_0 & b_1
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2
\end{pmatrix}
\]

- Reversing the edges automatically gives an algorithm for the transposed map.

- This is called the **transposition principle**.

- Preserves number of multiplications.

Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc

Problems:
- Huge program (all loops and function calls removed)
- gcc runs out of memory when $m = 13$ or $m = 14$
- Can use better register allocators, but the program is still huge
Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)
Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)
 - At $m = 13$ or $m = 14$ gcc runs out of memory
Transposing the additive FFT

The naive approach

- Idea: Compute syndrome by transposing the additive FFT
- Start with additive FFT program (sequence of additions and constant multiplications)
- Convert to directed acyclic graph (rename variables to remove cycles)
- Reverse edges, convert to C program
- Compile with gcc
- Problems:
 - Huge program (all loops and function calls removed)
 - At $m = 13$ or $m = 14$ gcc runs out of memory
 - Can use better register allocators, but the program is still huge
Transposing the additive FFT

A better approach

- Analyze structure of additive FFT $A: B, A_1, A_2, C$
- A_1, A_2 are recursive calls
Transposing the additive FFT

A better approach

- Analyze structure of additive FFT A: B, A_1, A_2, C
- A_1, A_2 are recursive calls
- Transposition has structure C^T, A_2^T, A_1^T, B^T
- Use recursive calls to reduce code size
Secret permutations

- FFT evaluates f at elements in standard order
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
Secret permutations

- FFT evaluates f at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π: load from position i, store at position $\pi(i)$
Secret permutations

- FFT evaluates f at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π: load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time
Secret permutations

- FFT evaluates f at elements in *standard order*
- We need output in a secret order
- Same problem for input of transposed FFT
- Similar problem during key generation (secret random permutation)
- Typical solution for permutation π: load from position i, store at position $\pi(i)$
- This leaks through timing information
- We need to apply a secret permutation in constant time
- Solution: sorting networks
A sorting network sorts an array \(S \) of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices \((i, j)\).
- A comparator swaps \(S[i] \) and \(S[j] \) if \(S[i] > S[j] \).
A sorting network sorts an array S of elements by using a sequence of comparators.

- A comparator can be expressed by a pair of indices (i, j).
- Efficient sorting network: Batcher sort (Batcher, 1968)

Batcher sorting network for sorting 8 elements

http://en.wikipedia.org/wiki/Batcher%27s_sort
Permuting by sorting

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$
Permuting by sorting

Example
Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
Permuting by sorting

Example

Computing \(b_3, b_2, b_1\) from \(b_1, b_2, b_3\) can be done by sorting the key-value pairs \((3, b_1), (2, b_2), (1, b_3)\) the output is \((1, b_3), (2, b_2), (3, b_1)\)

- All the output bits of \(>\) comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of \(b[i]\) and \(b[j]\) with condition bit \(c\) as

\[
y \leftarrow b[i] \oplus b[j]; \quad y \leftarrow cy; \quad b[i] \leftarrow b[i] \oplus y; \quad b[j] \leftarrow b[j] \oplus y;
\]
Permuting by sorting

Example

Computing b_3, b_2, b_1 from b_1, b_2, b_3 can be done by sorting the key-value pairs $(3, b_1), (2, b_2), (1, b_3)$ the output is $(1, b_3), (2, b_2), (3, b_1)$

- All the output bits of $>$ comparisons only depend on the secret permutation
- Those bits can be precomputed during key generation
- Do conditional swap of $b[i]$ and $b[j]$ with condition bit c as

\[
y \leftarrow b[i] \oplus b[j]; \quad y \leftarrow cy; \quad b[i] \leftarrow b[i] \oplus y; \quad b[j] \leftarrow b[j] \oplus y;
\]

- Possibly better than Batcher sort: Beneš permutation network (work in progress)
Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: \textbf{60493}
Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: 60493

These are amortized cycle counts across 256 parallel computations.
Results

Throughput cycles on Ivy Bridge

- Input secret permutation: 8622
- Syndrome computation: 20846
- Berlekamp-Massey: 7714
- Root finding: 14794
- Output secret permutation: 8520
- Total: **60493**

These are amortized cycle counts across 256 parallel computations

All computations with full timing-attack protection!
Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles
Comparison

Public-key decryption speeds from eBATS

- ntruees787ep1: 700512 cycles
- mceliece: 1219344 cycles
- ronald1024: 1340040 cycles
- ronald3072: 16052564 cycles

Diffie-Hellman shared-secret speeds from eBATS

- gls254: 77468 cycles
- kumfp127g: 116944 cycles
- curve25519: 182632 cycles

Software will be online (public domain), for example, at http://cryptojedi.org/crypto/#mcbits