

IT-Sicherheit der Zukunft: Danke für Ihr Vertrauen

Peter Schwabe

6. November, 2024

FORBES > INNOVATION > CYBERSECURITY

Al Is The Past, Present And Future Of Cybersecurity

EMERGING TECHNOLOGIES

Cybersecurity is on the frontline of our Al future. Here's why

KI! KI überall!

Cyber AI: Real defense

Augmenting security teams with data and machine intelligence

Microsoft Copilot for Security

Protect at the speed and scale of Al with a generative Al-powered assistant—announcing Copilot for Security general availability.

Contact Sales

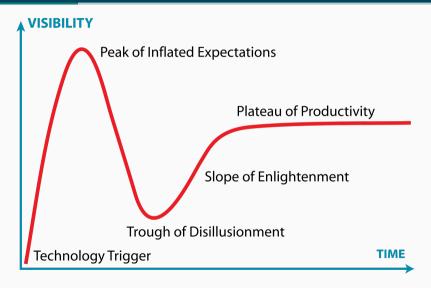
KI! KI überall!

Google to Power Al Data Centers with Nuclear Energy

by Technology Journalist Franklin Okeke Fact Checked by Duncan Proctor Updated on 15 October 2024

BLOCKCHAIN REVOLUTION

Blockchain! Blockchain überall!


Democracy for the 21st Century: Using Blockchain to Revitalize Our Governments

by Teresa Lu-Romeo August 18, 2021 Summer 2021 Fellowship

The New Hork Times

Bitcoin Uses More Electricity Than Many Countries. How Is That Possible?

Hype-Zyklen

Hype-Zyklen

Wie erkennt man einen Hype?

- Gefühlt 90% aller Vorträge drehen sich (teilweise) um KI/ML
- Aktionismus der Politik
- Forschungsförderung für die Nutzung einer Technologie, nicht für die Lösung eines konkreten Problems
- Unsummen Venture Capital sind im Spiel
- Experten warnen vor überzogenen Versprechen

Hype-Zyklen

Das ist nicht unbedingt schlecht!

- Deutlicher Fortschritt der Forschung
- Wir lernen jede Menge über eine (neue) Technologie
- · Das Plateau ist typischerweise höher als der Anfangspunkt
- Man lernt auch (schmerzhaft), was nicht geht

IT-Sicherheit abseits von Hypes

Trusted

- Darf nicht kaputtgehen
- Darf nicht bösartig werden
- Reißt andere Komponenten mit in den Abgrund
- Typischerweise hohe Privilegien

Trustworthy

- Klar definierte Sicherheitseigenschaften
- Klar definiertes Angreifermodell
- Systematisch sicher gebaut
- · Idealfall: formal verifiziert
- Sorgfältig studierte Annahmen

IT-Sicherheit abseits von Hypes

Trusted

- Darf nicht kaputtgehen
- · Darf nicht bösartig werden
- Reißt andere Komponenten mit in den Abgrund
- Typischerweise hohe Privilegien

Sichere Systeme

- 1. Trenne *trusted* Komponenten sauber von dem Rest.
- 2. Stelle sicher, dass alle trusted Komponenten auch trustworthy sind.

Trustworthy

- Klar definierte Sicherheitseigenschaften
- Klar definiertes Angreifermodell
- Systematisch sicher gebaut
- · Idealfall: formal verifiziert
- Sorgfältig studierte Annahmen

Das Problem von (IT) Hypes

Wir *vertrauen* Hype Technologie bevor sie auch nur die Chance hat vertrauenswürdig zu werden!

Zurück zu dem 2-Punkte Plan

Saubere Trennung ist schwer

- · Sicherheit trifft auf Workflows
- Saubere Trennung muss UX einbeziehen

Zurück zu dem 2-Punkte Plan

Saubere Trennung ist schwer

- · Sicherheit trifft auf Workflows
- Saubere Trennung muss UX einbeziehen
- Zu starke Trennung wird nicht akzeptiert
- Zu schwache Trennung erfordert aufwendigere
 - Formalisierung der Interfaces
 - Annahmen

Zurück zu dem 2-Punkte Plan

Saubere Trennung ist schwer

- · Sicherheit trifft auf Workflows
- Saubere Trennung muss UX einbeziehen
- Zu starke Trennung wird nicht akzeptiert
- · Zu schwache Trennung erfordert aufwendigere
 - Formalisierung der Interfaces
 - Annahmen

Vertrauenswürdige Komponenten sind teuer

- Beispiel: High-assurance Kyber (ML-KEM)
 - Beginn des Projekts: Februar 2020
 - Paper in 2023 und 2024 mit je ≥14 Autoren
 - · Software weitestgehend "fertig", noch nicht im Einsatz

Nutzer

- Will dass Technologie einfach funktioniert
- Will dass Technologie billig ist
- Will Features
- Findet Sicherheit schon irgendwie wichtig, aber nur
 - · Wenn es (fast) nichts kostet
 - Wenn man es (fast) nicht bemerkt

Nutzer

- Will dass Technologie einfach funktioniert
- Will dass Technologie billig ist
- Will Features
- · Findet Sicherheit schon irgendwie wichtig, aber nur
 - · Wenn es (fast) nichts kostet
 - Wenn man es (fast) nicht bemerkt

Management

• Will sichere IT Systeme haben...

Nutzer

- Will dass Technologie einfach funktioniert
- Will dass Technologie billig ist
- Will Features
- · Findet Sicherheit schon irgendwie wichtig, aber nur
 - · Wenn es (fast) nichts kostet
 - Wenn man es (fast) nicht bemerkt

Management

- Will sichere IT Systeme haben...
- ...aber sich am liebsten nicht drum kümmern
- · Leider zu oft "CMA Mentalität"

Nutzer

- Will dass Technologie einfach funktioniert
- · Will dass Technologie billig ist
- Will Features
- · Findet Sicherheit schon irgendwie wichtig, aber nur
 - · Wenn es (fast) nichts kostet
 - Wenn man es (fast) nicht bemerkt

Management

- Will sichere IT Systeme haben...
- ... aber sich am liebsten nicht drum kümmern
- · Leider zu oft "CMA Mentalität"
- "Sicherheit" nur mit Windows und Outlook

- Vertrauenswürdige Komponenten machen Annahmen
 - · darüber wie sie genutzt werden
 - · darüber was sie nutzen

- Vertrauenswürdige Komponenten machen Annahmen
 - · darüber wie sie genutzt werden
 - · darüber was sie nutzen
- Beispiele für zu optimistische Annahmen:
 - Faktorisierung ist schwer

- Vertrauenswürdige Komponenten machen Annahmen
 - · darüber wie sie genutzt werden
 - · darüber was sie nutzen
- Beispiele für zu optimistische Annahmen:
 - Faktorisierung ist schwer
 - Spectre Angriffe...

- Vertrauenswürdige Komponenten machen Annahmen
 - · darüber wie sie genutzt werden
 - · darüber was sie nutzen
- Beispiele für zu optimistische Annahmen:
 - Faktorisierung ist schwer
 - Spectre Angriffe...
 - Optimierung von Compilern

- Vertrauenswürdige Komponenten machen Annahmen
 - · darüber wie sie genutzt werden
 - · darüber was sie nutzen
- Beispiele für zu optimistische Annahmen:
 - Faktorisierung ist schwer
 - · Spectre Angriffe...
 - · Optimierung von Compilern
 - Pager-Angriff gegen Hisbollah

- seL4: formal verifizierter Microkernel
 - Genutzt, z.B. in Automobil- und Luftfahrtindustrie

- · seL4: formal verifizierter Microkernel
 - · Genutzt, z.B. in Automobil- und Luftfahrtindustrie
- HACL*: Formal verifizierte Kryptographie
 - Genutzt, z.B. in Firefox

- · seL4: formal verifizierter Microkernel
 - · Genutzt, z.B. in Automobil- und Luftfahrtindustrie
- HACL*: Formal verifizierte Kryptographie
 - Genutzt, z.B. in Firefox
- Formosa Crypto: Formal verifizierte Kryptographie
 - Sicherheit auch gegen Spectre Angriffe

- · seL4: formal verifizierter Microkernel
 - · Genutzt, z.B. in Automobil- und Luftfahrtindustrie
- HACL*: Formal verifizierte Kryptographie
 - · Genutzt, z.B. in Firefox
- Formosa Crypto: Formal verifizierte Kryptographie
 - Sicherheit auch gegen Spectre Angriffe
- Cheri: Sicherheitsorientierte CPU Erweiterungen
 - Erweiterungen für Risc-V und Arm ("Morello")

- · seL4: formal verifizierter Microkernel
 - · Genutzt, z.B. in Automobil- und Luftfahrtindustrie
- HACL*: Formal verifizierte Kryptographie
 - · Genutzt, z.B. in Firefox
- Formosa Crypto: Formal verifizierte Kryptographie
 - Sicherheit auch gegen Spectre Angriffe
- Cheri: Sicherheitsorientierte CPU Erweiterungen
 - Erweiterungen für Risc-V und Arm ("Morello")
- OpenTitan: Open-source HW "root of trust"
 - Erfolgreiches Tapeout Anfang 2024

- · seL4: formal verifizierter Microkernel
 - · Genutzt, z.B. in Automobil- und Luftfahrtindustrie
- HACL*: Formal verifizierte Kryptographie
 - · Genutzt, z.B. in Firefox
- Formosa Crypto: Formal verifizierte Kryptographie
 - Sicherheit auch gegen Spectre Angriffe
- Cheri: Sicherheitsorientierte CPU Erweiterungen
 - Erweiterungen für Risc-V und Arm ("Morello")
- OpenTitan: Open-source HW "root of trust"
 - Erfolgreiches Tapeout Anfang 2024
- Qubes OS: Trennung durch konsequente Virtualisierung
 - Mein Produktivsystem seit 8 (?) Jahren
 - Top of my Wunschliste: Formal verifizierter Hypervisor

Ich wünsche mir...

• dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist

- dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist
- ... und erst recht nicht bevor wir überhaupt wissen, was es heißt vertrauenswürdig zu sein!

- dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist
- ... und erst recht nicht bevor wir überhaupt wissen, was es heißt vertrauenswürdig zu sein!
- mehr Forschung an
 - offenen, nutzbaren Ansätzen zum sauberen Trennen von Komponenten
 - offener vertrauenswürdiger Technologie
 - der Validierung weit-akzeptierter Annahmen

- dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist
- ... und erst recht nicht bevor wir überhaupt wissen, was es heißt vertrauenswürdig zu sein!
- mehr Forschung an
 - offenen, nutzbaren Ansätzen zum sauberen Trennen von Komponenten
 - offener vertrauenswürdiger Technologie
 - · der Validierung weit-akzeptierter Annahmen
- dass wir lokal IT-Sicherheitskompetenz bilden und erhalten

- dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist
- ... und erst recht nicht bevor wir überhaupt wissen, was es heißt vertrauenswürdig zu sein!
- mehr Forschung an
 - offenen, nutzbaren Ansätzen zum sauberen Trennen von Komponenten
 - offener vertrauenswürdiger Technologie
 - · der Validierung weit-akzeptierter Annahmen
- · dass wir lokal IT-Sicherheitskompetenz bilden und erhalten
- dass etwas mehr auf Experten gehört wird

Ich wünsche mir...

- · dass wir Technologie nicht vertrauen, bevor sie vertrauenswürdig ist
- ... und erst recht nicht bevor wir überhaupt wissen, was es heißt vertrauenswürdig zu sein!
- mehr Forschung an
 - offenen, nutzbaren Ansätzen zum sauberen Trennen von Komponenten
 - · offener vertrauenswürdiger Technologie
 - · der Validierung weit-akzeptierter Annahmen
- · dass wir lokal IT-Sicherheitskompetenz bilden und erhalten
- · dass etwas mehr auf Experten gehört wird

Ja, das ist eine langweilige Idee für die Zukunft der IT-Sicherheit, aber ich hatte Sie gewarnt.

Danke für Ihr Vertrauen