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Elliptic-curve addition

» Computing P + @ for two elliptic-curve points P and Q@ means
performing a few operations in the underlying field
» Example: Add projective (Xp : Yp : Zp) and (Xq : Yo : Zg) on
curve E: y? = 23 4 ax + b.
tv«Yp-Zg
to < Xp- ZQ
ts «— Zp - Zg
uYo-Zp—t
Uy <— 'LL2
v Xo - Zp —t2
VU — ’U2
VUV <— V- VU
R+ vv -ty
A+—uu-t3—vvov—2-R
Xr+v- A
Yr+u-(R—A)—vvv-t1
ZRr +— vov - t3
return (XR :Yr: ZR)
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The EFD

» There are many formulas for different curve shapes and point
representations

> Best overview: The Explicit Formulas Database (EFD):

http://www.hyperelliptic.org/EFD/

» Compiled from many papers and talks by Dan Bernstein and Tanja
Lange

» Contains verification scripts, 3-operand code, ...
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The problem with large integers

» C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
» Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class
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The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

v

Computers work on data in registers (very small, very fast storage
units)
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The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

v

Computers work on data in registers (very small, very fast storage
units)

Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
That’s a lie!

v

v
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The problem with large integers

v Yy

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage

units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
» That'’s a lie!
> Yeah, you're right. We do have 256-bit registers (AVX on Intel and

AMD processors)

But those do not hold a single 256-bit integer (but vectors of
integers or floats)
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The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers

> Python has datatype long for arbitrary-size integers

> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage
units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

» That'’s a lie!

> Yeah, you're right. We do have 256-bit registers (AVX on Intel and
AMD processors)

» But those do not hold a single 256-bit integer (but vectors of
integers or floats)

» Why can't they just hold a 256-bit integer?
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The problem with large integers

v Yy

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage

units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
» That'’s a lie!
> Yeah, you're right. We do have 256-bit registers (AVX on Intel and

AMD processors)

But those do not hold a single 256-bit integer (but vectors of
integers or floats)

» Why can't they just hold a 256-bit integer?
» Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)
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So, what do we have?

» Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
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So, what do we have?

» Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
» Addition, subtraction and multiplication of 64-bit integers

» Multiplication produces a 128-bit result in 2 registers
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So, what do we have?

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers

Multiplication produces a 128-bit result in 2 registers

vV v v VY

Addition, subtraction and multiplication of smaller integers (less
interesting)
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So, what do we have?

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

vV v v VY

Addition, subtraction and multiplication of smaller integers (less
interesting)

v

Single-precision and double-precision floating-point arithmetic
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So, what do we have?

vV v v VY

v

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

Addition, subtraction and multiplication of smaller integers (less
interesting)

Single-precision and double-precision floating-point arithmetic

» Arithmetic on vectors of 2 64-bit integers

Integer-vector multiplication only produces 2 64-bit results
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So, what do we have?

vV v v VY
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Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

Addition, subtraction and multiplication of smaller integers (less
interesting)

Single-precision and double-precision floating-point arithmetic
Arithmetic on vectors of 2 64-bit integers
Integer-vector multiplication only produces 2 64-bit results

Arithmetic on vectors of 4 double-precision floats
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What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)
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What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

» Addition of ~ 256-bit integers
» Subtraction of =~ 256-bit integers
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What do we need?

v

For this talk consider arithmetic in a field IF,, of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers
Subtraction of ~ 256-bit integers

v

v

v

Reduction modulo p after addition and subtraction
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What do we need?

v

For this talk consider arithmetic in a field IF,, of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

vV v v v Y

Squaring of ~ 256-bit integers
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What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

Squaring of ~ 256-bit integers

vV v.v v v .Y

Reduction of a ~ 512-bit multiplication result modulo p
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What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

Squaring of ~ 256-bit integers

Reduction of a ~ 512-bit multiplication result modulo p

vV V. v v v v .Y

Inversion modulo p
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Representing 256-bit integers

> Let's start with 64-bit integers, that seems easiest

» Represent 256-bit integer A through 4 64-bit integers ag, a1, as, a3
(a total of 256 bits)
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Representing 256-bit integers

> Let's start with 64-bit integers, that seems easiest

» Represent 256-bit integer A through 4 64-bit integers ag, a1, as, a3
(a total of 256 bits)

> Value of Ais 320 a;204
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Representing 256-bit integers

v

Let's start with 64-bit integers, that seems easiest

v

Represent 256-bit integer A through 4 64-bit integers ag, a1, as,as
(a total of 256 bits)

Value of Ais 327 ;204
964

v

This is called radix-

v

representation
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Representing 256-bit integers

v

Let's start with 64-bit integers, that seems easiest

v

Represent 256-bit integer A through 4 64-bit integers ag, a1, as,as
(a total of 256 bits)

Value of Ais 327 ;204
964

v

This is called radix-

v

representation

Let's write that in C code:

v

typedef struct{
unsigned long long al4];
} bigint256;
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Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?
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Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?
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Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?
» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)
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Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

» This is not the same as arithmetic on 256-bit integers
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Addition of two bigint256

void bigint256_add(bigint256 *r,

const bigint256 *x,
const bigint256 *y)

r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];

» What's wrong about this?

v

v vyyvyy

This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

This is not the same as arithmetic on 256-bit integers

x->a[0] + y->al[0] may have 65 bits

Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
Same for all subsequent additions
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Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

» This is not the same as arithmetic on 256-bit integers

» x->a[0] + y->a[0] may have 65 bits

> Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]

» Same for all subsequent additions

» Note: The result may not even fit into a bigint256!
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How do we get the carry bits?

> in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;
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How do we get the carry bits?

v

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register

v

v

We can use this carry flag when using assembly

v

No direct access from C level (so much for “portable assembly”)
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How do we get the carry bits?

v

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register
We can use this carry flag when using assembly

No direct access from C level (so much for “portable assembly”)

vV v v v

So, let's do it in assembly (no worries, it's not dark arts)
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How do we get the carry bits?

vV v v v Y

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register
We can use this carry flag when using assembly

No direct access from C level (so much for “portable assembly”)
So, let's do it in assembly (no worries, it's not dark arts)

Use somewhat simplified “C-like” ghasm syntax for assembly
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bigint256 addition in ghasm

int64 x
int64 y

enter bigint256_add

x = mem64[input_1 + 0]
y = mem64 [input_2 + 0]
carry? x +=y

mem64 [input_0 + 0] = x

x = mem64 [input_1 + 8]
y = mem64[input_2 + 8]
carry? x += y + carry
mem64 [input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x += y + carry

mem64 [input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64 [input_2 + 24]
carry? x += y + carry

mem64 [input_0 + 24] = x

x =0
X += x + carry

return x

Finite field arithmetic
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bigint2566 subtraction in ghasm

int64 x
int64 y

enter bigint256_sub

x = mem64[input_1 + 0]
y = mem64 [input_2 + 0]
carry? x -=y

mem64 [input_0 + 0] = x

x = mem64 [input_1 + 8]
y = mem64[input_2 + 8]
carry? x -= y - carry
mem64 [input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x -= y - carry

mem64 [input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64 [input_2 + 24]
carry? x -= y - carry

mem64 [input_0 + 24] = x

x =0
X += x + carry

return x

Finite field arithmetic
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One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
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One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)
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One step back. ..

v

Radix-2%4 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

v

v

v

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)
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One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

» Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

> Let’s get rid of the carries, represent A as (ag, a1, as, a3, ay) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation
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One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation
» Multiple ways to write the same integer A, for example A = 252

> (2°%,0,0,0,0)
> (07 27 07 07 O)
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One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation

» Multiple ways to write the same integer A, for example A = 252
> (2°2,0,0,0,0)
> (0,2,0,0,0)

Let's call a representation (ag, a1, as, as, aq) reduced, if all

a; € [0,...,252—1]
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Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] + y->al4];

x->al4]
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Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

r->al0] = x->a[0] + y->al[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] + y->al4];

x->al4]

» This definitely works for reduced inputs
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Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->a[4] + y->al4];
}

» This definitely works for reduced inputs
» This actually works as long as all coefficients are in [0,...,25 — 1]
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Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->a[4] + y->al4];
}

» This definitely works for reduced inputs
» This actually works as long as all coefficients are in [0,...,25 — 1]
» We can do quite a few additions before we have to carry (reduce)

Finite field arithmetic
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Subtraction of two bigint256

typedef struct{
unsigned long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->al0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

3

» Again: what's wrong here?
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Subtraction of two bigint256

typedef struct{
signed long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

» Again: what's wrong here?
» Slightly update our bigint256 definition to work with signed 64-bit
integers
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Subtraction of two bigint256

typedef struct{
signed long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

» Again: what's wrong here?

» Slightly update our bigint256 definition to work with signed 64-bit
integers

» Reduced if coefficients are in [—252 — 1,252 — 1]
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Back to reduced representation

» An addition/subtraction does not produce a reduced output for
reduced inputs

» Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
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Back to reduced representation

» An addition/subtraction does not produce a reduced output for
reduced inputs
» Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
> Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= b1;
r.a[0] -= carry;
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Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
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Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];
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Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];
» Carry from r.a[2] to r.a[3];
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Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];

» Carry from r.a[2] to r.a[3];

» Carry from r.a[3] to r.al[4];
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Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];

» Carry from r.a[2] to r.a[3];

» Carry from r.a[3] to r.al[4];

» Carry from r.af4] to...?
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Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.
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Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
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Reducing modulo p

v

When adding integers, the result naturally grows

v

For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

v

We want to perform arithmetic in a field F),, we can reduce modulo p

v

Let’s fix some p, say p = 22°° — 19
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Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19

» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251(11 + 2102[12 + 2153(13 + 2204CL4 + 2255(15
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Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19
» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251a1 + 2102[12 + 2153a3 + 2204CL4 + 2255(15

» Note that 22°° =19 (mod p)
» Modulo p, the integer A is congruent to

A= (ap + 19a5) + 291 gy + 210205 4+ 21934 4 9204,
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Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19
» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251a1 + 2102[12 + 2153a3 + 2204CL4 + 2255(15

» Note that 22°° =19 (mod p)
» Modulo p, the integer A is congruent to

A= (ap + 19a5) + 291 gy + 210205 4+ 21934 4 9204,

» We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.al[4] >> 51;
r.a[0] += 19%carry;
carry <<= b1;

r.a[4] -= carry;

Finite field arithmetic

16



Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
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Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
» In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order
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Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!”
In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

vV Yy VY

Examples:
» 2192 964 1 (“NIST-P1e", FIPS186-2, 2000)
2224 _ 996 1 1 (“NIST-Paa4", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P2s6”, FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

v

vyvy
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Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
» In fact, very often we can.
» For cryptography we construct curves over fields of “nice” order
» Examples:
» 2192 _ 961 _ 1 (“NIST-Py92", FIPS186-2, 2000)
» 2224 996 4 1 (“NIST-P2a4", FIPS186-2, 2000)
> 2286 9224 4 9192 4 996 _ 1 (“NIST-Pa2s6”, FIPS186-2, 2000)
> 2255 _ 19 (Bernstein, 2006)
» 2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
> All these primes come with (more or less) fast reduction algorithms
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Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!”
In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

vV Yy VY

Examples:
» 2192 964 1 (“NIST-P1e", FIPS186-2, 2000)
2224 _ 996 1 1 (“NIST-Paa4", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P2s6”, FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

v

vyvy

> All these primes come with (more or less) fast reduction algorithms
» More about general primes later
» For the moment let's stick to 22°5 — 19
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Briefly back to carrying

v

We first reduced r.a[0], i.e., produced r.a[0] in interval
[_251 251]
At the end we add 19*carry to r.a[0]

Carry has at most 12 bits (obtained by dividing a signed 64-bit
integer by 251)

The absolute value of 19*carry has at most 17 bits
r.a[0]+19*carry is still within [-2%2 — 1,252 — 1], i.e., reduced

v

v

v

v
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Multiplication

> We want to multiply two integers
A=Y" a2 and B= Y} ;2517
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Multiplication

» We want to multiply two integers
A3 a2t and B =y bt
» Think about it like this:
» Multiply polynomials A =3"" a; X" and B=3_, b; X"
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Multiplication

» We want to multiply two integers
A3 a2t and B =y bt
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"

> Obtain result polynomial R = 3>>°_ 7 X*
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Multiplication

» We want to multiply two integers
A=3 adiand B oy p2s
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"
> Obtain result polynomial R = Z?:o r X"
> Evaluate R at 2%!
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Multiplication

» We want to multiply two integers
A3 a2iand B =y post
» Think about it like this:

> Multiply polynomials A =3"" a; X" and B=37_, b; X"

> Obtain result polynomial R = 3°°_ 7 X*
> Evaluate R at 2°!

» The coefficients of R are:

ro = agbo
T = a0b1 + a1b0

ro = agbz + a1by + azbg

T8 = agby
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Multiplication

» We want to multiply two integers
A=3 adiand B oy p2s
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"
> Obtain result polynomial R = Z?:o r X"
> Evaluate R at 2%!

» The coefficients of R are:

ro = agbo
T = a0b1 + a1b0

ro = agbz + a1by + azbg

T8 = agby

» If all a; and b; have 52 bits, the r; will have up to 107 bits

» Doesn't fit into 64-bit registers, but remember that there is a
multiplication instruction that produces 128-bit results in two
registers.
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Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];
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Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

» Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];
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Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

» Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];

» This doesn't work because we don’t have int128 data type

» Even in assembly, we don't have addition of 128-bit integers
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A peek at multiplication in ghasm

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r0 = rax
rOh = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
rl = rax
rih = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r2 = rax
r2h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r3 = rax
r3h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r4 = rax
r4h = rdx

+

0]

8]

16]

24]

32]
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A peek at multiplication in ghasm

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? rl += rax

rih += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r2 += rax

r2h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r3 += rax

r3h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r4 += rax

r4h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
r5 = rax
r5h = rdx

+

0]

8]

16]

24]

32]
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A peek at multiplication in ghasm

mem64 [input_0 + 0] = r0
mem64 [input_0 + 8] = rOh
mem64 [input_0 + 16] = rl
mem64 [input_0 + 24] = rih
mem64 [input_0 + 32] = r2
mem64 [input_0 + 40] = r2h

mem64 [input_0 + 128]
mem64 [input_0 + 136]

r8
r8h

Finite field arithmetic



Again: back to reduced representation

» We now have rg,...,rs, such that
8 4 ‘ 4 '
S Xt = (Z ain> (Z biXZ)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4 _
> o2t = (Z a1251'1> (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0
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Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi251'i> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as
ro <— 1o+ 1975
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Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi251'i> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as
ro <— 1o+ 1975
r1 < r1+ 19rg
r9 < ro + 1977
r3 < r3 + 19rg
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Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as

ro <— 1o+ 1975
r1 < r1+ 19rg
r9 < ro + 1977
r3 < r3 + 19rg

» Remaining problem: rg, ..., ry4 are too large
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Again: back to reduced representation

» We now have rg,...,rs, such that
8 4 4
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 4
> o2t = (Z ai251'1) (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0
» With the same reasoning as before, we can reduce modulo p as
ro < 7o + 19’)"5
ry <11+ 19r¢
r9 < ro + 1977
r3 < r3 + 19rg
» Remaining problem: rg, ..., ry4 are too large
» Solution: carry!

Finite field arithmetic
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A suitable carry chain

> Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)

signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;

carry <<= b1;

r.al[0] -= carry;

» Carry from 7y to rq; from 71 to r5, and so on

» Multiply carry from 74 by 19 and add to rg
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A suitable carry chain

> Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)
signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= b1;
r.al[0] -= carry;
» Carry from 7y to rq; from 71 to r5, and so on
» Multiply carry from 74 by 19 and add to rg
» After one round of carries we have signed 64-bit integers
» Perform another round of carries to obtain reduced coefficients
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Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?
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Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?

» Using multiplication for squarings:

r[0] = a[0]*a[0];
r[1] = a[0]*a[1]
r[2] = a[0]*a[2]
r[3] = al0]*al3]
r[4] = a[0]*a[4]
r[5] = al[1]l*a[4]
r[6] = a[2]*a[4]
r[7] = al[3]*al[4]
r[8] = al4l*al4];

a[1]*al0];

al1]*al1] + a[2]*al0];

al[1]*a[2] + a[2]*a[1] + a[3]*al[0];

al1]*a[3] + a[2]*a[2] + al[3]*al1] + al[4]*al0];
a[2]*a[3] + a[3]*a[2] + a[4l*al[1];

a[3]*al[3] + al[4]*al2];

al41*al3];

+ o+ o+ o+ o+ o+ o+
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Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?

» Using multiplication for squarings:

r[0] = a[0]*a[0];
r[1] = a[0]*a[1]
r[2] = a[0]*a[2]
r[3] = al0]*al3]
r[4] = al[0]*a[4]
r[5] = al[1]l*a[4]
r[6] = a[2]*al4]
r[7] = al[3]*al[4]
r[8] = al4]*al4];

» Observation: We perform many multiplications twice!

al11*al0];

al1]*al1] + a[2]*al0];

al[1]*a[2] + a[2]*a[1] + a[3]*al[0];

al1]*a[3] + a[2]*a[2] + al[3]*al1] + al[4]*al0];
a[2]*a[3] + a[3]*a[2] + a[4l*al[1];

a[3]*al[3] + al[4]*al2];

al41*al3];

+ o+ o+ o+ o+ o+ o+
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Faster squaring

signed long long _2al[4];
_2a[0] = a[0] << 1;
_2a[1] = a[1] << 1;

1;

1;

_2a[2] al[2] <<
_2al[3] al[3] <<

r[0] = a[0]*a[0];

r[1] = _2a[0]*al1];

r[2] = _2al0]*a[2] + al[1]l=*al[1];

r[3] = _2a[0]*a[3] + _2a[1]*al[2];

r[4] = _2a[0]*a[4] + _2al[1]l*al[3] + al[2]*al[2];
r[5] = _2al[1]l*al[4] + _2a[2]*a[3];

r(6] = _2a[2]*al[4] + a[3]*al3];

r[7] = _2a[3]*al4];

r[8] = al4]l*al4];

» Multiplication needs 25 multiplications, 16 additions
» Squaring needs 15 multiplications, 6 additions (and 4 shifts)
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Faster multiplication?

» Consider multiplication of two n-coefficient polynomials (degree
<n-1)
» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity
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Faster multiplication?

>

Consider multiplication of two n-coefficient polynomials (degree
<n-1)

» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication

has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960

Assume that n = 2m, then write an n-coefficient polynomial A as
Ag+ X™A,

Perform multiplication as

=(4p+XMA;1) - (Bo+ X™MBq)

= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™
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Faster multiplication?

» Consider multiplication of two n-coefficient polynomials (degree
<n-1)
» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960
» Assume that n = 2m, then write an n-coefficient polynomial A as

Ag + X™MA,
» Perform multiplication as
=(4p+XMA;1) - (Bo+ X™MBq)
= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™
= AoBo + (Ao + A1)(Bo + B1) — AgBy — A1B1)X™ + A1 B X*™
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Faster

>

multiplication?

Consider multiplication of two n-coefficient polynomials (degree
<n-1)

» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication

has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960

Assume that n = 2m, then write an n-coefficient polynomial A as
Ag+ X™A,
Perform multiplication as

=(4Ap+ X™A;) - (Bo+ X™Bs)
= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™
= AoBo + ((Ag + A1) (By + By) — AgBy — A1 B1)X™ + Ay B X*™

We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

Recursive application yields asymptotic complexity O(n'°%2?)
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Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™
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Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™

> Refined Karatsuba equality:

(Ag+ X™A1)(By + X™By)
=(1—-X")(AogBy — X™A1B1) + X" (Ao + A1)(Bo + B1)

Finite field arithmetic

27



Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™

> Refined Karatsuba equality:

(Ag+ X™A1)(By + X™By)
:(]. - Xm)(AoBo - XmAlBl) + Xm(A() + Al)(B() + Bl)

> This reduces the ~ 8m additions to ~ 7m additions
(see Bernstein “Batch binary Edwards”, 2009)

» No reduction of asymptotic running time, but speedup in practice
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Multiplication, can we go further?

» Toom-Cook multiplication has asymptotic complexity O(n'°8: %)

» Schénhage-Strassen multiplication has asymptotic complexity
O(nlognloglogn)

» Fiirer's multiplication algorithm has running time n log n20(og" )

Finite field arithmetic
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Karatsuba for Faozss_19 (in idealized C)

signed int128 rm0O,rml,rm2,rm3,rm4;
signed long long am0,aml,am2,bmO,bml,bm2;

am0
am0
am0
am0
am0
am0

r[0]
r[1]
r[2]
r[3]
r[4]

r[6]
r[7]
r[8]

alo] + a[3];
al1] + a[4];
al2];
bl0] + b[3];
b[1] + b[4];
b[2];

al[0]1*b[0];
al0]*b[1] +
a[0]*b[2] +
a[1]1*b[2] +
a[2]1*b[2];

a[31*b[3];
al[31*b[4] +
al4]*b[4];

al[1]1*b[0];
al1]*b[1] + a[2]*b[0];
al2]*b[1];

al4]*b[3];
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Karatsuba for Fozss_19 (in idealized C) ctd.

rm[0] =
rm[1] =
rm[2] =
rm([3] =
rm[4] =

r[3] +=
r[4] +=
r[5] =
r[6] +=
r[6] +=

am[0]*bm[0] - r[0] - r[6];

am[0]*bm[1] + am[1]*b[0] - r[1] - r[7];

am[0]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r[8];
am[1]*bm[2] + am[2]*b[1] - r[3];

am[2]*bm[2] - r[4];

rm[0];
rm[1];
rm[2];
m([3];
rm[4];
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Karatsuba for Fozss_19 (in idealized C) ctd.

rm[0] = am[0]*bm[0]
rm[1] = am[0]*bm[1]

r[0] - r[6];

am[1]1*b[0] - r[1] - r[7];

rm[2] = am[O]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r([8];
rm[3] = am[1]*bm[2] + am[2]*b[1] - r[3];

rm[4] = am[2]*bm[2] - r([4];

+ + +

r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];

» 22 multiplications, 4 small additions, 21 big additions
> |s this better? | doubt it.
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Which multiplication algorithm to use

» Depends on the size of the field
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Which multiplication algorithm to use

» Depends on the size of the field
» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)
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Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

> Rule of thumb:
» For < 10 limbs (coefficients) use schoolbook multiplication
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» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
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» For < 10 limbs (coefficients) use schoolbook multiplication
> For > 10 start to think about (refined) Karatsuba
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Which multiplication algorithm to use

» Depends on the size of the field
» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)
» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)
» Rule of thumb:
» For < 10 limbs (coefficients) use schoolbook multiplication
> For > 10 start to think about (refined) Karatsuba
> For field sizes appearing in ECC, | never saw anybody using
Toom-Cook or Schénhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)
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Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

» Rule of thumb:

For < 10 limbs (coefficients) use schoolbook multiplication

> For > 10 start to think about (refined) Karatsuba

For field sizes appearing in ECC, | never saw anybody using

Toom-Cook or Schénhage-Strassen (however, Toom-Cook may

become interesting in pairing computations)
| don’t know of any application using Fiirer's algorithm

v

v

v
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Still missing: inversion

> Inversion is typically much more expensive than multiplication

» This is why we like projective coordinates
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Still missing: inversion

v

Inversion is typically much more expensive than multiplication

v

This is why we like projective coordinates

v

Before sending an elliptic-curve point, we need to convert from
projective coordinates to affine coordinates (for security reasons!)

v

We need inversion, but we do (usually) not need it often
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Still missing: inversion

v

Inversion is typically much more expensive than multiplication

v

This is why we like projective coordinates

v

Before sending an elliptic-curve point, we need to convert from
projective coordinates to affine coordinates (for security reasons!)

v

We need inversion, but we do (usually) not need it often

v

Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)

> |t is based on the observation that

ged(a,b) = ged(b,a — gb) Vg eZ
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Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)

> |t is based on the observation that
ged(a,b) = ged(b,a — gb) Vg eZ
» To compute a~! (mod p), use the algorithm to compute

a-u+p-v=ged(a,p) =1

v

Now it holds that u = a~! (mod p)
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Extended Euclidean algorithm (pseudocode)

Input: Integers a and b.
Output: An integer tuple (u,v,d) satisfying a-u+b-v =d = ged(a,b)
u<— 1
v<40
d<+a
vy <0
v3 < b
while (vs # 0) do
g+ 2]
t3 d mod V3
t1 < u— quy
U < U1
d <+ vs3
11— 6
V3 < t3
end while
v e i
return (u,v,d)
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Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder

» Going into detail of multiprecision (big-integer) division would cost
us lunch
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Some notes about the Extended Euclidean algorithm

v

Core operation are divisions with remainder

Going into detail of multiprecision (big-integer) division would cost
us lunch

The running time (number of loop iterations) depends on the inputs
We usually do not want this for cryptography (more this afternoon)

v

v

v
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)
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» Obvious algorithm for inversion: Exponentiation with p — 2
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Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?=? = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?=? = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2

> The exponent is quite large (e.g., 255 bits), is that efficient?

» Answer: yes, fairly. Inversion modulo 22°% — 19 needs 254 squarings
and 11 multiplications in Fa2s5_19
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Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

vV v . vvY

This implies that a?~2 = a~! (mod p)
Obvious algorithm for inversion: Exponentiation with p — 2
The exponent is quite large (e.g., 255 bits), is that efficient?

Answer: yes, fairly. Inversion modulo 22%5 — 19 needs 254 squarings
and 11 multiplications in Fa2s5_19

Details in my talk this afternoon
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While we're at it: square roots

» We can compress a point (z,y) before sending

» Usually send only  and one bit of y

» When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b
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While we're at it: square roots

» We can compress a point (z,y) before sending

» Usually send only  and one bit of y

» When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

> If p=3 (mod 4): compute square root of a as aPT1)/4
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While we're at it: square roots

v

We can compress a point (z,y) before sending

v

Usually send only = and one bit of y

v

When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=5 (mod 8): compute /3, such that 8 = a? as a(P*3)/8
If 82 = —a: multiply by v/—1

v

v

v
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While we're at it: square roots

We can compress a point (z,y) before sending

» Usually send only = and one bit of y

v

vV v v v

When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=5 (mod 8): compute /3, such that 8 = a? as a(P*3)/8
If 82 = —a: multiply by v/—1

Computing square roots is (typically) about as expensive as an
inversion
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Getting back to the rabbits

» What if somebody just throws an ugly prime at you?

Finite field arithmetic 37



Getting back to the rabbits

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F, with
paz24a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDAS9F57TEC8COFF

or

p2s6 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02 A9F B57TDBA1EEA9BC3E660A909D838D 726 E3BF 623D\
52620282013481 D1 F6E5377
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Getting back to the rabbits

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F, with
paz24a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDAS9F57TEC8COFF

or
p2s6 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751

=02 A9F B57TDBA1EEA9BC3E660A909D838D 726 E3BF 623D\
52620282013481 D1 F6E5377

» Another example: Pairing-friendly curves are typically defined over
fields I, where p has some structure, but hard to exploit for fast
arithmetic
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Montgomery representation

» We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p
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Montgomery representation

» We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p

» Idea: Perform big-integer division with remainder (but this would
cost us lunch)
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Montgomery representation

» We have the following problem:
> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p
» Idea: Perform big-integer division with remainder (but this would
cost us lunch)
> Better idea (Montgomery, 1985):

Let R be such that gcd(R,p) =1land t <p-R

> Represent an element a of F, as aR mod p

> Multiplication of aR and bR yields t = abR* (2n limbs)
> Now compute Montgomery reduction: tR™' mod p

v
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Montgomery representation

» We have the following problem:

>

>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

» Idea: Perform big-integer division with remainder (but this would
cost us lunch)

> Better idea (Montgomery, 1985):

>

vVYy vy VvVYyYy

Let R be such that gcd(R,p) =1land t <p-R

Represent an element a of F, as aR mod p

Multiplication of aR and bR yields t = abR? (2n limbs)
Now compute Montgomery reduction: tR™' mod p

For some choices of R this is be more efficient than division
Typical choice for radix-b representation: b™
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Montgomery reduction (pseudocode)

Input: p= (pr—1,...,p0)p With ged(p,b) =1, R =b",
p'=—p~! modbandt=(ty, 1,...,t0)s
Output: tR~' mod p
A+t
for i from0ton —1 do
u <+ a;p’ mod b
A+ A+u-p-b
end for
A+ A/b"
if A > p then
A—A-—p
end if
return A
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Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation
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Some notes about Montgomery reduction

Some cost for transforming to Montgomery representation and back

v

v

Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 4+ n multiplication instructions

v

n of those are “shortened” multiplications (modulo b)

v
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v

Some cost for transforming to Montgomery representation and back

v

Only efficient if many operations are performed in Montgomery
representation

v

The algorithms takes n2 4+ n multiplication instructions

v

n of those are “shortened” multiplications (modulo b)

v

The cost is roughly the same as schoolbook multiplication
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Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 4+ n multiplication instructions
n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

vV v v v

One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”
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Summary

» Efficiency of finite-field arithmetic highly depends on the
representation of field elements

» The obvious representation is not always the best one
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Summary

» Efficiency of finite-field arithmetic highly depends on the
representation of field elements

» The obvious representation is not always the best one

» Carries are annoying (not only in C)
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Summary

vV v v v

Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one
Carries are annoying (not only in C)
Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance
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Summary
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Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one

Carries are annoying (not only in C)

Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance

Don't be afraid to use assembly, but consider ghasm
(http://cr.yp.to/qhasm.html)
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Summary

vV vV v v Yy

Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one

Carries are annoying (not only in C)

Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance

Don't be afraid to use assembly, but consider ghasm
(http://cr.yp.to/qhasm.html)

Remember the Explicit Formulas Database
http://www.hyperelliptic.org/EFD/
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