Finite field arithmetic

Peter Schwabe
Radboud University Nijmegen, The Netherlands

94 N;
{CITER

% ™
MiNe<©

September 11, 2013

ECC 2013 Summer School

Elliptic-curve addition

» Computing P + @ for two elliptic-curve points P and Q@ means
performing a few operations in the underlying field
» Example: Add projective (Xp : Yp : Zp) and (Xq : Yo : Zg) on
curve E: y? = 23 4 ax + b.
tv«Yp-Zg
to < Xp- ZQ
ts «— Zp - Zg
uYo-Zp—t
Uy <— 'LL2
v Xo - Zp —t2
VU — ’U2
VUV <— V- VU
R+ vv -ty
A+—uu-t3—vvov—2-R
Xr+v- A
Yr+u-(R—A)—vvv-t1
ZRr +— vov - t3
return (XR :Yr: ZR)

Finite field arithmetic

The EFD

» There are many formulas for different curve shapes and point
representations

> Best overview: The Explicit Formulas Database (EFD):

http://www.hyperelliptic.org/EFD/

» Compiled from many papers and talks by Dan Bernstein and Tanja
Lange

» Contains verification scripts, 3-operand code, ...

Finite field arithmetic

http://www.hyperelliptic.org/EFD/

The problem with large integers

» C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
» Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

Finite field arithmetic

The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

v

Computers work on data in registers (very small, very fast storage
units)

Finite field arithmetic

The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage
units)
» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

Finite field arithmetic

The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

v

Computers work on data in registers (very small, very fast storage
units)

Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
That’s a lie!

v

v

Finite field arithmetic

The problem with large integers

v Yy

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage

units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
» That'’s a lie!
> Yeah, you're right. We do have 256-bit registers (AVX on Intel and

AMD processors)

But those do not hold a single 256-bit integer (but vectors of
integers or floats)

Finite field arithmetic

The problem with large integers

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers

> Python has datatype long for arbitrary-size integers

> Java has BigInteger class

v

v

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage
units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

» That'’s a lie!

> Yeah, you're right. We do have 256-bit registers (AVX on Intel and
AMD processors)

» But those do not hold a single 256-bit integer (but vectors of
integers or floats)

» Why can't they just hold a 256-bit integer?

Finite field arithmetic

The problem with large integers

v Yy

v

C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
Why are there no data types for 256-bit integers?

» Magma does not have problems with large integers
> Python has datatype long for arbitrary-size integers
> Java has BigInteger class

C is “portable assembly”, very close to what computers really do

» Computers work on data in registers (very small, very fast storage

units)

» Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
» That'’s a lie!
> Yeah, you're right. We do have 256-bit registers (AVX on Intel and

AMD processors)

But those do not hold a single 256-bit integer (but vectors of
integers or floats)

» Why can't they just hold a 256-bit integer?
» Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Finite field arithmetic

So, what do we have?

» Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)

Finite field arithmetic

So, what do we have?

» Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
» Addition, subtraction and multiplication of 64-bit integers

» Multiplication produces a 128-bit result in 2 registers

Finite field arithmetic

So, what do we have?

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers

Multiplication produces a 128-bit result in 2 registers

vV v v VY

Addition, subtraction and multiplication of smaller integers (less
interesting)

Finite field arithmetic

So, what do we have?

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

vV v v VY

Addition, subtraction and multiplication of smaller integers (less
interesting)

v

Single-precision and double-precision floating-point arithmetic

Finite field arithmetic

So, what do we have?

vV v v VY

v

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

Addition, subtraction and multiplication of smaller integers (less
interesting)

Single-precision and double-precision floating-point arithmetic

» Arithmetic on vectors of 2 64-bit integers

Integer-vector multiplication only produces 2 64-bit results

Finite field arithmetic

So, what do we have?

vV v v VY

vV v vvY

Consider the processor in my laptop here (Intel Core i7, lvy Bridge)
Addition, subtraction and multiplication of 64-bit integers
Multiplication produces a 128-bit result in 2 registers

Addition, subtraction and multiplication of smaller integers (less
interesting)

Single-precision and double-precision floating-point arithmetic
Arithmetic on vectors of 2 64-bit integers
Integer-vector multiplication only produces 2 64-bit results

Arithmetic on vectors of 4 double-precision floats

Finite field arithmetic

What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

Finite field arithmetic

What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

» Addition of ~ 256-bit integers
» Subtraction of =~ 256-bit integers

Finite field arithmetic 6

What do we need?

v

For this talk consider arithmetic in a field IF,, of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers
Subtraction of ~ 256-bit integers

v

v

v

Reduction modulo p after addition and subtraction

Finite field arithmetic

What do we need?

v

For this talk consider arithmetic in a field IF,, of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

vV v v v Y

Squaring of ~ 256-bit integers

Finite field arithmetic

What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

Squaring of ~ 256-bit integers

vV v.v v v .Y

Reduction of a ~ 512-bit multiplication result modulo p

Finite field arithmetic

What do we need?

> For this talk consider arithmetic in a field F), of large prime order p
(for example 256-bit long)

Addition of ~ 256-bit integers

Subtraction of ~ 256-bit integers

Reduction modulo p after addition and subtraction
Multiplication of ~ 256-bit integers

Squaring of ~ 256-bit integers

Reduction of a ~ 512-bit multiplication result modulo p

vV V. v v v v .Y

Inversion modulo p

Finite field arithmetic

Representing 256-bit integers

> Let's start with 64-bit integers, that seems easiest

» Represent 256-bit integer A through 4 64-bit integers ag, a1, as, a3
(a total of 256 bits)

Finite field arithmetic 7

Representing 256-bit integers

> Let's start with 64-bit integers, that seems easiest

» Represent 256-bit integer A through 4 64-bit integers ag, a1, as, a3
(a total of 256 bits)

> Value of Ais 320 a;204

Finite field arithmetic

Representing 256-bit integers

v

Let's start with 64-bit integers, that seems easiest

v

Represent 256-bit integer A through 4 64-bit integers ag, a1, as,as
(a total of 256 bits)

Value of Ais 327 ;204
964

v

This is called radix-

v

representation

Finite field arithmetic

Representing 256-bit integers

v

Let's start with 64-bit integers, that seems easiest

v

Represent 256-bit integer A through 4 64-bit integers ag, a1, as,as
(a total of 256 bits)

Value of Ais 327 ;204
964

v

This is called radix-

v

representation

Let's write that in C code:

v

typedef struct{
unsigned long long al4];
} bigint256;

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?
» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

» This is not the same as arithmetic on 256-bit integers

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,

const bigint256 *x,
const bigint256 *y)

r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];

» What's wrong about this?

v

v vyyvyy

This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

This is not the same as arithmetic on 256-bit integers

x->a[0] + y->al[0] may have 65 bits

Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
Same for all subsequent additions

Finite field arithmetic

Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->al0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->al[2] = x->a[2] + y->al2];
r->a[3] = x->a[3] + y->al3];
}

» What's wrong about this?

» This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 26%)

» This is not the same as arithmetic on 256-bit integers

» x->a[0] + y->a[0] may have 65 bits

> Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]

» Same for all subsequent additions

» Note: The result may not even fit into a bigint256!

Finite field arithmetic

How do we get the carry bits?

> in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

Finite field arithmetic

How do we get the carry bits?

v

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register

v

v

We can use this carry flag when using assembly

v

No direct access from C level (so much for “portable assembly”)

Finite field arithmetic

How do we get the carry bits?

v

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register
We can use this carry flag when using assembly

No direct access from C level (so much for “portable assembly”)

vV v v v

So, let's do it in assembly (no worries, it's not dark arts)

Finite field arithmetic

How do we get the carry bits?

vV v v v Y

in C something like:

unsigned long long carry = O;
if(r.a[0] < x.a[0]) carry = 1;

The computer actually remembers the carry in a flag register
We can use this carry flag when using assembly

No direct access from C level (so much for “portable assembly”)
So, let's do it in assembly (no worries, it's not dark arts)

Use somewhat simplified “C-like” ghasm syntax for assembly

Finite field arithmetic

bigint256 addition in ghasm

int64 x
int64 y

enter bigint256_add

x = mem64[input_1 + 0]
y = mem64 [input_2 + 0]
carry? x +=y

mem64 [input_0 + 0] = x

x = mem64 [input_1 + 8]
y = mem64[input_2 + 8]
carry? x += y + carry
mem64 [input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x += y + carry

mem64 [input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64 [input_2 + 24]
carry? x += y + carry

mem64 [input_0 + 24] = x

x =0
X += x + carry

return x

Finite field arithmetic

10

bigint2566 subtraction in ghasm

int64 x
int64 y

enter bigint256_sub

x = mem64[input_1 + 0]
y = mem64 [input_2 + 0]
carry? x -=y

mem64 [input_0 + 0] = x

x = mem64 [input_1 + 8]
y = mem64[input_2 + 8]
carry? x -= y - carry
mem64 [input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x -= y - carry

mem64 [input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64 [input_2 + 24]
carry? x -= y - carry

mem64 [input_0 + 24] = x

x =0
X += x + carry

return x

Finite field arithmetic

11

One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

Finite field arithmetic

12

One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

Finite field arithmetic

12

One step back. ..

v

Radix-2%4 representation works and is sometimes a good choice
Highly depends on the efficiency of handling carries

Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

v

v

v

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Finite field arithmetic

12

One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries

» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

» Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

> Let’s get rid of the carries, represent A as (ag, a1, as, a3, ay) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation

Finite field arithmetic

12

One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation
» Multiple ways to write the same integer A, for example A = 252

> (2°%,0,0,0,0)
> (07 27 07 07 O)

Finite field arithmetic

12

One step back. ..

» Radix-264 representation works and is sometimes a good choice
» Highly depends on the efficiency of handling carries
» Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

Let's get rid of the carries, represent A as (ag, a1, as, as,as) with

4
A= Z ai251'i

=0

> This is called radix-2°! representation

» Multiple ways to write the same integer A, for example A = 252
> (2°2,0,0,0,0)
> (0,2,0,0,0)

Let's call a representation (ag, a1, as, as, aq) reduced, if all

a; € [0,...,252—1]

Finite field arithmetic

12

Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] + y->al4];

x->al4]

Finite field arithmetic

Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

r->al0] = x->a[0] + y->al[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] + y->al4];

x->al4]

» This definitely works for reduced inputs

Finite field arithmetic

13

Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->a[4] + y->al4];
}

» This definitely works for reduced inputs
» This actually works as long as all coefficients are in [0,...,25 — 1]

Finite field arithmetic

13

Addition of two bigint256

typedef struct{
unsigned long long a[5];
} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->al1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->al3];
r->al4] = x->a[4] + y->al4];
}

» This definitely works for reduced inputs
» This actually works as long as all coefficients are in [0,...,25 — 1]
» We can do quite a few additions before we have to carry (reduce)

Finite field arithmetic

13

Subtraction of two bigint256

typedef struct{
unsigned long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->al0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

3

» Again: what's wrong here?

Finite field arithmetic 14

Subtraction of two bigint256

typedef struct{
signed long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

» Again: what's wrong here?
» Slightly update our bigint256 definition to work with signed 64-bit
integers

Finite field arithmetic

14

Subtraction of two bigint256

typedef struct{
signed long long al[5];
} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->al0];
r->al1] = x->al[1] - y->al[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->al3];
r->al4] = x->al4] - y->al4];

» Again: what's wrong here?

» Slightly update our bigint256 definition to work with signed 64-bit
integers

» Reduced if coefficients are in [—252 — 1,252 — 1]

Finite field arithmetic

14

Back to reduced representation

» An addition/subtraction does not produce a reduced output for
reduced inputs

» Can do quite a few additions, but at some point we need to reduce
(i.e., carry)

Finite field arithmetic

15

Back to reduced representation

» An addition/subtraction does not produce a reduced output for
reduced inputs
» Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
> Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= b1;
r.a[0] -= carry;

Finite field arithmetic

15

Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)

Finite field arithmetic

15

Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];

Finite field arithmetic

15

Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];
» Carry from r.a[2] to r.a[3];

Finite field arithmetic

15

Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];

» Carry from r.a[2] to r.a[3];

» Carry from r.a[3] to r.al[4];

Finite field arithmetic

15

Back to reduced representation

>

An addition/subtraction does not produce a reduced output for
reduced inputs
Can do quite a few additions, but at some point we need to reduce
(i.e., carry)
Let's carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;

r.a[1] += carry;

carry <<= b1;

r.a[0] -= carry;
This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 2°1)
Not defined in C standard (usually works, and no problem in
assembly)
Proceed:

> Carry from r.a[1] to r.a[2];

» Carry from r.a[2] to r.a[3];

» Carry from r.a[3] to r.al[4];

» Carry from r.af4] to...?

Finite field arithmetic

15

Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

Finite field arithmetic

16

Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p

Finite field arithmetic

16

Reducing modulo p

v

When adding integers, the result naturally grows

v

For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

v

We want to perform arithmetic in a field F),, we can reduce modulo p

v

Let’s fix some p, say p = 22°° — 19

Finite field arithmetic

16

Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19

» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251(11 + 2102[12 + 2153(13 + 2204CL4 + 2255(15

Finite field arithmetic

16

Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19
» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251a1 + 2102[12 + 2153a3 + 2204CL4 + 2255(15

» Note that 22°° =19 (mod p)
» Modulo p, the integer A is congruent to

A= (ap + 19a5) + 291 gy + 210205 4+ 21934 4 9204,

Finite field arithmetic

16

Reducing modulo p

» When adding integers, the result naturally grows

» For integers, we do not really have any place to carry from r.a[4],
except create a new limb r.a[5], etc.

» We want to perform arithmetic in a field F,,, we can reduce modulo p
> Let’s fix some p, say p = 22°° — 19
» Imagine, that we did carry to r.a[5]. Then we get an integer

A= ag + 251a1 + 2102[12 + 2153a3 + 2204CL4 + 2255(15

» Note that 22°° =19 (mod p)
» Modulo p, the integer A is congruent to

A= (ap + 19a5) + 291 gy + 210205 4+ 21934 4 9204,

» We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.al[4] >> 51;
r.a[0] += 19%carry;
carry <<= b1;

r.a[4] -= carry;

Finite field arithmetic

16

Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”

Finite field arithmetic

17

Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
» In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order

Finite field arithmetic

17

Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!”
In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

vV Yy VY

Examples:
» 2192 964 1 (“NIST-P1e", FIPS186-2, 2000)
2224 _ 996 1 1 (“NIST-Paa4", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P2s6”, FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

v

vyvy

Finite field arithmetic

17

Primes are not rabbits

» “You cannot just simply pull some nice prime out of your hat!”
» In fact, very often we can.
» For cryptography we construct curves over fields of “nice” order
» Examples:
» 2192 _ 961 _ 1 (“NIST-Py92", FIPS186-2, 2000)
» 2224 996 4 1 (“NIST-P2a4", FIPS186-2, 2000)
> 2286 9224 4 9192 4 996 _ 1 (“NIST-Pa2s6”, FIPS186-2, 2000)
> 2255 _ 19 (Bernstein, 2006)
» 2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
> All these primes come with (more or less) fast reduction algorithms

Finite field arithmetic

17

Primes are not rabbits

“You cannot just simply pull some nice prime out of your hat!”
In fact, very often we can.

For cryptography we construct curves over fields of “nice” order

vV Yy VY

Examples:
» 2192 964 1 (“NIST-P1e", FIPS186-2, 2000)
2224 _ 996 1 1 (“NIST-Paa4", FIPS186-2, 2000)
2256 _ 9224 4 9192 4 996 _ 1 (“NIST-P2s6”, FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2251 _ 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

v

vyvy

> All these primes come with (more or less) fast reduction algorithms
» More about general primes later
» For the moment let's stick to 22°5 — 19

Finite field arithmetic

17

Briefly back to carrying

v

We first reduced r.a[0], i.e., produced r.a[0] in interval
[_251 251]
At the end we add 19*carry to r.a[0]

Carry has at most 12 bits (obtained by dividing a signed 64-bit
integer by 251)

The absolute value of 19*carry has at most 17 bits
r.a[0]+19*carry is still within [-2%2 — 1,252 — 1], i.e., reduced

v

v

v

v

Finite field arithmetic

18

Multiplication

> We want to multiply two integers
A=Y" a2 and B= Y} ;2517

Finite field arithmetic

19

Multiplication

» We want to multiply two integers
A3 a2t and B =y bt
» Think about it like this:
» Multiply polynomials A =3"" a; X" and B=3_, b; X"

Finite field arithmetic

19

Multiplication

» We want to multiply two integers
A3 a2t and B =y bt
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"

> Obtain result polynomial R = 3>>°_ 7 X*

Finite field arithmetic

19

Multiplication

» We want to multiply two integers
A=3 adiand B oy p2s
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"
> Obtain result polynomial R = Z?:o r X"
> Evaluate R at 2%!

Finite field arithmetic

19

Multiplication

» We want to multiply two integers
A3 a2iand B =y post
» Think about it like this:

> Multiply polynomials A =3"" a; X" and B=37_, b; X"

> Obtain result polynomial R = 3°°_ 7 X*
> Evaluate R at 2°!

» The coefficients of R are:

ro = agbo
T = a0b1 + a1b0

ro = agbz + a1by + azbg

T8 = agby

Finite field arithmetic

19

Multiplication

» We want to multiply two integers
A=3 adiand B oy p2s
» Think about it like this:
> Multiply polynomials A =3"" a; X" and B=37_, b; X"
> Obtain result polynomial R = Z?:o r X"
> Evaluate R at 2%!

» The coefficients of R are:

ro = agbo
T = a0b1 + a1b0

ro = agbz + a1by + azbg

T8 = agby

» If all a; and b; have 52 bits, the r; will have up to 107 bits

» Doesn't fit into 64-bit registers, but remember that there is a
multiplication instruction that produces 128-bit results in two
registers.

Finite field arithmetic 19

Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];

Finite field arithmetic

20

Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

» Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];

Finite field arithmetic

20

Multiplication in C (idealized)

void mul(int128 r[9], const

{

const signed long long *a = x->a;
const signed long long *b = y->a;

r[0]
r[1]
r[2]
r[3]
r[4]
r[5]
r[6]
r[7]
r[8]

al0]*b[0];
al[0]*b[1]
al0]*b[2]
a[0]*b[3]
a[0]*b[4]
al1]*b[4]
al[2]*xb[4]
a[3]*b[4]
al4]*b[4];

+ o+ o+ o+ o+ + o+

al[11*b[0];
a[1]#*b[1]
al1]*b[2]
a[1]*b[3]
a[2]*b[3]
a[3]*b[3]
al[4]1*b[3];

+ o4+ 4+ 4+ 4+

» Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

a[2]*b[0];

bigint256 *x, const bigint256 *y)

al[2]*b[1] + a[3]1*b[0];

a[2]*b[2] + a[3]*b[1] + a[4]*b[0];

a[3]*b[2] + al[4]*b[1];

al4]*b[2];

» This doesn't work because we don’t have int128 data type

» Even in assembly, we don't have addition of 128-bit integers

Finite field arithmetic

20

A peek at multiplication in ghasm

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r0 = rax
rOh = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
rl = rax
rih = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r2 = rax
r2h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r3 = rax
r3h = rdx

rax = mem64[input_1 + 0]

(int128) rdx rax = rax * mem64[input_2
r4 = rax
r4h = rdx

+

0]

8]

16]

24]

32]

Finite field arithmetic

21

A peek at multiplication in ghasm

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? rl += rax

rih += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r2 += rax

r2h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r3 += rax

r3h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
carry? r4 += rax

r4h += rdx + carry

rax = mem64[input_1 + 8]

(int128) rdx rax = rax * mem64[input_2
r5 = rax
r5h = rdx

+

0]

8]

16]

24]

32]

Finite field arithmetic

21

A peek at multiplication in ghasm

mem64 [input_0 + 0] = r0
mem64 [input_0 + 8] = rOh
mem64 [input_0 + 16] = rl
mem64 [input_0 + 24] = rih
mem64 [input_0 + 32] = r2
mem64 [input_0 + 40] = r2h

mem64 [input_0 + 128]
mem64 [input_0 + 136]

r8
r8h

Finite field arithmetic

Again: back to reduced representation

» We now have rg,...,rs, such that
8 4 ‘ 4 '
S Xt = (Z ain> (Z biXZ)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4 _
> o2t = (Z a1251'1> (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0

Finite field arithmetic 22

Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi251'i> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as
ro <— 1o+ 1975

Finite field arithmetic

22

Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi251'i> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as
ro <— 1o+ 1975
r1 < r1+ 19rg
r9 < ro + 1977
r3 < r3 + 19rg

Finite field arithmetic

22

Again: back to reduced representation

» We now have rg,...,rs, such that
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 ‘ 4
> o2t = (Z ai251'1) (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0

» With the same reasoning as before, we can reduce modulo p as

ro <— 1o+ 1975
r1 < r1+ 19rg
r9 < ro + 1977
r3 < r3 + 19rg

» Remaining problem: rg, ..., ry4 are too large

Finite field arithmetic

22

Again: back to reduced representation

» We now have rg,...,rs, such that
8 4 4
S Xt = (Z ain> (Z bin)
i=0 i=0 i=0
» We want to have rq,..., 74, such that
4 4 4
> o2t = (Z ai251'1) (Z bi25“> (mod 22% — 19)
i=0 i=0 i=0
» With the same reasoning as before, we can reduce modulo p as
ro < 7o + 19’)"5
ry <11+ 19r¢
r9 < ro + 1977
r3 < r3 + 19rg
» Remaining problem: rg, ..., ry4 are too large
» Solution: carry!

Finite field arithmetic

22

A suitable carry chain

> Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)

signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;

carry <<= b1;

r.al[0] -= carry;

» Carry from 7y to rq; from 71 to r5, and so on

» Multiply carry from 74 by 19 and add to rg

Finite field arithmetic

23

A suitable carry chain

> Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)
signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= b1;
r.al[0] -= carry;
» Carry from 7y to rq; from 71 to r5, and so on
» Multiply carry from 74 by 19 and add to rg
» After one round of carries we have signed 64-bit integers
» Perform another round of carries to obtain reduced coefficients

Finite field arithmetic

23

Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?

Finite field arithmetic

24

Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?

» Using multiplication for squarings:

r[0] = a[0]*a[0];
r[1] = a[0]*a[1]
r[2] = a[0]*a[2]
r[3] = al0]*al3]
r[4] = a[0]*a[4]
r[5] = al[1]l*a[4]
r[6] = a[2]*a[4]
r[7] = al[3]*al[4]
r[8] = al4l*al4];

a[1]*al0];

al1]*al1] + a[2]*al0];

al[1]*a[2] + a[2]*a[1] + a[3]*al[0];

al1]*a[3] + a[2]*a[2] + al[3]*al1] + al[4]*al0];
a[2]*a[3] + a[3]*a[2] + a[4l*al[1];

a[3]*al[3] + al[4]*al2];

al41*al3];

+ o+ o+ o+ o+ o+ o+

Finite field arithmetic 24

Squaring

» Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

» Question: Can we do better?

» Using multiplication for squarings:

r[0] = a[0]*a[0];
r[1] = a[0]*a[1]
r[2] = a[0]*a[2]
r[3] = al0]*al3]
r[4] = al[0]*a[4]
r[5] = al[1]l*a[4]
r[6] = a[2]*al4]
r[7] = al[3]*al[4]
r[8] = al4]*al4];

» Observation: We perform many multiplications twice!

al11*al0];

al1]*al1] + a[2]*al0];

al[1]*a[2] + a[2]*a[1] + a[3]*al[0];

al1]*a[3] + a[2]*a[2] + al[3]*al1] + al[4]*al0];
a[2]*a[3] + a[3]*a[2] + a[4l*al[1];

a[3]*al[3] + al[4]*al2];

al41*al3];

+ o+ o+ o+ o+ o+ o+

Finite field arithmetic 24

Faster squaring

signed long long _2al[4];
_2a[0] = a[0] << 1;
_2a[1] = a[1] << 1;

1;

1;

_2a[2] al[2] <<
_2al[3] al[3] <<

r[0] = a[0]*a[0];

r[1] = _2a[0]*al1];

r[2] = _2al0]*a[2] + al[1]l=*al[1];

r[3] = _2a[0]*a[3] + _2a[1]*al[2];

r[4] = _2a[0]*a[4] + _2al[1]l*al[3] + al[2]*al[2];
r[5] = _2al[1]l*al[4] + _2a[2]*a[3];

r(6] = _2a[2]*al[4] + a[3]*al3];

r[7] = _2a[3]*al4];

r[8] = al4]l*al4];

» Multiplication needs 25 multiplications, 16 additions
» Squaring needs 15 multiplications, 6 additions (and 4 shifts)

Finite field arithmetic

Faster multiplication?

» Consider multiplication of two n-coefficient polynomials (degree
<n-1)
» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity

Finite field arithmetic

26

Faster multiplication?

>

Consider multiplication of two n-coefficient polynomials (degree
<n-1)

» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication

has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960

Assume that n = 2m, then write an n-coefficient polynomial A as
Ag+ X™A,

Perform multiplication as

=(4p+XMA;1) - (Bo+ X™MBq)

= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™

Finite field arithmetic

26

Faster multiplication?

» Consider multiplication of two n-coefficient polynomials (degree
<n-1)
» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication
has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960
» Assume that n = 2m, then write an n-coefficient polynomial A as

Ag + X™MA,
» Perform multiplication as
=(4p+XMA;1) - (Bo+ X™MBq)
= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™
= AoBo + (Ao + A1)(Bo + B1) — AgBy — A1B1)X™ + A1 B X*™

Finite field arithmetic 26

Faster

>

multiplication?

Consider multiplication of two n-coefficient polynomials (degree
<n-1)

» So far we needed n? multiplications and (n — 1)? additions

» Kolmogorov conjectured 1952: You can't do better, multiplication

has quadratic complexity

» Proven wrong by 23-year old student Karatsuba in 1960

Assume that n = 2m, then write an n-coefficient polynomial A as
Ag+ X™A,
Perform multiplication as

=(4Ap+ X™A;) - (Bo+ X™Bs)
= AoBo + (AoB1 + A1Bo)X™ + A1 B X*™
= AoBo + ((Ag + A1) (By + By) — AgBy — A1 B1)X™ + Ay B X*™

We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

Recursive application yields asymptotic complexity O(n'°%2?)

Finite field arithmetic 26

Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™

Finite field arithmetic

27

Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™

> Refined Karatsuba equality:

(Ag+ X™A1)(By + X™By)
=(1—-X")(AogBy — X™A1B1) + X" (Ao + A1)(Bo + B1)

Finite field arithmetic

27

Even faster multiplication?

» Karatsuba equality:

(Ag+ X™Ay) - (Bo+ X™By)
=AoBo + ((Ag + A1)(Bo + By) — AgBy — A1 B))X™ + A B; X?™

> Refined Karatsuba equality:

(Ag+ X™A1)(By + X™By)
:(]. - Xm)(AoBo - XmAlBl) + Xm(A() + Al)(B() + Bl)

> This reduces the ~ 8m additions to ~ 7m additions
(see Bernstein “Batch binary Edwards”, 2009)

» No reduction of asymptotic running time, but speedup in practice

Finite field arithmetic

27

Multiplication, can we go further?

» Toom-Cook multiplication has asymptotic complexity O(n'°8: %)

» Schénhage-Strassen multiplication has asymptotic complexity
O(nlognloglogn)

» Fiirer's multiplication algorithm has running time n log n20(og")

Finite field arithmetic

28

Karatsuba for Faozss_19 (in idealized C)

signed int128 rm0O,rml,rm2,rm3,rm4;
signed long long am0,aml,am2,bmO,bml,bm2;

am0
am0
am0
am0
am0
am0

r[0]
r[1]
r[2]
r[3]
r[4]

r[6]
r[7]
r[8]

alo] + a[3];
al1] + a[4];
al2];
bl0] + b[3];
b[1] + b[4];
b[2];

al[0]1*b[0];
al0]*b[1] +
a[0]*b[2] +
a[1]1*b[2] +
a[2]1*b[2];

a[31*b[3];
al[31*b[4] +
al4]*b[4];

al[1]1*b[0];
al1]*b[1] + a[2]*b[0];
al2]*b[1];

al4]*b[3];

Finite field arithmetic

29

Karatsuba for Fozss_19 (in idealized C) ctd.

rm[0] =
rm[1] =
rm[2] =
rm([3] =
rm[4] =

r[3] +=
r[4] +=
r[5] =
r[6] +=
r[6] +=

am[0]*bm[0] - r[0] - r[6];

am[0]*bm[1] + am[1]*b[0] - r[1] - r[7];

am[0]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r[8];
am[1]*bm[2] + am[2]*b[1] - r[3];

am[2]*bm[2] - r[4];

rm[0];
rm[1];
rm[2];
m([3];
rm[4];

Finite field arithmetic

29

Karatsuba for Fozss_19 (in idealized C) ctd.

rm[0] = am[0]*bm[0]
rm[1] = am[0]*bm[1]

r[0] - r[6];

am[1]1*b[0] - r[1] - r[7];

rm[2] = am[O]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r([8];
rm[3] = am[1]*bm[2] + am[2]*b[1] - r[3];

rm[4] = am[2]*bm[2] - r([4];

+ + +

r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];

» 22 multiplications, 4 small additions, 21 big additions
> |s this better? | doubt it.

Finite field arithmetic

29

Which multiplication algorithm to use

» Depends on the size of the field

Finite field arithmetic 30

Which multiplication algorithm to use

» Depends on the size of the field
» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

Finite field arithmetic

30

Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

Finite field arithmetic

30

Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

> Rule of thumb:
» For < 10 limbs (coefficients) use schoolbook multiplication

Finite field arithmetic

30

Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

» Rule of thumb:

» For < 10 limbs (coefficients) use schoolbook multiplication
> For > 10 start to think about (refined) Karatsuba

Finite field arithmetic

30

Which multiplication algorithm to use

» Depends on the size of the field
» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)
» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)
» Rule of thumb:
» For < 10 limbs (coefficients) use schoolbook multiplication
> For > 10 start to think about (refined) Karatsuba
> For field sizes appearing in ECC, | never saw anybody using
Toom-Cook or Schénhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

Finite field arithmetic

30

Which multiplication algorithm to use

» Depends on the size of the field

» Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

» Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

» Rule of thumb:

For < 10 limbs (coefficients) use schoolbook multiplication

> For > 10 start to think about (refined) Karatsuba

For field sizes appearing in ECC, | never saw anybody using

Toom-Cook or Schénhage-Strassen (however, Toom-Cook may

become interesting in pairing computations)
| don’t know of any application using Fiirer's algorithm

v

v

v

Finite field arithmetic

30

Still missing: inversion

> Inversion is typically much more expensive than multiplication

» This is why we like projective coordinates

Finite field arithmetic

31

Still missing: inversion

v

Inversion is typically much more expensive than multiplication

v

This is why we like projective coordinates

v

Before sending an elliptic-curve point, we need to convert from
projective coordinates to affine coordinates (for security reasons!)

v

We need inversion, but we do (usually) not need it often

Finite field arithmetic

31

Still missing: inversion

v

Inversion is typically much more expensive than multiplication

v

This is why we like projective coordinates

v

Before sending an elliptic-curve point, we need to convert from
projective coordinates to affine coordinates (for security reasons!)

v

We need inversion, but we do (usually) not need it often

v

Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

Finite field arithmetic

31

Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)

Finite field arithmetic

32

Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)

> |t is based on the observation that

ged(a,b) = ged(b,a — gb) Vg eZ

Finite field arithmetic

32

Extended Euclidean algorithm

» Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers u and v, such that a-u +b-v = ged(a, b)

> |t is based on the observation that
ged(a,b) = ged(b,a — gb) Vg eZ
» To compute a~! (mod p), use the algorithm to compute

a-u+p-v=ged(a,p) =1

v

Now it holds that u = a~! (mod p)

Finite field arithmetic

32

Extended Euclidean algorithm (pseudocode)

Input: Integers a and b.
Output: An integer tuple (u,v,d) satisfying a-u+b-v =d = ged(a,b)
u<— 1
v<40
d<+a
vy <0
v3 < b
while (vs # 0) do
g+ 2]
t3 d mod V3
t1 < u— quy
U < U1
d <+ vs3
11— 6
V3 < t3
end while
v e i
return (u,v,d)

Finite field arithmetic 33

Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder

» Going into detail of multiprecision (big-integer) division would cost
us lunch

Finite field arithmetic

34

Some notes about the Extended Euclidean algorithm

v

Core operation are divisions with remainder

Going into detail of multiprecision (big-integer) division would cost
us lunch

The running time (number of loop iterations) depends on the inputs
We usually do not want this for cryptography (more this afternoon)

v

v

v

Finite field arithmetic

34

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

Finite field arithmetic

35

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?=? = a~! (mod p)

» Obvious algorithm for inversion: Exponentiation with p — 2

Finite field arithmetic

35

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?=? = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?

Finite field arithmetic

35

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

» This implies that a?=? = a~! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2

> The exponent is quite large (e.g., 255 bits), is that efficient?

» Answer: yes, fairly. Inversion modulo 22°% — 19 needs 254 squarings
and 11 multiplications in Fa2s5_19

Finite field arithmetic

35

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that a?~* = 1 (mod p)

vV v . vvY

This implies that a?~2 = a~! (mod p)
Obvious algorithm for inversion: Exponentiation with p — 2
The exponent is quite large (e.g., 255 bits), is that efficient?

Answer: yes, fairly. Inversion modulo 22%5 — 19 needs 254 squarings
and 11 multiplications in Fa2s5_19

Details in my talk this afternoon

Finite field arithmetic

35

While we're at it: square roots

» We can compress a point (z,y) before sending

» Usually send only and one bit of y

» When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

Finite field arithmetic

36

While we're at it: square roots

» We can compress a point (z,y) before sending

» Usually send only and one bit of y

» When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

> If p=3 (mod 4): compute square root of a as aPT1)/4

Finite field arithmetic

36

While we're at it: square roots

v

We can compress a point (z,y) before sending

v

Usually send only = and one bit of y

v

When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=5 (mod 8): compute /3, such that 8 = a? as a(P*3)/8
If 82 = —a: multiply by v/—1

v

v

v

Finite field arithmetic

36

While we're at it: square roots

We can compress a point (z,y) before sending

» Usually send only = and one bit of y

v

vV v v v

When receiving such a compressed point we need to recompute ¥ as

Va3 +ax +b

If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=5 (mod 8): compute /3, such that 8 = a? as a(P*3)/8
If 82 = —a: multiply by v/—1

Computing square roots is (typically) about as expensive as an
inversion

Finite field arithmetic

36

Getting back to the rabbits

» What if somebody just throws an ugly prime at you?

Finite field arithmetic 37

Getting back to the rabbits

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F, with
paz24a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDAS9F57TEC8COFF

or

p2s6 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02 A9F B57TDBA1EEA9BC3E660A909D838D 726 E3BF 623D\
52620282013481 D1 F6E5377

Finite field arithmetic

37

Getting back to the rabbits

» What if somebody just throws an ugly prime at you?
» Example: German BSI is pushing the “Brainpool curves”, over fields
F, with
paz24a =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDAS9F57TEC8COFF

or
p2s6 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751

=02 A9F B57TDBA1EEA9BC3E660A909D838D 726 E3BF 623D\
52620282013481 D1 F6E5377

» Another example: Pairing-friendly curves are typically defined over
fields I, where p has some structure, but hard to exploit for fast
arithmetic

Finite field arithmetic

37

Montgomery representation

» We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p

Finite field arithmetic

38

Montgomery representation

» We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p

» Idea: Perform big-integer division with remainder (but this would
cost us lunch)

Finite field arithmetic

38

Montgomery representation

» We have the following problem:
> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» We need to find t mod p
» Idea: Perform big-integer division with remainder (but this would
cost us lunch)
> Better idea (Montgomery, 1985):

Let R be such that gcd(R,p) =1land t <p-R

> Represent an element a of F, as aR mod p

> Multiplication of aR and bR yields t = abR* (2n limbs)
> Now compute Montgomery reduction: tR™' mod p

v

Finite field arithmetic

38

Montgomery representation

» We have the following problem:

>

>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

» Idea: Perform big-integer division with remainder (but this would
cost us lunch)

> Better idea (Montgomery, 1985):

>

vVYy vy VvVYyYy

Let R be such that gcd(R,p) =1land t <p-R

Represent an element a of F, as aR mod p

Multiplication of aR and bR yields t = abR? (2n limbs)
Now compute Montgomery reduction: tR™' mod p

For some choices of R this is be more efficient than division
Typical choice for radix-b representation: b™

Finite field arithmetic

38

Montgomery reduction (pseudocode)

Input: p= (pr—1,...,p0)p With ged(p,b) =1, R =b",
p'=—p~! modbandt=(ty, 1,...,t0)s
Output: tR~' mod p
A+t
for i from0ton —1 do
u <+ a;p’ mod b
A+ A+u-p-b
end for
A+ A/b"
if A > p then
A—A-—p
end if
return A

Finite field arithmetic

39

Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation

Finite field arithmetic

40

Some notes about Montgomery reduction

Some cost for transforming to Montgomery representation and back

v

v

Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 4+ n multiplication instructions

v

n of those are “shortened” multiplications (modulo b)

v

Finite field arithmetic

40

Some notes about Montgomery reduction

v

Some cost for transforming to Montgomery representation and back

v

Only efficient if many operations are performed in Montgomery
representation

v

The algorithms takes n2 4+ n multiplication instructions

v

n of those are “shortened” multiplications (modulo b)

v

The cost is roughly the same as schoolbook multiplication

Finite field arithmetic

40

Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

» Only efficient if many operations are performed in Montgomery
representation

The algorithms takes n2 4+ n multiplication instructions
n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

vV v v v

One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”

Finite field arithmetic

40

Summary

» Efficiency of finite-field arithmetic highly depends on the
representation of field elements

» The obvious representation is not always the best one

Finite field arithmetic

41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

Summary

» Efficiency of finite-field arithmetic highly depends on the
representation of field elements

» The obvious representation is not always the best one

» Carries are annoying (not only in C)

Finite field arithmetic

41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

Summary

vV v v v

Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one
Carries are annoying (not only in C)
Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance

Finite field arithmetic

41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

Summary

vV vV v v Yy

Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one

Carries are annoying (not only in C)

Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance

Don't be afraid to use assembly, but consider ghasm
(http://cr.yp.to/qhasm.html)

Finite field arithmetic

41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

Summary

vV vV v v Yy

Efficiency of finite-field arithmetic highly depends on the
representation of field elements

The obvious representation is not always the best one

Carries are annoying (not only in C)

Be careful with the complexity of multiplication

In particular if somebody uses it to estimate real-world performance

Don't be afraid to use assembly, but consider ghasm
(http://cr.yp.to/qhasm.html)

Remember the Explicit Formulas Database
http://www.hyperelliptic.org/EFD/

Finite field arithmetic

41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

