Finite field arithmetic

Peter Schwabe
Radboud University Nijmegen, The Netherlands

September 11, 2013
ECC 2013 Summer School

Elliptic-curve addition

- Computing $P+Q$ for two elliptic-curve points P and Q means performing a few operations in the underlying field
- Example: Add projective ($\left.X_{P}: Y_{P}: Z_{P}\right)$ and ($\left.X_{Q}: Y_{Q}: Z_{Q}\right)$ on curve $E: y^{2}=x^{3}+a x+b$.
$t_{1} \leftarrow Y_{P} \cdot Z_{Q}$
$t_{2} \leftarrow X_{P} \cdot Z_{Q}$
$t_{3} \leftarrow Z_{P} \cdot Z_{Q}$
$u \leftarrow Y_{Q} \cdot Z_{P}-t_{1}$
$u u \leftarrow u^{2}$
$v \leftarrow X_{Q} \cdot Z_{P}-t_{2}$
$v v \leftarrow v^{2}$
$v v v \leftarrow v \cdot v v$
$R \leftarrow v v \cdot t_{2}$
$A \leftarrow u u \cdot t_{3}-v v v-2 \cdot R$
$X_{R} \leftarrow v \cdot A$
$Y_{R} \leftarrow u \cdot(R-A)-v v v \cdot t_{1}$
$Z_{R} \leftarrow v v v \cdot t_{3}$
return $\left(X_{R}: Y_{R}: Z_{R}\right)$

The EFD

- There are many formulas for different curve shapes and point representations
- Best overview: The Explicit Formulas Database (EFD):
http://www.hyperelliptic.org/EFD/
- Compiled from many papers and talks by Dan Bernstein and Tanja Lange
- Contains verification scripts, 3 -operand code, ...

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)
- Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)
- Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)
- Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- Yeah, you're right. We do have 256-bit registers (AVX on Intel and AMD processors)
- But those do not hold a single 256-bit integer (but vectors of integers or floats)

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)
- Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- Yeah, you're right. We do have 256-bit registers (AVX on Intel and AMD processors)
- But those do not hold a single 256-bit integer (but vectors of integers or floats)
- Why can't they just hold a 256-bit integer?

The problem with large integers

- C has data types for 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers
- Why are there no data types for 256 -bit integers?
- Magma does not have problems with large integers
- Python has datatype long for arbitrary-size integers
- Java has BigInteger class
- C is "portable assembly", very close to what computers really do
- Computers work on data in registers (very small, very fast storage units)
- Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- Yeah, you're right. We do have 256-bit registers (AVX on Intel and AMD processors)
- But those do not hold a single 256-bit integer (but vectors of integers or floats)
- Why can't they just hold a 256 -bit integer?
- Because arithmetic units cannot perform arithmetic on 256-bit integers (only on 8 -bit, 16 -bit, 32 -bit, and 64 -bit integers)

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64 -bit integers
- Multiplication produces a 128 -bit result in 2 registers

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64 -bit integers
- Multiplication produces a 128 -bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64 -bit integers
- Multiplication produces a 128 -bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64 -bit integers
- Multiplication produces a 128 -bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic
- Arithmetic on vectors of 264 -bit integers
- Integer-vector multiplication only produces 264 -bit results

So, what do we have?

- Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64 -bit integers
- Multiplication produces a 128 -bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic
- Arithmetic on vectors of 264 -bit integers
- Integer-vector multiplication only produces 264 -bit results
- Arithmetic on vectors of 4 double-precision floats

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256-bit long)

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256 -bit long)
- Addition of ≈ 256-bit integers
- Subtraction of ≈ 256-bit integers

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256 -bit long)
- Addition of ≈ 256-bit integers
- Subtraction of ≈ 256-bit integers
- Reduction modulo p after addition and subtraction

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256 -bit long)
- Addition of ≈ 256-bit integers
- Subtraction of ≈ 256-bit integers
- Reduction modulo p after addition and subtraction
- Multiplication of ≈ 256-bit integers
- Squaring of ≈ 256-bit integers

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256 -bit long)
- Addition of ≈ 256-bit integers
- Subtraction of ≈ 256-bit integers
- Reduction modulo p after addition and subtraction
- Multiplication of ≈ 256-bit integers
- Squaring of ≈ 256-bit integers
- Reduction of a ≈ 512-bit multiplication result modulo p

What do we need?

- For this talk consider arithmetic in a field \mathbb{F}_{p} of large prime order p (for example 256 -bit long)
- Addition of ≈ 256-bit integers
- Subtraction of ≈ 256-bit integers
- Reduction modulo p after addition and subtraction
- Multiplication of ≈ 256-bit integers
- Squaring of ≈ 256-bit integers
- Reduction of a ≈ 512-bit multiplication result modulo p
- Inversion modulo p

Representing 256-bit integers

- Let's start with 64 -bit integers, that seems easiest
- Represent 256 -bit integer A through 464 -bit integers $a_{0}, a_{1}, a_{2}, a_{3}$ (a total of 256 bits)

Representing 256-bit integers

- Let's start with 64 -bit integers, that seems easiest
- Represent 256 -bit integer A through 464 -bit integers $a_{0}, a_{1}, a_{2}, a_{3}$ (a total of 256 bits)
- Value of A is $\sum_{i=0}^{3} a_{i} 2^{64 \cdot i}$

Representing 256-bit integers

- Let's start with 64 -bit integers, that seems easiest
- Represent 256 -bit integer A through 464 -bit integers $a_{0}, a_{1}, a_{2}, a_{3}$ (a total of 256 bits)
- Value of A is $\sum_{i=0}^{3} a_{i} 2^{64 \cdot i}$
- This is called radix-2 ${ }^{64}$ representation

Representing 256-bit integers

- Let's start with 64 -bit integers, that seems easiest
- Represent 256 -bit integer A through 464 -bit integers $a_{0}, a_{1}, a_{2}, a_{3}$ (a total of 256 bits)
- Value of A is $\sum_{i=0}^{3} a_{i} 2^{64 \cdot i}$
- This is called radix-2 ${ }^{64}$ representation
- Let's write that in C code:

```
typedef struct{
    unsigned long long a[4];
} bigint256;
```


Addition of two bigint256

```
void bigint256_add(bigint256 *r,
    const bigint256 *x,
    const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
}
- What's wrong about this?
```


Addition of two bigint256

```
void bigint256_add(bigint256 *r,
    const bigint256 *x,
    const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
}
- What's wrong about this?
```


Addition of two bigint256

```
void bigint256_add(bigint256 *r,
    const bigint256 *x,
    const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
}
- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo \(2^{64}\) )
```


Addition of two bigint256

$$
\begin{aligned}
\text { void bigint256_add } & (\text { bigint } 256 * r, \\
& \text { const bigint256 } * x, \\
& \text { const bigint256 } * y)
\end{aligned}
$$

$\{$

$$
\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0] ;
$$

$$
\mathrm{r}->\mathrm{a}[1]=\mathrm{x}->\mathrm{a}[1]+\mathrm{y}->\mathrm{a}[1] ;
$$

$$
\mathrm{r}->\mathrm{a}[2]=\mathrm{x}->\mathrm{a}[2]+\mathrm{y}->\mathrm{a}[2] ;
$$

$$
\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3] ;
$$

\}

- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo 2^{64})
- This is not the same as arithmetic on 256-bit integers

Addition of two bigint256

```
void bigint256_add(bigint256 *r,
    const bigint256 *x,
    const bigint256 *y)
```

$\{$
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0] ;$
$\mathrm{r}->\mathrm{a}[1]=\mathrm{x}->\mathrm{a}[1]+\mathrm{y}->\mathrm{a}[1] ;$
$r->a[2]=x->a[2]+y->a[2] ;$
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo 2^{64})
- This is not the same as arithmetic on 256-bit integers
- x->a[0] + y->a[0] may have 65 bits
- Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
- Same for all subsequent additions

Addition of two bigint256

```
void bigint256_add(bigint256 *r,
    const bigint256 *x,
    const bigint256 *y)
```

\{
$\mathrm{r}->\mathrm{a}[0]=\mathrm{x}->\mathrm{a}[0]+\mathrm{y}->\mathrm{a}[0] ;$
$r->a[1]=x->a[1]+y->a[1] ;$
$r->a[2]=x->a[2]+y->a[2] ;$
$\mathrm{r}->\mathrm{a}[3]=\mathrm{x}->\mathrm{a}[3]+\mathrm{y}->\mathrm{a}[3]$;
\}

- What's wrong about this?
- This performs arithmetic on a vector of 4 independent 64 -bit integers (modulo 2^{64})
- This is not the same as arithmetic on 256-bit integers
- x->a[0] + y->a[0] may have 65 bits
- Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
- Same for all subsequent additions
- Note: The result may not even fit into a bigint256!

How do we get the carry bits?

- in C something like:
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;

How do we get the carry bits?

- in C something like: unsigned long long carry = 0; if (r.a[0] < x.a[0]) carry = 1;
- The computer actually remembers the carry in a flag register
- We can use this carry flag when using assembly
- No direct access from C level (so much for "portable assembly")

How do we get the carry bits?

- in C something like:

$$
\begin{aligned}
& \text { unsigned long long carry = } 0 \text {; } \\
& \text { if(r.a[0] < x.a[0]) carry = 1; }
\end{aligned}
$$

- The computer actually remembers the carry in a flag register
- We can use this carry flag when using assembly
- No direct access from C level (so much for "portable assembly")
- So, let's do it in assembly (no worries, it's not dark arts)

How do we get the carry bits?

- in C something like:

$$
\begin{aligned}
& \text { unsigned long long carry = } 0 \text {; } \\
& \text { if(r.a[0] < x.a[0]) carry = 1; }
\end{aligned}
$$

- The computer actually remembers the carry in a flag register
- We can use this carry flag when using assembly
- No direct access from C level (so much for "portable assembly")
- So, let's do it in assembly (no worries, it's not dark arts)
- Use somewhat simplified "C-like" qhasm syntax for assembly

bigint256 addition in qhasm

```
int64 x
int64 y
enter bigint256_add
x = mem64[input_1 + 0]
y = mem64[input_2 + 0]
carry? x += y
mem64[input_0 + 0] = x
x = mem64[input_1 + 8]
y = mem64[input_2 + 8]
carry? x += y + carry
mem64[input_0 + 8] = x
```

```
x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x += y + carry
mem64[input_0 + 16] = x
```

$\mathrm{x}=$ mem64[input_1 + 24]
$\mathrm{y}=$ mem64[input_2 + 24]
carry? x += y + carry
mem64[input_0 +24] $=\mathrm{x}$
$\mathrm{x}=0$
x += x + carry
return x

bigint256 subtraction in qhasm

```
int64 x
int64 y
enter bigint256_sub
x = mem64[input_1 + 0]
y = mem64[input_2 + 0]
carry? x -= y
mem64[input_0 + 0] = x
x = mem64[input_1 + 8]
y = mem64[input_2 + 8]
carry? x -= y - carry
mem64[input_0 + 8] = x
```

```
x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x -= y - carry
mem64[input_0 + 16] = x
```

$\mathrm{x}=$ mem64[input_1 + 24]
$\mathrm{y}=$ mem64[input_2 + 24]
carry? x -= y - carry
mem64[input_0 + 24] = x
$\mathrm{x}=0$
x += x + carry
return x

One step back. . .

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries

One step back...

- Radix-2 ${ }^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6 !)

One step back...

- Radix-2 ${ }^{64}$ representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)

One step back...

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of $6!$)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- 2^{51} representation

One step back. . .

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of $6!$)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- 2^{51} representation
- Multiple ways to write the same integer A, for example $A=2^{52}$:
- $\left(2^{52}, 0,0,0,0\right)$
- $(0,2,0,0,0)$

One step back...

- Radix- 2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of $6!$)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}
$$

- This is called radix- 2^{51} representation
- Multiple ways to write the same integer A, for example $A=2^{52}$:
- $\left(2^{52}, 0,0,0,0\right)$
- $(0,2,0,0,0)$
- Let's call a representation $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)$ reduced, if all $a_{i} \in\left[0, \ldots, 2^{52}-1\right]$

Addition of two bigint256

```
typedef struct{
    unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                            const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```

 const bigint256 *x,

Addition of two bigint256

```
typedef struct{
    unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                        const bigint256 *x,
                            const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```

- This definitely works for reduced inputs

Addition of two bigint256

```
typedef struct{
    unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                        const bigint256 *x,
                            const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```

- This definitely works for reduced inputs
- This actually works as long as all coefficients are in $\left[0, \ldots, 2^{63}-1\right]$

Addition of two bigint256

```
typedef struct{
    unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                        const bigint256 *x,
                        const bigint256 *y)
{
    r->a[0] = x->a[0] + y->a[0];
    r->a[1] = x->a[1] + y->a[1];
    r->a[2] = x->a[2] + y->a[2];
    r->a[3] = x->a[3] + y->a[3];
    r->a[4] = x->a[4] + y->a[4];
}
```

- This definitely works for reduced inputs
- This actually works as long as all coefficients are in $\left[0, \ldots, 2^{63}-1\right]$
- We can do quite a few additions before we have to carry (reduce)

Subtraction of two bigint256

```
typedef struct{
    unsigned long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
{
    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[2] - y->a[2];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

const bigint256 *x,
const bigint256 *y)

- Again: what's wrong here?

Subtraction of two bigint256

```
typedef struct{
    signed long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
{
    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[2] - y->a[2];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

const bigint256 *x,
const bigint256 *y)

- Again: what's wrong here?
- Slightly update our bigint256 definition to work with signed 64-bit integers

Subtraction of two bigint256

```
typedef struct{
    signed long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
{
    r->a[0] = x->a[0] - y->a[0];
    r->a[1] = x->a[1] - y->a[1];
    r->a[2] = x->a[2] - y->a[2];
    r->a[3] = x->a[3] - y->a[3];
    r->a[4] = x->a[4] - y->a[4];
}
```

const bigint256 *x,
const bigint256 *y)

- Again: what's wrong here?
- Slightly update our bigint256 definition to work with signed 64-bit integers
- Reduced if coefficients are in $\left[-2^{52}-1,2^{52}-1\right]$

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of $\mathrm{r} . \mathrm{a}[0]$ over to $\mathrm{r} . \mathrm{a}[1]$:

```
    signed long long carry = r.a[0] >> 51;
```

 r.a[1] += carry;
 carry <<= 51;
 r.a[0] -= carry;

- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2^{51})
- Not defined in C standard (usually works, and no problem in assembly)

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2^{51})
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
- Carry from r.a[1] to r.a[2];

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2^{51})
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
- Carry from r.a[1] to r.a[2];
- Carry from r.a[2] to r.a[3];

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2^{51})
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
- Carry from r.a[1] to r.a[2];
- Carry from r.a[2] to r.a[3];
- Carry from r.a[3] to r.a[4];

Back to reduced representation

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of $\mathrm{r} . \mathrm{a}[0]$ over to $\mathrm{r} . \mathrm{a}[1]$:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2^{51})
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
- Carry from r.a[1] to r.a[2];
- Carry from r.a[2] to r.a[3];
- Carry from r.a[3] to r.a[4];
- Carry from r.a[4] to ...?

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field \mathbb{F}_{p}, we can reduce modulo p

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field \mathbb{F}_{p}, we can reduce modulo p
- Let's fix some p, say $p=2^{255}-19$

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field \mathbb{F}_{p}, we can reduce modulo p
- Let's fix some p, say $p=2^{255}-19$
- Imagine, that we did carry to r.a[5]. Then we get an integer

$$
A=a_{0}+2^{51} a_{1}+2^{102} a_{2}+2^{153} a_{3}+2^{204} a_{4}+2^{255} a_{5}
$$

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field \mathbb{F}_{p}, we can reduce modulo p
- Let's fix some p, say $p=2^{255}-19$
- Imagine, that we did carry to r.a[5]. Then we get an integer

$$
A=a_{0}+2^{51} a_{1}+2^{102} a_{2}+2^{153} a_{3}+2^{204} a_{4}+2^{255} a_{5}
$$

- Note that $2^{255} \equiv 19(\bmod p)$
- Modulo p, the integer A is congruent to

$$
A=\left(a_{0}+19 a_{5}\right)+2^{51} a_{1}+2^{102} a_{2}+2^{153} a_{3}+2^{204} a_{4}
$$

Reducing modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field \mathbb{F}_{p}, we can reduce modulo p
- Let's fix some p, say $p=2^{255}-19$
- Imagine, that we did carry to r.a[5]. Then we get an integer

$$
A=a_{0}+2^{51} a_{1}+2^{102} a_{2}+2^{153} a_{3}+2^{204} a_{4}+2^{255} a_{5}
$$

- Note that $2^{255} \equiv 19(\bmod p)$
- Modulo p, the integer A is congruent to

$$
A=\left(a_{0}+19 a_{5}\right)+2^{51} a_{1}+2^{102} a_{2}+2^{153} a_{3}+2^{204} a_{4}
$$

- We can reduce r.a[4] as follows (modulo p):

```
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;
```


Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"

Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order

Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
- $2^{192}-2^{64}-1$ ("NIST-P 192 ", FIPS186-2, 2000)
- $2^{224}-2^{96}+1$ ("NIST-P 224 ", FIPS186-2, 2000)
- $2^{256}-2^{224}+2^{192}+2^{96}-1$ ("NIST-P 256 ", FIPS186-2, 2000)
- $2^{255}-19$ (Bernstein, 2006)
- $2^{251}-9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)

Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
- $2^{192}-2^{64}-1$ ("NIST-P 192 ", FIPS186-2, 2000)
- $2^{224}-2^{96}+1$ ("NIST-P 224 ", FIPS186-2, 2000)
- $2^{256}-2^{224}+2^{192}+2^{96}-1$ ("NIST-P 256 ", FIPS186-2, 2000)
- $2^{255}-19$ (Bernstein, 2006)
- $2^{251}-9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)
- All these primes come with (more or less) fast reduction algorithms

Primes are not rabbits

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
- $2^{192}-2^{64}-1$ ("NIST-P 192 ", FIPS186-2, 2000)
- $2^{224}-2^{96}+1$ ("NIST-P 224 ", FIPS186-2, 2000)
- $2^{256}-2^{224}+2^{192}+2^{96}-1$ ("NIST-P 256 ", FIPS186-2, 2000)
- $2^{255}-19$ (Bernstein, 2006)
- $2^{251}-9$ (Bernstein, Hamburg, Krasnova, Lange, 2013)
- All these primes come with (more or less) fast reduction algorithms
- More about general primes later
- For the moment let's stick to $2^{255}-19$

Briefly back to carrying

- We first reduced r.a[0], i.e., produced r.a[0] in interval $\left[-2^{51}, 2^{51}\right]$
- At the end we add $19 *$ carry to r.a[0]
- Carry has at most 12 bits (obtained by dividing a signed 64 -bit integer by 2^{51})
- The absolute value of $19 *$ carry has at most 17 bits
-r.a[0]+19*carry is still within $\left[-2^{52}-1,2^{52}-1\right]$, i.e., reduced

Multiplication

- We want to multiply two integers
$A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}$ and $B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}$

Multiplication

- We want to multiply two integers
$A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}$ and $B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}$
- Think about it like this:
- Multiply polynomials $A=\sum_{i=0}^{4} a_{i} X^{i}$ and $B=\sum_{i=0}^{4} b_{i} X^{i}$

Multiplication

- We want to multiply two integers

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i} \text { and } B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}
$$

- Think about it like this:
- Multiply polynomials $A=\sum_{i=0}^{4} a_{i} X^{i}$ and $B=\sum_{i=0}^{4} b_{i} X^{i}$
- Obtain result polynomial $R=\sum_{i=0}^{8} r_{i} X^{i}$

Multiplication

- We want to multiply two integers

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i} \text { and } B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}
$$

- Think about it like this:
- Multiply polynomials $A=\sum_{i=0}^{4} a_{i} X^{i}$ and $B=\sum_{i=0}^{4} b_{i} X^{i}$
- Obtain result polynomial $R=\sum_{i=0}^{8} r_{i} X^{i}$
- Evaluate R at 2^{51}

Multiplication

- We want to multiply two integers

$$
A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i} \text { and } B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}
$$

- Think about it like this:
- Multiply polynomials $A=\sum_{i=0}^{4} a_{i} X^{i}$ and $B=\sum_{i=0}^{4} b_{i} X^{i}$
- Obtain result polynomial $R=\sum_{i=0}^{8} r_{i} X^{i}$
- Evaluate R at 2^{51}
- The coefficients of R are:

$$
\begin{aligned}
r_{0} & =a_{0} b_{0} \\
r_{1} & =a_{0} b_{1}+a_{1} b_{0} \\
r_{2} & =a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
& \ldots \\
r_{8} & =a_{4} b_{4}
\end{aligned}
$$

Multiplication

- We want to multiply two integers
$A=\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}$ and $B=\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}$
- Think about it like this:
- Multiply polynomials $A=\sum_{i=0}^{4} a_{i} X^{i}$ and $B=\sum_{i=0}^{4} b_{i} X^{i}$
- Obtain result polynomial $R=\sum_{i=0}^{8} r_{i} X^{i}$
- Evaluate R at 2^{51}
- The coefficients of R are:

$$
\begin{aligned}
r_{0} & =a_{0} b_{0} \\
r_{1} & =a_{0} b_{1}+a_{1} b_{0} \\
r_{2} & =a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
& \ldots \\
r_{8} & =a_{4} b_{4}
\end{aligned}
$$

- If all a_{i} and b_{i} have 52 bits, the r_{i} will have up to 107 bits
- Doesn't fit into 64 -bit registers, but remember that there is a multiplication instruction that produces 128 -bit results in two registers.

Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{
    const signed long long *a = x->a;
    const signed long long *b = y->a;
    r[0] = a[0]*b[0];
    r[1] = a[0]*b[1] + a[1]*b[0];
    r[2] = a[0]*b[2] + a[1]*b[1] + a[2]*b[0];
    r[3] = a[0]*b[3] + a[1]*b[2] + a[2]*b[1] + a[3]*b[0];
    r[4] = a[0]*b[4] + a[1]*b[3] + a[2]*b[2] + a[3]*b[1] + a[4]*b[0];
    r[5] = a[1]*b[4] + a[2]*b[3] + a[3]*b[2] + a[4]*b[1];
    r[6] = a[2]*b[4] + a[3]*b[3] + a[4]*b[2];
    r[7] = a[3]*b[4] + a[4]*b[3];
    r[8] = a[4]*b[4];
}
```


Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{
    const signed long long *a = x->a;
    const signed long long *b = y->a;
    r[0] = a[0]*b[0];
    r[1] = a[0]*b[1] + a[1]*b[0];
    r[2] = a[0]*b[2] + a[1]*b[1] + a[2]*b[0];
    r[3] = a[0]*b[3] + a[1]*b[2] + a[2]*b[1] + a[3]*b[0];
    r[4] = a[0]*b[4] + a[1]*b[3] + a[2]*b[2] + a[3]*b[1] + a[4]*b[0];
    r[5] = a[1]*b[4] + a[2]*b[3] + a[3]*b[2] + a[4]*b[1];
    r[6] = a[2]*b[4] + a[3]*b[3] + a[4]*b[2];
    r[7] = a[3]*b[4] + a[4]*b[3];
    r[8] = a[4]*b[4];
}
```

- Can evaluate in arbitrary order: "operand scanning" vs. "product scanning"

Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{
    const signed long long *a = x->a;
    const signed long long *b = y->a;
    r[0] = a[0]*b[0];
    r[1] = a[0]*b[1] + a[1]*b[0];
    r[2] = a[0]*b[2] + a[1]*b[1] + a[2]*b[0];
    r[3] = a[0]*b[3] + a[1]*b[2] + a[2]*b[1] + a[3]*b[0];
    r[4] = a[0]*b[4] + a[1]*b[3] + a[2]*b[2] + a[3]*b[1] + a[4]*b[0];
    r[5] = a[1]*b[4] + a[2]*b[3] + a[3]*b[2] + a[4]*b[1];
    r[6] = a[2]*b[4] + a[3]*b[3] + a[4]*b[2];
    r[7] = a[3]*b[4] + a[4]*b[3];
    r[8] = a[4]*b[4];
}
```

- Can evaluate in arbitrary order: "operand scanning" vs. "product scanning"
- This doesn't work because we don't have int128 data type
- Even in assembly, we don't have addition of 128-bit integers

A peek at multiplication in qhasm

```
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
r0 = rax
rOh = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
r1 = rax
r1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
r2 = rax
r2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
r3 = rax
r3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
r4 = rax
r4h = rdx
```


A peek at multiplication in qhasm

```
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx
```


A peek at multiplication in qhasm

```
mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r0h
mem64[input_0 + 16] = r1
mem64[input_0 + 24] = r1h
mem64[input_0 + 32] = r2
mem64[input_0 + 40] = r2h
mem64[input_0 + 128] = r8
mem64[input_0 + 136] = r8h
```


Again: back to reduced representation

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

Again: back to reduced representation

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- With the same reasoning as before, we can reduce modulo p as

$$
r_{0} \leftarrow r_{0}+19 r_{5}
$$

Again: back to reduced representation

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- With the same reasoning as before, we can reduce modulo p as

$$
\begin{aligned}
& r_{0} \leftarrow r_{0}+19 r_{5} \\
& r_{1} \leftarrow r_{1}+19 r_{6} \\
& r_{2} \leftarrow r_{2}+19 r_{7} \\
& r_{3} \leftarrow r_{3}+19 r_{8}
\end{aligned}
$$

Again: back to reduced representation

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- With the same reasoning as before, we can reduce modulo p as

$$
\begin{aligned}
& r_{0} \leftarrow r_{0}+19 r_{5} \\
& r_{1} \leftarrow r_{1}+19 r_{6} \\
& r_{2} \leftarrow r_{2}+19 r_{7} \\
& r_{3} \leftarrow r_{3}+19 r_{8}
\end{aligned}
$$

- Remaining problem: r_{0}, \ldots, r_{4} are too large

Again: back to reduced representation

- We now have r_{0}, \ldots, r_{8}, such that

$$
\sum_{i=0}^{8} r_{i} X^{i}=\left(\sum_{i=0}^{4} a_{i} X^{i}\right)\left(\sum_{i=0}^{4} b_{i} X^{i}\right)
$$

- We want to have r_{0}, \ldots, r_{4}, such that

$$
\sum_{i=0}^{4} r_{i} 2^{51 \cdot i} \equiv\left(\sum_{i=0}^{4} a_{i} 2^{51 \cdot i}\right)\left(\sum_{i=0}^{4} b_{i} 2^{51 \cdot i}\right) \quad\left(\bmod 2^{255}-19\right)
$$

- With the same reasoning as before, we can reduce modulo p as

$$
\begin{aligned}
& r_{0} \leftarrow r_{0}+19 r_{5} \\
& r_{1} \leftarrow r_{1}+19 r_{6} \\
& r_{2} \leftarrow r_{2}+19 r_{7} \\
& r_{3} \leftarrow r_{3}+19 r_{8}
\end{aligned}
$$

- Remaining problem: r_{0}, \ldots, r_{4} are too large
- Solution: carry!

A suitable carry chain

- Basically the same as before, but now with 128 -bit values (tricky, but possible in assembly)

```
signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- Carry from r_{0} to r_{1}; from r_{1} to r_{2}, and so on
- Multiply carry from r_{4} by 19 and add to r_{0}

A suitable carry chain

- Basically the same as before, but now with 128 -bit values (tricky, but possible in assembly)

```
signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- Carry from r_{0} to r_{1}; from r_{1} to r_{2}, and so on
- Multiply carry from r_{4} by 19 and add to r_{0}
- After one round of carries we have signed 64 -bit integers
- Perform another round of carries to obtain reduced coefficients

Squaring

- Obviously working solution for squaring: \#define square(R, X) mul(R,X,X)
- Question: Can we do better?

Squaring

- Obviously working solution for squaring: \#define square(R, X) mul($\mathrm{R}, \mathrm{X}, \mathrm{X}$)
- Question: Can we do better?
- Using multiplication for squarings:

```
r[0] = a[0]*a[0];
r[1] = a[0]*a[1] + a[1]*a[0];
r[2] = a[0]*a[2] + a[1]*a[1] + a[2]*a[0];
r[3] = a[0]*a[3] + a[1]*a[2] + a[2]*a[1] + a[3]*a[0];
r[4] = a[0]*a[4] + a[1]*a[3] + a[2]*a[2] + a[3]*a[1] + a[4]*a[0];
r[5] = a[1]*a[4] + a[2]*a[3] + a[3]*a[2] + a[4]*a[1];
r[6] = a[2]*a[4] + a[3]*a[3] + a[4]*a[2];
r[7] = a[3]*a[4] + a[4]*a[3];
r[8] = a[4]*a[4];
```


Squaring

- Obviously working solution for squaring: \#define square(R, X) mul ($\mathrm{R}, \mathrm{X}, \mathrm{X}$)
- Question: Can we do better?
- Using multiplication for squarings:

```
r[0] = a[0]*a[0];
r[1] = a[0]*a[1] + a[1]*a[0];
r[2] = a[0]*a[2] + a[1]*a[1] + a[2]*a[0];
r[3] = a[0]*a[3] + a[1]*a[2] + a[2]*a[1] + a[3]*a[0];
r[4] = a[0]*a[4] + a[1]*a[3] + a[2]*a[2] + a[3]*a[1] + a[4]*a[0];
r[5] = a[1]*a[4] + a[2]*a[3] + a[3]*a[2] + a[4]*a[1];
r[6] = a[2]*a[4] + a[3]*a[3] + a[4]*a[2];
r[7] = a[3]*a[4] + a[4]*a[3];
r[8] = a[4]*a[4];
```

- Observation: We perform many multiplications twice!

Faster squaring

```
signed long long _2a[4];
_2a[0] = a[0] << 1;
_2a[1] = a[1] << 1;
_2a[2] = a[2] << 1;
_2a[3] = a[3] << 1;
r[0] = a[0]*a[0];
r[1] = _2a[0]*a[1];
r[2] = _2a[0]*a[2] + a[1]*a[1];
r[3] = _2a[0]*a[3] + _2a[1]*a[2];
r[4] = _2a[0]*a[4] + _2a[1]*a[3] + a[2]*a[2];
r[5] = _2a[1]*a[4] + _2a[2]*a[3];
r[6] = _2a[2]*a[4] + a[3]*a[3];
r[7] = _2a[3]*a[4];
r[8] = a[4]*a[4];
```

- Multiplication needs 25 multiplications, 16 additions
- Squaring needs 15 multiplications, 6 additions (and 4 shifts)

Faster multiplication?

- Consider multiplication of two n-coefficient polynomials (degree $\leq n-1$)
- So far we needed n^{2} multiplications and $(n-1)^{2}$ additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity

Faster multiplication?

- Consider multiplication of two n-coefficient polynomials (degree $\leq n-1$)
- So far we needed n^{2} multiplications and $(n-1)^{2}$ additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- Proven wrong by 23 -year old student Karatsuba in 1960
- Assume that $n=2 m$, then write an n-coefficient polynomial A as $A_{0}+X^{m} A_{1}$
- Perform multiplication as

$$
\begin{aligned}
& =\left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
& =A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

Faster multiplication?

- Consider multiplication of two n-coefficient polynomials (degree $\leq n-1$)
- So far we needed n^{2} multiplications and $(n-1)^{2}$ additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- Proven wrong by 23 -year old student Karatsuba in 1960
- Assume that $n=2 m$, then write an n-coefficient polynomial A as $A_{0}+X^{m} A_{1}$
- Perform multiplication as

$$
\begin{aligned}
& =\left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
& =A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) X^{m}+A_{1} B_{1} X^{2 m} \\
& =A_{0} B_{0}+\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

Faster multiplication?

- Consider multiplication of two n-coefficient polynomials (degree $\leq n-1$)
- So far we needed n^{2} multiplications and $(n-1)^{2}$ additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- Proven wrong by 23 -year old student Karatsuba in 1960
- Assume that $n=2 m$, then write an n-coefficient polynomial A as $A_{0}+X^{m} A_{1}$
- Perform multiplication as

$$
\begin{aligned}
& =\left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
& =A_{0} B_{0}+\left(A_{0} B_{1}+A_{1} B_{0}\right) X^{m}+A_{1} B_{1} X^{2 m} \\
& =A_{0} B_{0}+\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

- We just turned one multiplication of size n into 3 multiplications of size $n / 2$ (and about $8 m$ additions)
- Recursive application yields asymptotic complexity $O\left(n^{\log _{2} 3}\right)$

Even faster multiplication?

- Karatsuba equality:

$$
\begin{aligned}
& \left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
= & A_{0} B_{0}+\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

Even faster multiplication?

- Karatsuba equality:

$$
\begin{aligned}
& \left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
= & A_{0} B_{0}+\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

- Refined Karatsuba equality:

$$
\begin{aligned}
& \left(A_{0}+X^{m} A_{1}\right)\left(B_{0}+X^{m} B_{1}\right) \\
= & \left(1-X^{m}\right)\left(A_{0} B_{0}-X^{m} A_{1} B_{1}\right)+X^{m}\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)
\end{aligned}
$$

Even faster multiplication?

- Karatsuba equality:

$$
\begin{aligned}
& \left(A_{0}+X^{m} A_{1}\right) \cdot\left(B_{0}+X^{m} B_{1}\right) \\
= & A_{0} B_{0}+\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)-A_{0} B_{0}-A_{1} B_{1}\right) X^{m}+A_{1} B_{1} X^{2 m}
\end{aligned}
$$

- Refined Karatsuba equality:

$$
\begin{aligned}
& \left(A_{0}+X^{m} A_{1}\right)\left(B_{0}+X^{m} B_{1}\right) \\
= & \left(1-X^{m}\right)\left(A_{0} B_{0}-X^{m} A_{1} B_{1}\right)+X^{m}\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)
\end{aligned}
$$

- This reduces the $\approx 8 m$ additions to $\approx 7 m$ additions (see Bernstein "Batch binary Edwards", 2009)
- No reduction of asymptotic running time, but speedup in practice

Multiplication, can we go further?

- Toom-Cook multiplication has asymptotic complexity $O\left(n^{\log _{3} 5}\right)$
- Schönhage-Strassen multiplication has asymptotic complexity $O(n \log n \log \log n)$
- Fürer's multiplication algorithm has running time $n \log n 2^{O\left(\log ^{*} n\right)}$

Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C)

signed int128 rm0, rm1, rm2,rm3,rm4;
signed long long am0,am1,am2,bm0,bm1,bm2;

```
am0 = a[0] + a[3];
am0 = a[1] + a[4];
am0 = a[2];
am0 = b[0] + b[3];
am0 = b[1] + b[4];
am0 = b[2];
r[0] = a[0]*b[0];
r[1] = a[0]*b[1] + a[1]*b[0];
r[2] = a[0]*b[2] + a[1]*b[1] + a[2]*b[0];
r[3] = a[1]*b[2] + a[2]*b[1];
r[4] = a[2]*b[2];
r[6] = a[3]*b[3];
r[7] = a[3]*b[4] + a[4]*b[3];
r[8] = a[4]*b[4];
```


Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C) ctd.

```
rm[0] = am[0]*bm[0] - r[0] - r[6];
rm[1] = am[0]*bm[1] + am[1]*b[0] - r[1] - r[7];
rm[2] = am[0]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r[8];
rm[3] = am[1]*bm[2] + am[2]*b[1] - r[3];
rm[4] = am[2]*bm[2] - r[4];
r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];
```


Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C) ctd.

```
rm[0] = am[0]*bm[0] - r[0] - r[6];
rm[1] = am[0]*bm[1] + am[1]*b[0] - r[1] - r[7];
rm[2] = am[0]*bm[2] + am[1]*b[1] + am[2]*b[0] - r[2] - r[8];
rm[3] = am[1]*bm[2] + am[2]*b[1] - r[3];
rm[4] = am[2]*bm[2] - r[4];
r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];
```

- 22 multiplications, 4 small additions, 21 big additions
- Is this better? I doubt it.

Which multiplication algorithm to use

- Depends on the size of the field

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
- For ≤ 10 limbs (coefficients) use schoolbook multiplication

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
- For ≤ 10 limbs (coefficients) use schoolbook multiplication
- For >10 start to think about (refined) Karatsuba

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
- For ≤ 10 limbs (coefficients) use schoolbook multiplication
- For >10 start to think about (refined) Karatsuba
- For field sizes appearing in ECC, I never saw anybody using Toom-Cook or Schönhage-Strassen (however, Toom-Cook may become interesting in pairing computations)

Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
- For ≤ 10 limbs (coefficients) use schoolbook multiplication
- For >10 start to think about (refined) Karatsuba
- For field sizes appearing in ECC, I never saw anybody using Toom-Cook or Schönhage-Strassen (however, Toom-Cook may become interesting in pairing computations)
- I don't know of any application using Fürer's algorithm

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- This is why we like projective coordinates

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- This is why we like projective coordinates
- Before sending an elliptic-curve point, we need to convert from projective coordinates to affine coordinates (for security reasons!)
- We need inversion, but we do (usually) not need it often

Still missing: inversion

- Inversion is typically much more expensive than multiplication
- This is why we like projective coordinates
- Before sending an elliptic-curve point, we need to convert from projective coordinates to affine coordinates (for security reasons!)
- We need inversion, but we do (usually) not need it often
- Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

Extended Euclidean algorithm

- Given two integers a, b, the Extended Euclidean algorithm finds
- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u+b \cdot v=\operatorname{gcd}(a, b)$

Extended Euclidean algorithm

- Given two integers a, b, the Extended Euclidean algorithm finds
- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u+b \cdot v=\operatorname{gcd}(a, b)$
- It is based on the observation that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-q b) \quad \forall q \in \mathbb{Z}
$$

Extended Euclidean algorithm

- Given two integers a, b, the Extended Euclidean algorithm finds
- The greatest common divisor of a and b
- Integers u and v, such that $a \cdot u+b \cdot v=\operatorname{gcd}(a, b)$
- It is based on the observation that

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-q b) \quad \forall q \in \mathbb{Z}
$$

- To compute $a^{-1}(\bmod p)$, use the algorithm to compute

$$
a \cdot u+p \cdot v=\operatorname{gcd}(a, p)=1
$$

- Now it holds that $u \equiv a^{-1}(\bmod p)$

Extended Euclidean algorithm (pseudocode)

Input: Integers a and b.
Output: An integer tuple (u, v, d) satisfying $a \cdot u+b \cdot v=d=\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& u \leftarrow 1 \\
& v \leftarrow 0 \\
& d \leftarrow a \\
& v_{1} \leftarrow 0 \\
& v_{3} \leftarrow b
\end{aligned}
$$

while $\left(v_{3} \neq 0\right)$ do

$$
\begin{aligned}
& q \leftarrow\left\lfloor\frac{d}{v_{3}}\right\rfloor \\
& t_{3} \leftarrow d \bmod v_{3} \\
& t_{1} \leftarrow u-q v_{1} \\
& u \leftarrow v_{1} \\
& d \leftarrow v_{3} \\
& v_{1} \leftarrow t_{1} \\
& v_{3} \leftarrow t_{3}
\end{aligned}
$$

end while
$v \leftarrow \frac{d-a u}{b}$
return (u, v, d)

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- Going into detail of multiprecision (big-integer) division would cost us lunch

Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- Going into detail of multiprecision (big-integer) division would cost us lunch
- The running time (number of loop iterations) depends on the inputs
- We usually do not want this for cryptography (more this afternoon)

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

- This implies that $a^{p-2} \equiv a^{-1}(\bmod p)$
- Obvious algorithm for inversion: Exponentiation with $p-2$

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

- This implies that $a^{p-2} \equiv a^{-1}(\bmod p)$
- Obvious algorithm for inversion: Exponentiation with $p-2$
- The exponent is quite large (e.g., 255 bits), is that efficient?

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

- This implies that $a^{p-2} \equiv a^{-1}(\bmod p)$
- Obvious algorithm for inversion: Exponentiation with $p-2$
- The exponent is quite large (e.g., 255 bits), is that efficient?
- Answer: yes, fairly. Inversion modulo 2^{255} - 19 needs 254 squarings and 11 multiplications in $\mathbb{F}_{2^{255}-19}$

Fermat's little theorem

Theorem
Let p be prime. Then for any integer a it holds that $a^{p-1} \equiv 1(\bmod p)$

- This implies that $a^{p-2} \equiv a^{-1}(\bmod p)$
- Obvious algorithm for inversion: Exponentiation with $p-2$
- The exponent is quite large (e.g., 255 bits), is that efficient?
- Answer: yes, fairly. Inversion modulo 2^{255} - 19 needs 254 squarings and 11 multiplications in $\mathbb{F}_{2^{255}-19}$
- Details in my talk this afternoon

While we're at it: square roots

- We can compress a point (x, y) before sending
- Usually send only x and one bit of y
- When receiving such a compressed point we need to recompute y as $\sqrt{x^{3}+a x+b}$

While we're at it: square roots

- We can compress a point (x, y) before sending
- Usually send only x and one bit of y
- When receiving such a compressed point we need to recompute y as $\sqrt{x^{3}+a x+b}$
- If $p \equiv 3(\bmod 4)$: compute square root of a as $a^{(p+1) / 4}$

While we're at it: square roots

- We can compress a point (x, y) before sending
- Usually send only x and one bit of y
- When receiving such a compressed point we need to recompute y as $\sqrt{x^{3}+a x+b}$
- If $p \equiv 3(\bmod 4)$: compute square root of a as $a^{(p+1) / 4}$
- If $p \equiv 5(\bmod 8):$ compute β, such that $\beta^{4}=a^{2}$ as $a^{(p+3) / 8}$
- If $\beta^{2}=-a$: multiply by $\sqrt{-1}$

While we're at it: square roots

- We can compress a point (x, y) before sending
- Usually send only x and one bit of y
- When receiving such a compressed point we need to recompute y as $\sqrt{x^{3}+a x+b}$
- If $p \equiv 3(\bmod 4)$: compute square root of a as $a^{(p+1) / 4}$
- If $p \equiv 5(\bmod 8):$ compute β, such that $\beta^{4}=a^{2}$ as $a^{(p+3) / 8}$
- If $\beta^{2}=-a$: multiply by $\sqrt{-1}$
- Computing square roots is (typically) about as expensive as an inversion

Getting back to the rabbits

- What if somebody just throws an ugly prime at you?

Getting back to the rabbits

- What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_{p} with

$$
\begin{aligned}
p_{224}= & 2272162293245435278755253799591092807334073 \backslash \\
& 2145944992304435472941311 \\
= & 0 x D 7 C 134 A A 264366862 A 18302575 D 1 D 787 B 09 F 07579 \backslash \\
& 7 D A 89 F 57 E C 8 C 0 F F
\end{aligned}
$$

or

$$
\begin{aligned}
p_{256}= & 7688495639704534422080974662900164909303795 \backslash \\
& 0200943055203735601445031516197751 \\
= & 0 x A 9 F B 57 D B A 1 E E A 9 B C 3 E 660 A 909 D 838 D 726 E 3 B F 623 D \backslash \\
& 52620282013481 D 1 F 6 E 5377
\end{aligned}
$$

Getting back to the rabbits

- What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields \mathbb{F}_{p} with

$$
\begin{aligned}
p_{224}= & 2272162293245435278755253799591092807334073 \backslash \\
& 2145944992304435472941311 \\
= & 0 x D 7 C 134 A A 264366862 A 18302575 D 1 D 787 B 09 F 07579 \backslash \\
& 7 D A 89 F 57 E C 8 C 0 F F
\end{aligned}
$$

or

$$
\begin{aligned}
p_{256}= & 7688495639704534422080974662900164909303795 \backslash \\
& 0200943055203735601445031516197751 \\
= & 0 x A 9 F B 57 D B A 1 E E A 9 B C 3 E 660 A 909 D 838 D 726 E 3 B F 623 D \backslash \\
& 52620282013481 D 1 F 6 E 5377
\end{aligned}
$$

- Another example: Pairing-friendly curves are typically defined over fields \mathbb{F}_{p} where p has some structure, but hard to exploit for fast arithmetic

Montgomery representation

- We have the following problem:
- We multiply two n-limb big integers and obtain a $2 n$-limb result t
- We need to find $t \bmod p$

Montgomery representation

- We have the following problem:
- We multiply two n-limb big integers and obtain a $2 n$-limb result t
- We need to find $t \bmod p$
- Idea: Perform big-integer division with remainder (but this would cost us lunch)

Montgomery representation

- We have the following problem:
- We multiply two n-limb big integers and obtain a $2 n$-limb result t
- We need to find $t \bmod p$
- Idea: Perform big-integer division with remainder (but this would cost us lunch)
- Better idea (Montgomery, 1985):
- Let R be such that $\operatorname{gcd}(R, p)=1$ and $t<p \cdot R$
- Represent an element a of \mathbb{F}_{p} as $a R \bmod p$
- Multiplication of $a R$ and $b R$ yields $t=a b R^{2}$ (2n limbs)
- Now compute Montgomery reduction: $t R^{-1} \bmod p$

Montgomery representation

- We have the following problem:
- We multiply two n-limb big integers and obtain a $2 n$-limb result t
- We need to find $t \bmod p$
- Idea: Perform big-integer division with remainder (but this would cost us lunch)
- Better idea (Montgomery, 1985):
- Let R be such that $\operatorname{gcd}(R, p)=1$ and $t<p \cdot R$
- Represent an element a of \mathbb{F}_{p} as $a R \bmod p$
- Multiplication of $a R$ and $b R$ yields $t=a b R^{2}$ (2n limbs)
- Now compute Montgomery reduction: $t R^{-1} \bmod p$
- For some choices of R this is be more efficient than division
- Typical choice for radix- b representation: b^{n}

Montgomery reduction (pseudocode)

Input: $p=\left(p_{n-1}, \ldots, p_{0}\right)_{b}$ with $\operatorname{gcd}(p, b)=1, R=b^{n}$,
$p^{\prime}=-p^{-1} \bmod b$ and $t=\left(t_{2 n-1}, \ldots, t_{0}\right)_{b}$
Output: $t R^{-1} \bmod p$
$A \leftarrow t$
for i from 0 to $n-1$ do

$$
\begin{aligned}
& u \leftarrow a_{i} p^{\prime} \bmod b \\
& A \leftarrow A+u \cdot p \cdot b^{i}
\end{aligned}
$$

end for
$A \leftarrow A / b^{n}$
if $A>p$ then
$A \leftarrow A-p$
end if
return A

Some notes about Montgomery reduction

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation

Some notes about Montgomery reduction

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- The algorithms takes $n^{2}+n$ multiplication instructions
- n of those are "shortened" multiplications (modulo b)

Some notes about Montgomery reduction

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- The algorithms takes $n^{2}+n$ multiplication instructions
- n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication

Some notes about Montgomery reduction

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- The algorithms takes $n^{2}+n$ multiplication instructions
- n of those are "shortened" multiplications (modulo b)
- The cost is roughly the same as schoolbook multiplication
- One can merge schoolbook multiplication with Montgomery reduction: "Montgomery multiplication"

Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one

Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)

Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- In particular if somebody uses it to estimate real-world performance

Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- In particular if somebody uses it to estimate real-world performance
- Don't be afraid to use assembly, but consider qhasm (http://cr.yp.to/qhasm.html)

Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- In particular if somebody uses it to estimate real-world performance
- Don't be afraid to use assembly, but consider qhasm (http://cr.yp.to/qhasm.html)
- Remember the Explicit Formulas Database http://www.hyperelliptic.org/EFD/

