Verifying ECC software
(mainly: verifying Curve25519 software)

Peter Schwabe
Radboud University, Nijmegen, The Netherlands

September 29, 2015
ECC 2015, Bordeaux, France
Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: “Curve25519”)

- Secret keys: 32-byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on

$$E : y^2 = x^3 + 486662x^2 + x$$

over $\mathbb{F}_{2^{255} - 19}$

- Base point: $(9, 0, \ldots, 0)$
Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: “Curve25519”)

- Secret keys: 32-byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on

$$E : y^2 = x^3 + 486662x^2 + x$$

over $\mathbb{F}_{2^{255}-19}$

- Base point: $(9, 0, \ldots, 0)$

Given secret key s and public key (or base point) P:

- Copy s to s'
- Set least significant 3 bits of s' to zero
- Set most significant bit of s' to zero
- Set second-most significant bit of s' to one
- Compute x-coordinate of $s'P$
The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_P of some point P

Ensure: x_{kP}

$X_1 = x_P; \ X_2 = 1; \ Z_2 = 0; \ X_3 = x_P; \ Z_3 = 1$

for $i \leftarrow n - 1$ downto 0 do

if bit i of k is 1 then

$(X_3, Z_3, X_2, Z_2) \leftarrow \text{ladderstep}(X_1, X_3, Z_3, X_2, Z_2)$

else

$(X_2, Z_2, X_3, Z_3) \leftarrow \text{ladderstep}(X_1, X_2, Z_2, X_3, Z_3)$

end if

end for

return $X_2 \cdot Z_2^{-1}$
One Montgomery “ladder step”

\[a_{24} = (A + 2)/4 \] (\(A\) from the curve equation)

\[\text{function} \ \text{ladderstep}(X_{Q-P}, X_P, Z_P, X_Q, Z_Q) \]

\[t_1 \leftarrow X_P + Z_P \]
\[t_6 \leftarrow t_1^2 \]
\[t_2 \leftarrow X_P - Z_P \]
\[t_7 \leftarrow t_2^2 \]
\[t_5 \leftarrow t_6 - t_7 \]
\[t_3 \leftarrow X_Q + Z_Q \]
\[t_4 \leftarrow X_Q - Z_Q \]
\[t_8 \leftarrow t_4 \cdot t_1 \]
\[t_9 \leftarrow t_3 \cdot t_2 \]
\[X_{P+Q} \leftarrow (t_8 + t_9)^2 \]
\[Z_{P+Q} \leftarrow X_{Q-P} \cdot (t_8 - t_9)^2 \]
\[X_{2P} \leftarrow t_6 \cdot t_7 \]
\[Z_{2P} \leftarrow t_5 \cdot (t_7 + a_{24} \cdot t_5) \]

\[\text{return} \ (X_{2P}, Z_{2P}, X_{P+Q}, Z_{P+Q}) \]

\[\text{end function} \]
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform
Secure software?

- Real-world attackers often don’t break the math
- Often very practical: **timing attacks**
 - Secret data has influence on timing of software
 - Attacker measures timing
 - Attacker computes influence\(^{-1}\) to obtain secret data

7
Secure software?

- Real-world attackers often don’t break the math
- Often very practical: **timing attacks**
 - Secret data has influence on timing of software
 - Attacker measures timing
 - Attacker computes influence\(^{-1}\) to obtain secret data
- Examples:
 - Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s `dmcrypt` in just 65 ms
Secure software?

- Real-world attackers often don’t break the math
- **Often very practical**: **timing attacks**
 - Secret data has influence on timing of software
 - Attacker measures timing
 - Attacker computes influence $^{-1}$ to obtain secret data
- **Examples**:
 - Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s dmcrypt in just 65 ms
 - Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of success in recovering the secret key” for OpenSSL ECDSA using secp256k1 “with as little as 200 signatures”
Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- “Balancing branches” is typically insufficient
- No data flow from secret data into branch conditions!
Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- “Balancing branches” is typically insufficient
- ⇒ No data flow from secret data into branch conditions!

Avoid memory access at secret positions

- Caches influence timing depending on address
- Attackers can potentially control cache lines
- Caches are not the only problem (e.g., store-to-load forwarding)
- ⇒ No data flow from secret data into addresses!
/* decision bit b has to be either 0 or 1 */
void cmov(uint32 *r, uint32 *a, uint32 b)
{
 uint32 t;

 b = -b; /* Now b is either 0 or 0xffffffff */
 t = (*r ^ *a) & b;
 *r ^= t;
}
“Verifying” constant-time behavior

Run in valgrind with *uninitialized secret data*
(or use Langley’s ctgrind)

[short demo]
Correct software?

“Are you actually sure that your software is correct?”

Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
- Similar bug, again in OpenSSL, fixed in Jan. 2015
- Unclear whether that one can be exploited
Arithmetic in $\mathbb{F}_{2^{255}-19}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle
Arithmetic in $\mathbb{F}_{2^{255}-19}$ for AMD64

Radix 2^{64}
- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}
- Instead, break into 5 64-bit integers, use radix 2^{51}
- Can delay carry operations; carry “en bloc”
- Schoolbook multiplication now 25 64-bit integer multiplications
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors
Bug in the radix-64 reduction

```assembly
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r13
adc  %rdx,%r14
adc  $0,%r14
mov  %r9,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r14
adc  %rdx,%r15
adc  $0,%r15
mov  %r10,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r15
adc  %rdx,%rbx
adc  $0,%rbx
mov  %r11,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%rbx
mov  $0,%rsi
adc  %rdx,%rsi
```
Bug in the radix-64 reduction

```c
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```
Bug in the radix-64 reduction

```c
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```

Full software package contains 8912 lines of qhasm code!
Directions to correct crypto

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs
Directions to correct crypto

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of crypto software
Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- Should focus on cases where tests fail
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
- Even better: feed to even higher level verification
- Verify that the sequence of field operations accomplishes EC arithmetic
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
 - Annotate qhasm code
 - Translate annotated qhasm automatically to SMT-solver boolector
 - Use boolector to verify software
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
 - Annotate qhasm code
 - Translate annotated qhasm automatically to SMT-solver boolector
 - Use boolector to verify software

- Verification target: Montgomery ladder step of X25519:
 - 5 multiplications in $\mathbb{F}_{2^{255}-19}$
 - 4 squarings in $\mathbb{F}_{2^{255}-19}$
 - 1 multiplication by 121666
 - Several additions and subtractions
Example: Addition in radix 2^{51}

```c
//# assume 0 <= x0, x1, x2, x3, x4 <= 2**51 + 2**15
//# assume 0 <= y0, y1, y2, y3, y4 <= 2**51 + 2**15
r0 = x0
r1 = x1
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
//# var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 + x3@u320 * 2**153 + x4@u320 * 2**204
//# sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 + y3@u320 * 2**153 + y4@u320 * 2**204
//# sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 + r3@u320 * 2**153 + r4@u320 * 2**204
//# assert (sum_r - (sum_x + sum_y)) % (2**255 - 19) = 0 &&
//# 0 <= r0, r1, r2, r3, r4 < 2**53
```
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- *Huge amount* of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- *Huge amount* of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
 - 217 lines of qhasm, including variable declarations
 - 589 lines of annotations
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
 - 217 lines of qasm, including variable declarations
 - 589 lines of annotations
- Large amount of manual work on top of assembly optimization
- Writing verifiable code requires expert knowledge from two domains!
- Verification of just multiplication takes > 90 hours
Overall results

- Formally verified Montgomery ladderstep
 - “Redundant” radix-2^{51} representation
 - Non-redundant radix-2^{64} representation
 - Reproduced bug in original version of the software
- Most verification used automatic qasm → boolector translation
- Tiny bit of code in radix-2^{64} needed proof assistant Coq
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Work in progress with Bernstein
- Annotate C code (later: also qhasm)
- (Currently) use C++ compiler and operator overloading to
 - Keep track of computation graph
 - Keep track of worst-case ranges of limbs
- Output polynomial relations to Sage
- Use Sage to verify correctness of C code
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Work in progress with Bernstein

- Annotate C code (later: also qhasm)
- (Currently) use C++ compiler and operator overloading to
 - Keep track of computation graph
 - Keep track of worst-case ranges of limbs
 - Output polynomial relations to Sage
 - Use Sage to verify correctness of C code
Example: addition (radix $2^{25.5}$)

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_add(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);
Example: multiplication

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_mul(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127} - 1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127} - 1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
- Still too slow for big chunks of code
 - Problem: verification always goes back to the beginning
 - Idea: Declare that we trust already verified results
 - This is known as “cutting” the verification
Let’s “cut some limbs”
Let’s call it a draw
First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in ≈1:10 minutes
First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1:10$ minutes

TODOs

- Support final compression to byte array
- Translate to higher-level view (ECC arithmetic, inversion)
- Support assembly
- Support “non-redundant” arithmetic
- Change interface
- Test, test, test
Papers and Software

 https://cryptojedi.org/papers/#verify25519

- Many X25519 implementations in SUPERCOP
 (crypto_scalarmult/curve25519)
 http://bench.cr yp.to/supercop.html

- Verification using boolector:
 https://cryptojedi.org/crypto/#verify25519

- Verification using Sage (in the near future):
 https://cryptojedi.org/crypto/#gfverif