Software implementation of ECC

Radboud University, Nijmegen, The Netherlands

June 4, 2015

Summer school on real-world crypto and privacy
Šibenik, Croatia
Software implementation of (H)ECC

Radboud University, Nijmegen, The Netherlands

June 4, 2015

Summer school on real-world crypto and privacy
Šibenik, Croatia
The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that $kP = Q$.
The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that $kP = Q$.

Efficient ECC
- First idea: user needs to compute kP, so make that fast
The ECDLP

Definition
Given two points \(P \) and \(Q \) on an elliptic curve, such that \(Q \in \langle P \rangle \), find an integer \(k \) such that \(kP = Q \).

Efficient ECC

- First idea: user needs to compute \(kP \), so make that fast
- Actual situation is more complex:
 - Keypair generation: Compute \(kP \) for fixed \(P \), don’t leak information about scalar \(k \)
The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that $kP = Q$.

Efficient ECC

- First idea: user needs to compute kP, so make that fast
- Actual situation is more complex:
 - Keypair generation: Compute kP for fixed P, don’t leak information about scalar k
 - DH common-key computation: Compute kP for variable P, don’t leak information about scalar k
The ECDLP

Definition
Given two points \(P \) and \(Q \) on an elliptic curve, such that \(Q \in \langle P \rangle \), find an integer \(k \) such that \(kP = Q \).

Efficient ECC
- First idea: user needs to compute \(kP \), so make that fast
- Actual situation is more complex:
 - Keypair generation: Compute \(kP \) for fixed \(P \), don’t leak information about scalar \(k \)
 - DH common-key computation: Compute \(kP \) for variable \(P \), don’t leak information about scalar \(k \)
 - Signature verification needs \(k_1P_1 + k_2P_2 \), ok to leak information about (public) scalars \(k_1 \) and \(k_2 \)
The ECDLP

Definition
Given two points P and Q on an elliptic curve, such that $Q \in \langle P \rangle$, find an integer k such that $kP = Q$.

Efficient ECC

- First idea: user needs to compute kP, so make that fast
- Actual situation is more complex:
 - Keypair generation: Compute kP for fixed P, don’t leak information about scalar k
 - DH common-key computation: Compute kP for variable P, don’t leak information about scalar k
 - Signature verification needs $k_1P_1 + k_2P_2$, ok to leak information about (public) scalars k_1 and k_2
The ECC implementation pyramid

- Big-integer or polynomial arithmetic
- Finite-field arithmetic
- ECC add/double
- Scalar multiplication
Why I don’t like the pyramid...

- Pyramid levels are *not* independent
- Interactions through all levels, relevant for
 - Correctness,
 - Security, and
 - Performance
Why I don’t like the pyramid. . .

- Pyramid levels are *not* independent
- Interactions through all levels, relevant for
 - Correctness,
 - Security, and
 - Performance
- Plan for today: demonstrate these dependencies
Why I don’t like the pyramid...

- Pyramid levels are *not* independent
- Interactions through all levels, relevant for
 - Correctness,
 - Security, and
 - Performance
- Plan for today: demonstrate these dependencies
- Fix target architecture: AMD64 (aka x86_64, aka x64)
- Fix target microarchitecture: Intel Sandy Bridge and Ivy Bridge
Let’s start with 255-bit integers

typedef struct{
 unsigned long long a[4];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}
Let’s start with 255-bit integers

typedef struct{
 unsigned long long a[4];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}

What’s wrong about this?
Let’s start with 255-bit integers

typedef struct{
 unsigned long long a[4];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}

▷ What’s wrong about this?
▷ This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2^{64})
Let’s start with 255-bit integers

typedef struct{
 unsigned long long a[4];
} bigint255;

void bigint255_add(bigint255 *r, const bigint255 *x, const bigint255 *y) {
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}

▶ What’s wrong about this?
▶ This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2^{64})
▶ This is not the same as arithmetic on 256-bit integers
▶ Need to ripple the carries of all additions!
Radix-2\(^{51}\) representation

- Radix-2\(^{64}\) representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
Radix-2^{51} representation

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)

- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)

Let's get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

$$A = \sum_{i=0}^{4} a_i \cdot 2^{51} \cdot i$$

This is called radix-2^{51} representation

- Multiple ways to write the same integer A, for example
 - $A = 2^{52}$:
 - $(2^{52}, 0, 0, 0, 0)$
 - $(0, 2^{52}, 0, 0, 0)$
Radix-2^{51} representation

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)
Radix-2^{51} representation

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)
- Let’s get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- This is called radix-2^{51} representation
Radix-2^{51} representation

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (expensive to recompute)
- Let’s get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

\[
A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}
\]

- This is called radix-2^{51} representation
- Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $(2^{52}, 0, 0, 0, 0)$
 - $(0, 2, 0, 0, 0)$
Addition of two bigint255

typedef struct{
 unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r, const bigint255 *x, const bigint255 *y) {
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}
Addition of two bigint255

typedef struct{
 unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}
Addition of two bigint255

typedef struct {
 unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}

- This works as long as all coefficients are in \([0, \ldots, 2^{63} - 1]\)
typedef struct{
 unsigned long long a[5];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 r->a[0] = x->a[0] + y->a[0];
 r->a[1] = x->a[1] + y->a[1];
}

- This works as long as all coefficients are in $[0, \ldots, 2^{63} - 1]$.
- When starting with 51-bit coefficients, we can do quite a few additions before we have to carry.
Subtraction of two bigint255

typedef struct{
 signed long long a[5];
} bigint255;

void bigint255_sub(bigint255 *r, const bigint255 *x, const bigint255 *y)
{
 r->a[0] = x->a[0] - y->a[0];
 r->a[1] = x->a[1] - y->a[1];
}

- Slightly update our bigint255 definition to work with signed 64-bit integers
Carrying in radix-2^{51}

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication
Carrying in radix-2^{51}

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication
- Eventually we have to *carry* en bloc:
  ```c
  signed long long carry = r.a[0] >> 51;
  r.a[1] += carry;
  carry <<= 51;
  r.a[0] -= carry;
  ```
Carrying in radix-2^{51}

- With many additions, coefficients may grow larger than 63 bits
- They grow even faster in multiplication
- Eventually we have to \textit{carry} en bloc:

  ```c
  signed long long carry = r.a[0] >> 51;
  r.a[1] += carry;
  carry <<= 51;
  r.a[0] -= carry;
  ```
- Similar for all higher coefficients…
Big integers and polynomials

▶ Addition/Subtraction code would look *exactly* the same for 5-coefficient polynomial addition
Big integers and polynomials

- Addition/Subtraction code would look *exactly* the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5-coefficient polynomials
Addition/Subtraction code would look *exactly* the same for 5-coefficient polynomial addition.

This is no coincidence: We actually perform arithmetic in \(\mathbb{Z}[x] \).

Inputs to addition/subtraction are 5-coefficient polynomials.

Nice thing about arithmetic \(\mathbb{Z}[x] \): no carries!
Big integers and polynomials

- Addition/Subtraction code would look exactly the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5-coefficient polynomials
- Nice thing about arithmetic $\mathbb{Z}[x]$: no carries!
- To go from $\mathbb{Z}[x]$ to \mathbb{Z}, evaluate at the radix (this is a ring homomorphism)
- Carrying means evaluating at the radix
Big integers and polynomials

- Addition/Subtraction code would look *exactly* the same for 5-coefficient polynomial addition
- This is no coincidence: We actually perform arithmetic in $\mathbb{Z}[x]$
- Inputs to addition/subtraction are 5-coefficient polynomials
- Nice thing about arithmetic $\mathbb{Z}[x]$: no carries!
- To go from $\mathbb{Z}[x]$ to \mathbb{Z}, evaluate at the radix (this is a ring homomorphism)
- Carrying means evaluating at the radix
- Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic
Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

\[(-1)^s \cdot (1.b_{m-1}b_{m-2}\ldots b_0) \cdot 2^{e-t} \text{ with } b_i \in \{0, 1\} \]
Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

\[(-1)^s \cdot (1.b_{m-1}b_{m-2} \ldots b_0) \cdot 2^{e-t} \text{ with } b_i \in \{0, 1\}\]

- For double-precision floats:
 - \(s \in \{0, 1\}\) “sign bit”
 - \(m = 52\) “mantissa bits”
 - \(e \in \{1, \ldots, 2046\}\) “exponent”
 - \(t = 1023\)
Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value
 \[(-1)^s \cdot (1.b_{m-1}b_{m-2} \ldots b_0) \cdot 2^{e-t} \text{ with } b_i \in \{0, 1\} \]

- For double-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 52 \) “mantissa bits”
 - \(e \in \{1, \ldots, 2046\} \) “exponent”
 - \(t = 1023 \)

- For single-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 23 \) “mantissa bits”
 - \(e \in \{1, \ldots, 254\} \) “exponent”
 - \(t = 127 \)
Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

\[(-1)^s \cdot (1.b_{m-1}b_{m-2} \ldots b_0) \cdot 2^{e-t} \text{ with } b_i \in \{0, 1\} \]

- For double-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 52 \) “mantissa bits”
 - \(e \in \{1, \ldots, 2046\} \) “exponent”
 - \(t = 1023 \)

- For single-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 23 \) “mantissa bits”
 - \(e \in \{1, \ldots, 254\} \) “exponent”
 - \(t = 127 \)

- Exponent = 0 used to represent 0
Using floating-point limbs

- Now we can also use floats for our coefficients
- An IEEE-754 floating-point number has value

\[(-1)^s \cdot (1.b_{m-1} b_{m-2} \ldots b_0) \cdot 2^{e-t} \]

with \(b_i \in \{0, 1\} \)

- For double-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 52 \) “mantissa bits”
 - \(e \in \{1, \ldots, 2046\} \) “exponent”
 - \(t = 1023 \)

- For single-precision floats:
 - \(s \in \{0, 1\} \) “sign bit”
 - \(m = 23 \) “mantissa bits”
 - \(e \in \{1, \ldots, 254\} \) “exponent”
 - \(t = 127 \)

- Exponent \(= 0 \) used to represent 0
- Any number that can be represented like this, will be precise
- Other numbers will be rounded, according to a rounding mode
Addition

typedef struct{
 double a[12];
} bigint255;

void bigint255_add(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 int i;
 for(i=0;i<12;i++)
 r->a[i] = x->a[i] + y->a[i];
}
typedef struct{
 double a[12];
} bigint255;

void bigint255_sub(bigint255 *r,
 const bigint255 *x,
 const bigint255 *y)
{
 int i;
 for(i=0; i<12; i++)
 r->a[i] = x->a[i] - y->a[i];
}
Carrying

- For carrying integers we used a right shift (discard lowest bits)
Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix 2^{22}, multiply by 2^{-22}
- This does *not* cut off lowest bits, need to round
Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix 2^{22}, multiply by 2^{-22}
- This does not cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., vroundpd
Carrying

- For carrying integers we used a right shift (discard lowest bits)
- For floating-point numbers we can use multiplication by the inverse of the radix
- Example: Radix 2^{22}, multiply by 2^{-22}
- This does not cut off lowest bits, need to round
- Some processors have efficient rounding instructions, e.g., `vroundpd`
- Otherwise (for double-precision):
 - add constant $2^{52} + 2^{51}$
 - subtract constant $2^{52} + 2^{51}$
 - This will round the number to an integer according to the rounding mode (to nearest, towards zero, away from zero, or truncate)
Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
 - One $64 \times 64 \rightarrow 128$ multiplication per cycle
Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
 - One $64 \times 64 \rightarrow 128$ multiplication per cycle
 - Four (vectorized) double-precision multiplications per cycle
Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
 - One $64 \times 64 \rightarrow 128$ multiplication per cycle
 - Four (vectorized) double-precision multiplications per cycle
 - Four (vectorized) double-precision additions in the same cycle
Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
 - One $64 \times 64 \rightarrow 128$ multiplication per cycle
 - Four (vectorized) double-precision multiplications per cycle
 - Four (vectorized) double-precision additions in the same cycle
- Operations on 256-bit vector registers introduced with AVX
Why would you want this?

- ECC is typically bottlenecked by speed of multiplier
- Intel Sandy Bridge, Ivy Bridge:
 - One $64 \times 64 \rightarrow 128$ multiplication per cycle
 - Four (vectorized) double-precision multiplications per cycle
 - Four (vectorized) double-precision additions in the same cycle
- Operations on 256-bit vector registers introduced with AVX
- *Integer* operations on those registers introduced only with AVX2
- Sandy Bridge and Ivy Bridge don’t have AVX2
Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

- Changes the rules of the game
- Increases size of active data set
Vectorizing EC scalar multiplication

Computing multiple scalar multiplications

- Changes the rules of the game
- Increases size of active data set

Parallelism inside multiprecision arithmetic

- Addition (in redundant representation) is trivially vectorized
- Vectorizing multiplication needs many shuffles
- Vectorization “eats up” instruction-level parallelism
Vectorizing EC scalar multiplication

Computing multiple scalar multiplications
 ▶ Changes the rules of the game
 ▶ Increases size of active data set

Parallelism inside multiprecision arithmetic
 ▶ Addition (in redundant representation) is trivially vectorized
 ▶ Vectorizing multiplication needs many shuffles
 ▶ Vectorization “eats up” instruction-level parallelism

Parallelism inside EC arithmetic
 ▶ Vectorize independent multiplications in EC addition
 ▶ May still need some shuffles (after each block of operations)
 ▶ Efficiency depends on EC formulas
Example: Montgomery ladder step

```
function ladderstep(x_{Q-P}, X_P, Z_P, X_Q, Z_Q)
    t_1 ← X_P + Z_P
    t_6 ← t_1^2
    t_2 ← X_P - Z_P
    t_7 ← t_2^2
    t_5 ← t_6 - t_7
    t_3 ← X_Q + Z_Q
    t_4 ← X_Q - Z_Q
    t_8 ← t_4 \cdot t_1
    t_9 ← t_3 \cdot t_2
    X_{P+Q} ← (t_8 + t_9)^2
    Z_{P+Q} ← x_{Q-P} \cdot (t_8 - t_9)^2
    X_{[2]P} ← t_6 \cdot t_7
    Z_{[2]P} ← t_5 \cdot (t_7 + ((A + 2)/4) \cdot t_5)
    return (X_{[2]P}, Z_{[2]P}, X_{P+Q}, Z_{P+Q})
end function
```
Example: Montgomery ladder step

```plaintext
function ladderstep(x_{Q-P}, X_P, Z_P, X_Q, Z_Q)
    t_1 ← X_P + Z_P; t_2 ← X_P - Z_P; t_3 ← X_Q + Z_Q; t_4 ← X_Q - Z_Q
    t_6 ← t_1 \cdot t_1; t_7 ← t_2 \cdot t_2; t_8 ← t_4 \cdot t_1; t_9 ← t_3 \cdot t_2
    t_{10} ← ((A + 2)/4) \cdot t_6
    t_{11} ← ((A + 2)/4 - 1) \cdot t_7
    t_5 ← t_6 - t_7; t_4 ← t_{10} - t_{11}; t_1 ← t_8 - t_9; t_0 ← t_8 + t_9
    Z_{[2]P} ← t_5 \cdot t_4; X_{P+Q} ← t_0^2; X_{[2]P} ← t_6 \cdot t_7; t_2 ← t_1 \cdot t_1
    Z_{P+Q} ← x_{Q-P} \cdot t_2
    return (X_{[2]P}, Z_{[2]P}, X_{P+Q}, Z_{P+Q})
end function
```
A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation.
A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
 - Group modulo negation
 - Map from group to Kummer surface by rational map X
 - Elements represented projectively as $(x : y : z : t)$
 - $(x : y : z : t) = (rx : ry : rz : rt)$ for any $r \neq 0$
 - Efficient doubling and efficient differential addition
A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
 - Group modulo negation
 - Map from group to Kummer surface by rational map X
 - Elements represented projectively as $(x : y : z : t)$
 - $(x : y : z : t) = (rx : ry : rz : rt)$ for any $r \neq 0$
 - Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P) = (x_2 : y_2 : z_2 : t_2)$, $X(Q) = (x_3 : y_3 : z_3 : t_3)$, and $X(Q - P) = (x_1 : y_1 : z_1 : t_1)$
 - Computes $X(2P) = (x_4 : y_4 : z_4 : t_4)$
 - Computes $X(P + Q) = (x_5 : y_5 : z_5 : t_5)$

- Efficient doubling and efficient differential addition

- Coordinates are elements of a (large) finite field
- For same security level, underlying field has half the size as for ECC
- Example: Choose ≈ 128-bit field for ≈ 128 bits of security
A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
 - Group modulo negation
 - Map from group to Kummer surface by rational map X
 - Elements represented projectively as $(x : y : z : t)$
 - $(x : y : z : t) = (rx : ry : rz : rt)$ for any $r \neq 0$
 - Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P) = (x_2 : y_2 : z_2 : t_2)$, $X(Q) = (x_3 : y_3 : z_3 : t_3)$, and $X(Q - P) = (x_1 : y_1 : z_1 : t_1)$
 - Computes $X(2P) = (x_4 : y_4 : z_4 : t_4)$
 - Computes $X(P + Q) = (x_5 : y_5 : z_5 : t_5)$
- Coordinates are elements of a (large) finite field
A better candidate: Kummer surfaces

- Think of a Kummer surface as the Jacobian of a hyperelliptic curve modulo negation
- Easier way to think about it:
 - Group modulo negation
 - Map from group to Kummer surface by rational map X
 - Elements represented projectively as $(x : y : z : t)$
 - $(x : y : z : t) = (rx : ry : rz : rt)$ for any $r \neq 0$
 - Efficient doubling and efficient differential addition
- Ladderstep: gets as input $X(P) = (x_2 : y_2 : z_2 : t_2)$, $X(Q) = (x_3 : y_3 : z_3 : t_3)$, and $X(Q - P) = (x_1 : y_1 : z_1 : t_1)$
 - Computes $X(2P) = (x_4 : y_4 : z_4 : t_4)$
 - Computes $X(P + Q) = (x_5 : y_5 : z_5 : t_5)$
- Coordinates are elements of a (large) finite field
- For same security level, underlying field has half the size as for ECC
- Example: Choose ≈ 128-bit field for ≈ 128 bits of security
Arithmetic on the Kummer surface

\[x_2 \quad y_2 \quad z_2 \quad t_2 \quad x_3 \quad y_3 \quad z_3 \quad t_3 \]

\[H \quad H \quad H \quad H \]

\[\frac{A^2}{B^2} \quad \frac{A^2}{C^2} \quad \frac{A^2}{D^2} \]

\[\times \quad \times \quad \times \quad \times \quad \times \quad \times \quad \times \]

\[x_4 \quad y_4 \quad z_4 \quad t_4 \quad x_5 \quad y_5 \quad z_5 \quad t_5 \]

10M + 9S + 6m ladder formulas
Arithmetic on the Kummer surface

\[x_2 \quad y_2 \quad z_2 \quad t_2 \quad x_3 \quad y_3 \quad z_3 \quad t_3 \]

\[\times \quad \times \]

\[H \quad H \]

\[\frac{A^2}{B^2} \quad \frac{A^2}{C^2} \quad \frac{A^2}{D^2} \]

\[\cdot \quad \cdot \]

\[H \quad H \]

\[\cdot \quad \cdot \]

\[\frac{a}{b} \quad \frac{a}{c} \quad \frac{a}{d} \quad \frac{x_1}{y_1} \quad \frac{x_1}{z_1} \quad \frac{x_1}{t_1} \]

\[x_4 \quad y_4 \quad z_4 \quad t_4 \quad x_5 \quad y_5 \quad z_5 \quad t_5 \]

10M + 9S + 6m ladder formulas

\[x_2 \quad y_2 \quad z_2 \quad t_2 \quad x_3 \quad y_3 \quad z_3 \quad t_3 \]

\[\times \quad \times \]

\[H \quad H \]

\[\frac{A^2}{B^2} \quad \frac{A^2}{C^2} \quad \frac{A^2}{D^2} \quad \frac{A^2}{B^2} \quad \frac{A^2}{C^2} \quad \frac{A^2}{D^2} \]

\[\cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \]

\[H \quad H \]

\[\cdot \quad \cdot \]

\[\frac{a}{b} \quad \frac{a}{c} \quad \frac{a}{d} \quad \frac{x_1}{y_1} \quad \frac{x_1}{z_1} \quad \frac{x_1}{t_1} \quad \frac{x_1}{y_1} \quad \frac{x_1}{z_1} \quad \frac{x_1}{t_1} \]

\[x_4 \quad y_4 \quad z_4 \quad t_4 \quad x_5 \quad y_5 \quad z_5 \quad t_5 \]

7M + 12S + 9m ladder formulas
The “squared Kummer surface”

- In fact, we use arithmetic on a different, “squared” surface
- Each point \((x : y : z : t)\) on the original surface corresponds to \((x^2 : y^2 : z^2 : t^2)\) on the squared surface
- No operation-count advantages
- Easier to construct squared surface with small constants
- In the following rename \((x^2 : y^2 : z^2 : t^2)\) to \((x : y : z : t)\)
Arithmetic on the squared Kummer surface

10M + 9S + 6m ladder formulas
Arithmetic on the squared Kummer surface

\[x_2 \quad y_2 \quad z_2 \quad t_2 \quad x_3 \quad y_3 \quad z_3 \quad t_3 \]

10M + 9S + 6m ladder formulas

\[x_4 \quad y_4 \quad z_4 \quad t_4 \quad x_5 \quad y_5 \quad z_5 \quad t_5 \]

7M + 12S + 9m ladder formulas
Arithmetic on the (original) Kummer surface

$\begin{align*}
\begin{array}{cccc}
 x_2 & y_2 & z_2 & t_2 \\
 x_3 & y_3 & z_3 & t_3
\end{array}
\end{align*}$

$\begin{align*}
\begin{array}{cccc}
 x_4 & y_4 & z_4 & t_4 \\
 x_5 & y_5 & z_5 & t_5
\end{array}
\end{align*}$

$A_2 \cdot B_2 \cdot \frac{A^2}{C^2} \cdot \frac{A^2}{D^2}$

$10M + 9S + 6m$ ladder formulas

$\begin{align*}
\begin{array}{cccc}
 x_1 & y_1 & z_1 & t_1
\end{array}
\end{align*}$

$\begin{align*}
\begin{array}{cccc}
 x_4 & y_4 & z_4 & t_4 \\
 x_5 & y_5 & z_5 & t_5
\end{array}
\end{align*}$

$7M + 12S + 9m$ ladder formulas
A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
 - Originally proposed by Chudnovsky, Chudnovsky, 1986
 - $10M + 9S + 6m$ formulas by Gaudry, 2006
 - $7M + 12S + 9m$ formulas by Bernstein, 2006
A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
 - Originally proposed by Chudnovsky, Chudnovsky, 1986
 - $10M + 9S + 6m$ formulas by Gaudry, 2006
 - $7M + 12S + 9m$ formulas by Bernstein, 2006
- Problem: find cryptographically secure surface with small constants

- Defined over the field $\mathbb{F}_{2^{127}} - 1$

- Finding this surface cost 1,000,000 CPU hours

- The same surface has been used by Bos, Costello, Hisil, and Lauter (Eurocrypt 2013)
A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
 - Originally proposed by Chudnovsky, Chudnovsky, 1986
 - \(10M + 9S + 6m\) formulas by Gaudry, 2006
 - \(7M + 12S + 9m\) formulas by Bernstein, 2006

- Problem: find cryptographically secure surface with small constants

- Gaudry, Schost, 2012: suitable (squared) surface:
 - Defined over the field \(\mathbb{F}_{2^{127} - 1}\)

Finding this surface cost 1,000,000 CPU hours

The same surface has been used by Bos, Costello, Hisil, and Lauter (Eurocrypt 2013)
A suitable Kummer surface

- Formulas for efficient Kummer surface arithmetic known for a while
 - Originally proposed by Chudnovsky, Chudnovsky, 1986
 - $10M + 9S + 6m$ formulas by Gaudry, 2006
 - $7M + 12S + 9m$ formulas by Bernstein, 2006

- Problem: find cryptographically secure surface with small constants

- Gaudry, Schost, 2012: suitable (squared) surface:
 - Defined over the field $\mathbb{F}_{2^{127} - 1}$

- Finding this surface cost 1,000,000 CPU hours

- The same surface has been used by Bos, Costello, Hisil, and Lauter (Eurocrypt 2013)
Representing elements of $\mathbb{F}_{2^{127} - 1}$

- Represent an element A in radix-$2^{127/6}$
- Write A as $a_0, a_1, a_2, a_3, a_4, a_5$, where
 - a_0 is a small multiple of 2^0
 - a_1 is a small multiple of 2^{22}
 - a_2 is a small multiple of 2^{43}
 - a_3 is a small multiple of 2^{64}
 - a_4 is a small multiple of 2^{85}
 - a_5 is a small multiple of 2^{106}
Multiplication

- Consider multiplication of A and B with reduction mod $2^{127} - 1$
- Make use of the fact that $2^{127} \equiv 1$
- With radix $2^{127}/6$ we obtain:

\[
\begin{align*}
r_0 &= a_0b_0 + 2^{-127}a_1b_5 + 2^{-127}a_2b_4 + 2^{-127}a_3b_3 + 2^{-127}a_4b_2 + 2^{-127}a_5b_1 \\
r_1 &= a_0b_1 + a_1b_0 + 2^{-127}a_2b_5 + 2^{-127}a_3b_4 + 2^{-127}a_4b_3 + 2^{-127}a_5b_2 \\
r_2 &= a_0b_2 + a_1b_1 + a_2b_0 + 2^{-127}a_3b_5 + 2^{-127}a_4b_4 + 2^{-127}a_5b_3 \\
r_3 &= a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 + 2^{-127}a_4b_5 + 2^{-127}a_5b_4 \\
r_4 &= a_0b_4 + a_1b_3 + a_2b_2 + a_3b_1 + a_4b_0 + 2^{-127}a_5b_5 \\
r_5 &= a_0b_5 + a_1b_4 + a_2b_3 + a_3b_2 + a_4b_1 + a_5b_0
\end{align*}
\]
Consider multiplication of A and B with reduction mod $2^{127} - 1$

Make use of the fact that $2^{127} \equiv 1$

With radix $2^{127/6}$ we obtain:

\[
\begin{align*}
 r_0 &= a_0 b_0 + 2^{-127} a_1 b_5 + 2^{-127} a_2 b_4 + 2^{-127} a_3 b_3 + 2^{-127} a_4 b_2 + 2^{-127} a_5 b_1 \\
 r_1 &= a_0 b_1 + a_1 b_0 + 2^{-127} a_2 b_5 + 2^{-127} a_3 b_4 + 2^{-127} a_4 b_3 + 2^{-127} a_5 b_2 \\
 r_2 &= a_0 b_2 + a_1 b_1 + a_2 b_0 + 2^{-127} a_3 b_5 + 2^{-127} a_4 b_4 + 2^{-127} a_5 b_3 \\
 r_3 &= a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0 + 2^{-127} a_4 b_5 + 2^{-127} a_5 b_4 \\
 r_4 &= a_0 b_4 + a_1 b_3 + a_2 b_2 + a_3 b_1 + a_4 b_0 + 2^{-127} a_5 b_5 \\
 r_5 &= a_0 b_5 + a_1 b_4 + a_2 b_3 + a_3 b_2 + a_4 b_1 + a_5 b_0
\end{align*}
\]

Obviously, we always perform this whole thing $4 \times$ in parallel
Consider multiplication of A and B with reduction mod $2^{127} - 1$

Make use of the fact that $2^{127} \equiv 1$

With radix $2^{127/6}$ we obtain:

\[
\begin{align*}
 r_0 &= a_0 b_0 + 2^{-127} a_1 b_5 + 2^{-127} a_2 b_4 + 2^{-127} a_3 b_3 + 2^{-127} a_4 b_2 + 2^{-127} a_5 b_1 \\
 r_1 &= a_0 b_1 + a_1 b_0 + 2^{-127} a_2 b_5 + 2^{-127} a_3 b_4 + 2^{-127} a_4 b_3 + 2^{-127} a_5 b_2 \\
 r_2 &= a_0 b_2 + a_1 b_1 + a_2 b_0 + 2^{-127} a_3 b_5 + 2^{-127} a_4 b_4 + 2^{-127} a_5 b_3 \\
 r_3 &= a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0 + 2^{-127} a_4 b_5 + 2^{-127} a_5 b_4 \\
 r_4 &= a_0 b_4 + a_1 b_3 + a_2 b_2 + a_3 b_1 + a_4 b_0 + 2^{-127} a_5 b_5 \\
 r_5 &= a_0 b_5 + a_1 b_4 + a_2 b_3 + a_3 b_2 + a_4 b_1 + a_5 b_0
\end{align*}
\]

Obviously, we always perform this whole thing $4 \times$ in parallel

Obviously, we specialize squaring
Consider multiplication of A and B with reduction mod $2^{127} - 1$

Make use of the fact that $2^{127} \equiv 1$

With radix $2^{127/6}$ we obtain:

$$r_0 = a_0 b_0 + 2^{-127} a_1 b_5 + 2^{-127} a_2 b_4 + 2^{-127} a_3 b_3 + 2^{-127} a_4 b_2 + 2^{-127} a_5 b_1$$

$$r_1 = a_0 b_1 + a_1 b_0 + 2^{-127} a_2 b_5 + 2^{-127} a_3 b_4 + 2^{-127} a_4 b_3 + 2^{-127} a_5 b_2$$

$$r_2 = a_0 b_2 + a_1 b_1 + a_2 b_0 + 2^{-127} a_3 b_5 + 2^{-127} a_4 b_4 + 2^{-127} a_5 b_3$$

$$r_3 = a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0 + 2^{-127} a_4 b_5 + 2^{-127} a_5 b_4$$

$$r_4 = a_0 b_4 + a_1 b_3 + a_2 b_2 + a_3 b_1 + a_4 b_0 + 2^{-127} a_5 b_5$$

$$r_5 = a_0 b_5 + a_1 b_4 + a_2 b_3 + a_3 b_2 + a_4 b_1 + a_5 b_0$$

Obviously, we always perform this whole thing $4 \times$ in parallel

Obviously, we specialize squaring

Obviously, we specialize multiplications by small constants
The Hadamard transform

- Only shuffling operation in Kummer arithmetic
- AVX has limited shuffling across left and right half
- Plain Hadamard turns out to be expensive

Permuted and negated Hadamard
- Allow generalized Hadamard to output permuted vector
- Self-inverting permutation “cleans” after two generalized Hadamards
- Allow generalized Hadamard to negate vector entries
- “Clean” negations by multiplication by negated constants
The Hadamard transform

- Only shuffling operation in Kummer arithmetic
- AVX has limited shuffling across left and right half
- Plain Hadamard turns out to be expensive

Permuted and negated Hadamard

- Allow generalized Hadamard to output permuted vector
- Self-inverting permutation “cleans” after two generalized Hadamards
The Hadamard transform

- Only shuffling operation in Kummer arithmetic
- AVX has limited shuffling across left and right half
- Plain Hadamard turns out to be expensive

Permuted and negated Hadamard

- Allow generalized Hadamard to output permuted vector
- Self-inverting permutation “cleans” after two generalized Hadamards
- Allow generalized Hadamard to negate vector entries
- “Clean” negations by multiplication by negated constants
Arithmetic on the squared Kummer surface

\[
\begin{align*}
 x_2 & \quad y_2 & \quad -z_2 & \quad t_2 \\
 x_3 & \quad y_3 & \quad -z_3 & \quad t_3 \\

 H & \quad x & \quad t & \quad -z & \quad y \\
 H & \quad x & \quad t & \quad -z & \quad y \\

 x & \cdot \left(\frac{A^2}{D^2}\right) & \cdot \left(-\frac{A^2}{C^2}\right) & \cdot \left(\frac{A^2}{B^2}\right) \\

 x_4 & \quad y_4 & \quad -z_4 & \quad t_4 \\
 x_5 & \quad y_5 & \quad -z_5 & \quad t_5 \\

 x & \cdot \left(\frac{a^2}{b^2}\right) & \cdot \left(-\frac{a^2}{c^2}\right) & \cdot \left(\frac{a^2}{d^2}\right) \\

 x & \cdot \left(\frac{x_1}{y_1}\right) & \cdot \left(-\frac{x_1}{z_1}\right) & \cdot \left(\frac{x_1}{t_1}\right)
\end{align*}
\]
Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas “dictate” the scalar multiplication algorithm
Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas “dictate” the scalar multiplication algorithm
- Choose representation of field elements for fast reduction
Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas “dictate” the scalar multiplication algorithm
- Choose representation of field elements for fast reduction
- Adjust formulas according to fast shuffle instructions
Looking back...

- Fastest computation units are vector units
- Choose (H)ECC with efficiently vectorizable formulas
- Formulas “dictate” the scalar multiplication algorithm
- Choose representation of field elements for fast reduction
- Adjust formulas according to fast shuffle instructions
- Optimizations go through all levels of the pyramid!
Results

128-bit secure, constant-time scalar multiplication

<table>
<thead>
<tr>
<th>arch</th>
<th>cycles</th>
<th>open</th>
<th>g</th>
<th>source of software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy</td>
<td>194036</td>
<td>yes</td>
<td>1</td>
<td>Bernstein–Duif–Lange–Schwabe–Yang</td>
</tr>
<tr>
<td>Sandy</td>
<td>153000?</td>
<td>no</td>
<td>1</td>
<td>Hamburg</td>
</tr>
<tr>
<td>Sandy</td>
<td>137000?</td>
<td>no</td>
<td>1</td>
<td>Longa–Sica</td>
</tr>
<tr>
<td>Sandy</td>
<td>122716</td>
<td>yes</td>
<td>2</td>
<td>Bos–Costello–Hisil–Lauter</td>
</tr>
<tr>
<td>Sandy</td>
<td>119904</td>
<td>yes</td>
<td>1</td>
<td>Oliveira–López–Aranha–Rodríguez–Henríquez</td>
</tr>
<tr>
<td>Sandy</td>
<td>96000?</td>
<td>no</td>
<td>1</td>
<td>Faz-Hernández–Longa–Sánchez</td>
</tr>
<tr>
<td>Sandy</td>
<td>92000?</td>
<td>no</td>
<td>1</td>
<td>Faz-Hernández–Longa–Sánchez</td>
</tr>
<tr>
<td>Sandy</td>
<td>88916</td>
<td>yes</td>
<td>2</td>
<td>new (our results)</td>
</tr>
</tbody>
</table>
Results

128-bit secure, constant-time scalar multiplication

<table>
<thead>
<tr>
<th>arch</th>
<th>cycles</th>
<th>open</th>
<th>g</th>
<th>source of software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivy</td>
<td>182708</td>
<td>yes</td>
<td>1</td>
<td>Bernstein–Duif–Lange–Schwabe–Yang CHES 2011</td>
</tr>
<tr>
<td>Ivy</td>
<td>145000?</td>
<td>yes</td>
<td>1</td>
<td>Costello–Hisil–Smith Eurocrypt 2014</td>
</tr>
<tr>
<td>Ivy</td>
<td>119032</td>
<td>yes</td>
<td>2</td>
<td>Bos–Costello–Hisil–Lauter Eurocrypt 2013</td>
</tr>
<tr>
<td>Ivy</td>
<td>114036</td>
<td>yes</td>
<td>1</td>
<td>Oliveira–López–Aranha–Rodríguez-Henríquez CHES 2013</td>
</tr>
<tr>
<td>Ivy</td>
<td>88448</td>
<td>yes</td>
<td>2</td>
<td>new (our results)</td>
</tr>
</tbody>
</table>
More results

Also optimized for Intel Haswell

<table>
<thead>
<tr>
<th>arch</th>
<th>cycles</th>
<th>open</th>
<th>g</th>
<th>source of software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haswell</td>
<td>145907</td>
<td>yes</td>
<td>1</td>
<td>Bernstein–Duif–Lange–Schwabe–Yang CHES 2011</td>
</tr>
<tr>
<td>Haswell</td>
<td>100895</td>
<td>yes</td>
<td>2</td>
<td>Bos–Costello–Hisil–Lauter Eurocrypt 2013</td>
</tr>
<tr>
<td>Haswell</td>
<td>55595</td>
<td>no</td>
<td>1</td>
<td>Oliveira–López–Aranha–Rodríguez-Henríquez CHES 2013</td>
</tr>
<tr>
<td>Haswell</td>
<td>54389</td>
<td>yes</td>
<td>2</td>
<td>new (our results)</td>
</tr>
</tbody>
</table>
Even more results

Also optimized for ARM Cortex-A8

<table>
<thead>
<tr>
<th>arch</th>
<th>cycles</th>
<th>open</th>
<th>g</th>
<th>source of software</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8-slow</td>
<td>497389</td>
<td>yes</td>
<td>1</td>
<td>Bernstein–Schwabe CHES 2012</td>
</tr>
<tr>
<td>A8-slow</td>
<td>305395</td>
<td>yes</td>
<td>2</td>
<td>new (our result)</td>
</tr>
<tr>
<td>A8-fast</td>
<td>460200</td>
<td>yes</td>
<td>1</td>
<td>Bernstein–Schwabe CHES 2012</td>
</tr>
<tr>
<td>A8-fast</td>
<td>273349</td>
<td>yes</td>
<td>2</td>
<td>new (our result)</td>
</tr>
</tbody>
</table>
Paper:
Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Peter Schwabe. “Kummer strikes back: new DH speed records”.
http://cryptojedi.org/papers/#kummer

Software:
Included in SUPERCOP, subdirectory crypto_scalarmult/kummer/
http://bench.cr.yp.to/supercop.html