
Fast symmetric crypto on embedded CPUs

Peter Schwabe

Radboud University Nijmegen, The Netherlands

June 5, 2014

Summer School on the design and security of cryptographic algorithms
and devices for real-world applications

Embedded CPUs

4-bit CPUs
I TMS 1000
I Intel 4004
I Atmel MARC4
I Toshiba TLCS-47

8-bit CPUs
I Atmel AVR
I Intel 8051
I Microchip Technology PIC
I STMicroelectronics STM8

16-bit CPUs
I TI MSP430
I Microchip Technology PIC24

32-bit CPUs
I ARM11
I ARM Cortex-M∗
I ARM Cortex-A∗
I Atmel AVR32
I MIPS32
I AIM 32-bit PowerPC
I STMicroelectronics STM32

Fast symmetric crypto on embedded CPUs 2

Symmetric crypto

Fast symmetric crypto on embedded CPUs 3

Symmetric crypto

Fast symmetric crypto on embedded CPUs 3

Symmetric crypto

Fast symmetric crypto on embedded CPUs 3

Symmetric crypto

Fast symmetric crypto on embedded CPUs 3

Symmetric crypto

Fast symmetric crypto on embedded CPUs 3

Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture

I Throughput: number of instructions (of a certain type) we can do
per cycle

I Latency of an instruction: number of cycles we have to wait before
using the result

I Latency and throughput are determined by the microarchitecture
I Optimizing software in assembly means:

I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)

Fast symmetric crypto on embedded CPUs 4

Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture
I Throughput: number of instructions (of a certain type) we can do

per cycle

I Latency of an instruction: number of cycles we have to wait before
using the result

I Latency and throughput are determined by the microarchitecture
I Optimizing software in assembly means:

I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)

Fast symmetric crypto on embedded CPUs 4

Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture
I Throughput: number of instructions (of a certain type) we can do

per cycle
I Latency of an instruction: number of cycles we have to wait before

using the result

I Latency and throughput are determined by the microarchitecture
I Optimizing software in assembly means:

I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)

Fast symmetric crypto on embedded CPUs 4

Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture
I Throughput: number of instructions (of a certain type) we can do

per cycle
I Latency of an instruction: number of cycles we have to wait before

using the result
I Latency and throughput are determined by the microarchitecture

I Optimizing software in assembly means:
I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)

Fast symmetric crypto on embedded CPUs 4

Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture
I Throughput: number of instructions (of a certain type) we can do

per cycle
I Latency of an instruction: number of cycles we have to wait before

using the result
I Latency and throughput are determined by the microarchitecture
I Optimizing software in assembly means:

I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)

Fast symmetric crypto on embedded CPUs 4

Keccak on ARM11

Joint work with Bo-Yin Yang and Shang-Yi Yang

Fast symmetric crypto on embedded CPUs 5

The ARM11

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

Fast symmetric crypto on embedded CPUs 6

The ARM11

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

Fast symmetric crypto on embedded CPUs 6

The ARM11

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)

Fast symmetric crypto on embedded CPUs 6

Keccak

I State of 5× 5 matrix of 64-bit lanes
I Absorb message in blocks of 128 bytes
I Perform state transformation in 24 rounds; each round:

I Compute b0, . . . , b4 as XORs of columns
I Compute c0, . . . , c4, each as bi ⊕ (bj ≪ 1)

I Update state columnwise
I Pick up 5 lanes from a diagonal
I XOR each lane with one of the ci
I Rotate each lane by a different fixed distance
I Obtain each new lanes as li ⊕ ((¬lj)&lk)
I One lane per column is additionally XORed with a round constant

Fast symmetric crypto on embedded CPUs 7

Keccak

I State of 5× 5 matrix of 64-bit lanes
I Absorb message in blocks of 128 bytes
I Perform state transformation in 24 rounds; each round:

I Compute b0, . . . , b4 as XORs of columns
I Compute c0, . . . , c4, each as bi ⊕ (bj ≪ 1)
I Update state columnwise
I Pick up 5 lanes from a diagonal
I XOR each lane with one of the ci
I Rotate each lane by a different fixed distance
I Obtain each new lanes as li ⊕ ((¬lj)&lk)

I One lane per column is additionally XORed with a round constant

Fast symmetric crypto on embedded CPUs 7

Keccak

I State of 5× 5 matrix of 64-bit lanes
I Absorb message in blocks of 128 bytes
I Perform state transformation in 24 rounds; each round:

I Compute b0, . . . , b4 as XORs of columns
I Compute c0, . . . , c4, each as bi ⊕ (bj ≪ 1)
I Update state columnwise
I Pick up 5 lanes from a diagonal
I XOR each lane with one of the ci
I Rotate each lane by a different fixed distance
I Obtain each new lanes as li ⊕ ((¬lj)&lk)
I One lane per column is additionally XORed with a round constant

Fast symmetric crypto on embedded CPUs 7

A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?

I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers
I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not
I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free

Fast symmetric crypto on embedded CPUs 8

A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?
I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers

I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not
I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free

Fast symmetric crypto on embedded CPUs 8

A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?
I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers
I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not

I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free

Fast symmetric crypto on embedded CPUs 8

A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?
I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers
I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not
I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free

Fast symmetric crypto on embedded CPUs 8

A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?
I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers
I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not
I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free

Fast symmetric crypto on embedded CPUs 8

Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci
I Not easy to use 64-bit loads ands stores (needs smart memory

layout)
I Can eliminate some loads of ci, but still huge overhead
I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte
I Actual performance: 79.32 cycles/byte

Fast symmetric crypto on embedded CPUs 9

Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci

I Not easy to use 64-bit loads ands stores (needs smart memory
layout)

I Can eliminate some loads of ci, but still huge overhead
I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte
I Actual performance: 79.32 cycles/byte

Fast symmetric crypto on embedded CPUs 9

Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci
I Not easy to use 64-bit loads ands stores (needs smart memory

layout)
I Can eliminate some loads of ci, but still huge overhead

I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte
I Actual performance: 79.32 cycles/byte

Fast symmetric crypto on embedded CPUs 9

Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci
I Not easy to use 64-bit loads ands stores (needs smart memory

layout)
I Can eliminate some loads of ci, but still huge overhead
I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte

I Actual performance: 79.32 cycles/byte

Fast symmetric crypto on embedded CPUs 9

Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci
I Not easy to use 64-bit loads ands stores (needs smart memory

layout)
I Can eliminate some loads of ci, but still huge overhead
I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte
I Actual performance: 79.32 cycles/byte

Fast symmetric crypto on embedded CPUs 9

Salsa20 on ARM Cortex-A8

Joint work with Daniel J. Bernstein

Fast symmetric crypto on embedded CPUs 10

The ARM Cortex-A8

The ARM core
I Essentially the same instruction set as ARM 11
I Again, 16 integer registers, 14 freely available
I Can issue two instructions per cycle
I Only one load/store per cycle
I More serious latency constraints than ARM11

The NEON vector unit
I 16 128-bit vector registers
I One arithmetic + one load/store/shuffle per cycle
I No free shifts or rotates
I Fairly complex latency rules

Fast symmetric crypto on embedded CPUs 11

The ARM Cortex-A8

The ARM core
I Essentially the same instruction set as ARM 11
I Again, 16 integer registers, 14 freely available
I Can issue two instructions per cycle
I Only one load/store per cycle
I More serious latency constraints than ARM11

The NEON vector unit
I 16 128-bit vector registers
I One arithmetic + one load/store/shuffle per cycle
I No free shifts or rotates
I Fairly complex latency rules

Fast symmetric crypto on embedded CPUs 11

Salsa20

I Generates random stream in 64-byte blocks, works on 32-bit integers
I Blocks are independent
I Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as
s4 = x0 + x12
x4 ^= (s4 >>> 25)

I These sequences are 4-way parallel

I In ARM without NEON: 2 instructions, 1 cycle
I Sounds like total of (20 · 16)/64 = 5 cycles/byte

, but:
I Only 14 integer registers (need at least 17)
I Latencies cause big trouble
I Actual implementations slower than 15 cycles/byte

Fast symmetric crypto on embedded CPUs 12

Salsa20

I Generates random stream in 64-byte blocks, works on 32-bit integers
I Blocks are independent
I Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as
s4 = x0 + x12
x4 ^= (s4 >>> 25)

I These sequences are 4-way parallel
I In ARM without NEON: 2 instructions, 1 cycle
I Sounds like total of (20 · 16)/64 = 5 cycles/byte

, but:
I Only 14 integer registers (need at least 17)
I Latencies cause big trouble
I Actual implementations slower than 15 cycles/byte

Fast symmetric crypto on embedded CPUs 12

Salsa20

I Generates random stream in 64-byte blocks, works on 32-bit integers
I Blocks are independent
I Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as
s4 = x0 + x12
x4 ^= (s4 >>> 25)

I These sequences are 4-way parallel
I In ARM without NEON: 2 instructions, 1 cycle
I Sounds like total of (20 · 16)/64 = 5 cycles/byte, but:

I Only 14 integer registers (need at least 17)
I Latencies cause big trouble
I Actual implementations slower than 15 cycles/byte

Fast symmetric crypto on embedded CPUs 12

A first approach in NEON

I Per round do 4× something like:
4x a0 = diag1 + diag0
4x b0 = a0 << 7
4x a0 unsigned >>= 25

diag3 ^= b0
diag3 ^= a0

I + some (free) shuffles

I Intuitive cycle lower bound:
(5 · 4 · 20)/64 = 6.25 cycles/byte

I Problem: The above sequence has a 9-cycle latency, thus:
(9 · 4 · 20)/64 = 11.25 cycles/byte

Fast symmetric crypto on embedded CPUs 13

A first approach in NEON

I Per round do 4× something like:
4x a0 = diag1 + diag0
4x b0 = a0 << 7
4x a0 unsigned >>= 25

diag3 ^= b0
diag3 ^= a0

I + some (free) shuffles
I Intuitive cycle lower bound:

(5 · 4 · 20)/64 = 6.25 cycles/byte

I Problem: The above sequence has a 9-cycle latency, thus:
(9 · 4 · 20)/64 = 11.25 cycles/byte

Fast symmetric crypto on embedded CPUs 13

A first approach in NEON

I Per round do 4× something like:
4x a0 = diag1 + diag0
4x b0 = a0 << 7
4x a0 unsigned >>= 25

diag3 ^= b0
diag3 ^= a0

I + some (free) shuffles
I Intuitive cycle lower bound:

(5 · 4 · 20)/64 = 6.25 cycles/byte
I Problem: The above sequence has a 9-cycle latency, thus:

(9 · 4 · 20)/64 = 11.25 cycles/byte

Fast symmetric crypto on embedded CPUs 13

Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism

I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism
I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Fast symmetric crypto on embedded CPUs 14

Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism
I Good for pipelined and superscalar execution

I The vector implementation needs 4-way data parallelism, there is
(almost) no instruction-level parallelism left

I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism
I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Fast symmetric crypto on embedded CPUs 14

Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism
I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution

I Idea: Blocks are independent, use this to re-introduce
instruction-level parallelism

I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Fast symmetric crypto on embedded CPUs 14

Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism
I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism

I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Fast symmetric crypto on embedded CPUs 14

Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism
I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism
I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Fast symmetric crypto on embedded CPUs 14

Going even further

I NEON is basically a coprocessor to the ARM core
I ARM decodes instructions, forwards NEON instructions to the

NEON unit

I Idea: Also keep the ARM core busy with Salsa20 computations
I New bottleneck: ARM core decodes at most 2 instructions per cycle
I Add-rotate-xor is only 2 ARM instructions
I Best tradeoff: One block on ARM, two blocks on NEON

Fast symmetric crypto on embedded CPUs 15

Going even further

I NEON is basically a coprocessor to the ARM core
I ARM decodes instructions, forwards NEON instructions to the

NEON unit
I Idea: Also keep the ARM core busy with Salsa20 computations
I New bottleneck: ARM core decodes at most 2 instructions per cycle

I Add-rotate-xor is only 2 ARM instructions
I Best tradeoff: One block on ARM, two blocks on NEON

Fast symmetric crypto on embedded CPUs 15

Going even further

I NEON is basically a coprocessor to the ARM core
I ARM decodes instructions, forwards NEON instructions to the

NEON unit
I Idea: Also keep the ARM core busy with Salsa20 computations
I New bottleneck: ARM core decodes at most 2 instructions per cycle
I Add-rotate-xor is only 2 ARM instructions
I Best tradeoff: One block on ARM, two blocks on NEON

Fast symmetric crypto on embedded CPUs 15

A flavor of the code
4x a0 = diag1 + diag0

4x next_a0 = next_diag1 + next_diag0
s4 = x0 + x12
s9 = x5 + x1

4x b0 = a0 << 7
4x next_b0 = next_a0 << 7

4x a0 unsigned>>= 25
4x next_a0 unsigned>>= 25

x4 ^= (s4 >>> 25)
x9 ^= (s9 >>> 25)
s8 = x4 + x0
s13 = x9 + x5

diag3 ^= b0
next_diag3 ^= next_b0

diag3 ^= a0
next_diag3 ^= next_a0

x8 ^= (s8 >>> 23)
x13 ^= (s13 >>> 23)

Fast symmetric crypto on embedded CPUs 16

Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON

Fast symmetric crypto on embedded CPUs 17

The case of AES

Fast symmetric crypto on embedded CPUs 18

Importance of AES

I Most widely used symmetric crypto algorithm
I Used in many constructions:

I 10 SHA-3 submissions were AES-based
I 25 CAESAR submissions use AES

I Only accepted encryption algorithm for various security certifications
I You need a stream cipher? “Use AES-CTR”

Fast symmetric crypto on embedded CPUs 19

AES on 32-bit processors

I Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

I Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C
I Input: 32-bit integers y0, y1, y2, y3
I Output: 32-bit integers z0, z1, z2, z3
I Round keys in 32-bit-integer array rk[44]
z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk[4];
z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk[5];
z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk[6];
z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk[7];

Fast symmetric crypto on embedded CPUs 20

AES on 32-bit processors

I Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

I Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C
I Input: 32-bit integers y0, y1, y2, y3
I Output: 32-bit integers z0, z1, z2, z3
I Round keys in 32-bit-integer array rk[44]
z0 = T0[y0 >> 24] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[y3 & 0xff] ^ rk[4];
z1 = T0[y1 >> 24] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[y0 & 0xff] ^ rk[5];
z2 = T0[y2 >> 24] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[y1 & 0xff] ^ rk[6];
z3 = T0[y3 >> 24] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[y2 & 0xff] ^ rk[7];

Fast symmetric crypto on embedded CPUs 20

Foot-shooting prevention

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Fast symmetric crypto on embedded CPUs 21

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses

I Easiest case: Cache timing
I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access
I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use

cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure

Fast symmetric crypto on embedded CPUs 22

The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses
I Easiest case: Cache timing

I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access
I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use

cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure

Fast symmetric crypto on embedded CPUs 22

The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses
I Easiest case: Cache timing

I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access

I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use
cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure

Fast symmetric crypto on embedded CPUs 22

The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses
I Easiest case: Cache timing

I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access
I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use

cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure

Fast symmetric crypto on embedded CPUs 22

The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses
I Easiest case: Cache timing

I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access
I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use

cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure

Fast symmetric crypto on embedded CPUs 22

How could AES be chosen?

“Table lookup: not vulnerable to timing attacks; relatively easy
to effect a defense against power attacks by software balancing
of the lookup address.”

—Report on the Development of the Advanced Encryption
Standard (AES), October 2000

Fast symmetric crypto on embedded CPUs 23

Modern AES software

T tables
I Use only on machines with

constant-time loads
I Caches are not the only problem
I Use assembly to prevent(?)

foot-shooting

Bitslicing
I Transpose binary state matrix

in registers
I Simulate hardware

implementation in software
I Needs fast XOR and AND

instructions
I Example: 384 bit operations

per cycle on 64-bit Intel CPUs

Vector permutes
I Implement AES through F28

arithmetic
I Represent F28 as quadratic

extension of F24

I Use vector-permute instructions
as lookups

I Needs fast and powerful
vector-permute instructions

I Example: AltiVec, NEON(?)

Hardware support
I Intel has AES-NI since

Westmere
I ARMv8 has HW AES

Fast symmetric crypto on embedded CPUs 24

Modern AES software

T tables
I Use only on machines with

constant-time loads
I Caches are not the only problem
I Use assembly to prevent(?)

foot-shooting

Bitslicing
I Transpose binary state matrix

in registers
I Simulate hardware

implementation in software
I Needs fast XOR and AND

instructions
I Example: 384 bit operations

per cycle on 64-bit Intel CPUs

Vector permutes
I Implement AES through F28

arithmetic
I Represent F28 as quadratic

extension of F24

I Use vector-permute instructions
as lookups

I Needs fast and powerful
vector-permute instructions

I Example: AltiVec, NEON(?)

Hardware support
I Intel has AES-NI since

Westmere
I ARMv8 has HW AES

Fast symmetric crypto on embedded CPUs 24

Modern AES software

T tables
I Use only on machines with

constant-time loads
I Caches are not the only problem
I Use assembly to prevent(?)

foot-shooting

Bitslicing
I Transpose binary state matrix

in registers
I Simulate hardware

implementation in software
I Needs fast XOR and AND

instructions
I Example: 384 bit operations

per cycle on 64-bit Intel CPUs

Vector permutes
I Implement AES through F28

arithmetic
I Represent F28 as quadratic

extension of F24

I Use vector-permute instructions
as lookups

I Needs fast and powerful
vector-permute instructions

I Example: AltiVec, NEON(?)

Hardware support
I Intel has AES-NI since

Westmere
I ARMv8 has HW AES

Fast symmetric crypto on embedded CPUs 24

Modern AES software

T tables
I Use only on machines with

constant-time loads
I Caches are not the only problem
I Use assembly to prevent(?)

foot-shooting

Bitslicing
I Transpose binary state matrix

in registers
I Simulate hardware

implementation in software
I Needs fast XOR and AND

instructions
I Example: 384 bit operations

per cycle on 64-bit Intel CPUs

Vector permutes
I Implement AES through F28

arithmetic
I Represent F28 as quadratic

extension of F24

I Use vector-permute instructions
as lookups

I Needs fast and powerful
vector-permute instructions

I Example: AltiVec, NEON(?)

Hardware support
I Intel has AES-NI since

Westmere
I ARMv8 has HW AES

Fast symmetric crypto on embedded CPUs 24

Challenges

I Beat our Keccak ARM11 implementation

I Implement AES with vector permute in NEON
I Implement AES without T tables in plain ARM

Fast symmetric crypto on embedded CPUs 25

Challenges

I Beat our Keccak ARM11 implementation
I Implement AES with vector permute in NEON

I Implement AES without T tables in plain ARM

Fast symmetric crypto on embedded CPUs 25

Challenges

I Beat our Keccak ARM11 implementation
I Implement AES with vector permute in NEON
I Implement AES without T tables in plain ARM

Fast symmetric crypto on embedded CPUs 25

Challenges

Fast symmetric crypto on embedded CPUs 25

References

I SHA-3 finalists on ARM11:
http://cryptojedi.org/papers/#sha3arm

I NEON crypto:
http://cryptojedi.org/papers/#neoncrypto

I Bitsliced AES:
I Mitsuru Matsui, Junko Nakajima, 2007. On the Power of Bitslice

Implementation on Intel Core2 Processor.
www.iacr.org/archive/ches2007/47270121/47270121.ps

I Robert Könighofer, 2008. A Fast and Cache-Timing Resistant
Implementation of the AES.

I Emilia Käsper, Peter Schwabe, 2009. Faster and Timing-Attack
Resistant AES-GCM.
http://cryptojedi.org/papers/#aesbs

I Vector permute AES: Mike Hamburg, 2009. Accelerating AES with
Vector Permute Instructions.
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

Fast symmetric crypto on embedded CPUs 26

http://cryptojedi.org/papers/#sha3arm
http://cryptojedi.org/papers/#neoncrypto
www.iacr.org/archive/ches2007/47270121/47270121.ps
http://cryptojedi.org/papers/#aesbs
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

References

I SHA-3 finalists on ARM11:
http://cryptojedi.org/papers/#sha3arm

I NEON crypto:
http://cryptojedi.org/papers/#neoncrypto

I Bitsliced AES:
I Mitsuru Matsui, Junko Nakajima, 2007. On the Power of Bitslice

Implementation on Intel Core2 Processor.
www.iacr.org/archive/ches2007/47270121/47270121.ps

I Robert Könighofer, 2008. A Fast and Cache-Timing Resistant
Implementation of the AES.

I Emilia Käsper, Peter Schwabe, 2009. Faster and Timing-Attack
Resistant AES-GCM.
http://cryptojedi.org/papers/#aesbs

I Vector permute AES: Mike Hamburg, 2009. Accelerating AES with
Vector Permute Instructions.
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

Fast symmetric crypto on embedded CPUs 26

http://cryptojedi.org/papers/#sha3arm
http://cryptojedi.org/papers/#neoncrypto
www.iacr.org/archive/ches2007/47270121/47270121.ps
http://cryptojedi.org/papers/#aesbs
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

References

I SHA-3 finalists on ARM11:
http://cryptojedi.org/papers/#sha3arm

I NEON crypto:
http://cryptojedi.org/papers/#neoncrypto

I Bitsliced AES:
I Mitsuru Matsui, Junko Nakajima, 2007. On the Power of Bitslice

Implementation on Intel Core2 Processor.
www.iacr.org/archive/ches2007/47270121/47270121.ps

I Robert Könighofer, 2008. A Fast and Cache-Timing Resistant
Implementation of the AES.

I Emilia Käsper, Peter Schwabe, 2009. Faster and Timing-Attack
Resistant AES-GCM.
http://cryptojedi.org/papers/#aesbs

I Vector permute AES: Mike Hamburg, 2009. Accelerating AES with
Vector Permute Instructions.
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

Fast symmetric crypto on embedded CPUs 26

http://cryptojedi.org/papers/#sha3arm
http://cryptojedi.org/papers/#neoncrypto
www.iacr.org/archive/ches2007/47270121/47270121.ps
http://cryptojedi.org/papers/#aesbs
http://mikehamburg.com/papers/vector_aes/vector_aes.pdf

