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Embedded CPUs

4-bit CPUs
I TMS 1000
I Intel 4004
I Atmel MARC4
I Toshiba TLCS-47

8-bit CPUs
I Atmel AVR
I Intel 8051
I Microchip Technology PIC
I STMicroelectronics STM8

16-bit CPUs
I TI MSP430
I Microchip Technology PIC24

32-bit CPUs
I ARM11
I ARM Cortex-M∗
I ARM Cortex-A∗
I Atmel AVR32
I MIPS32
I AIM 32-bit PowerPC
I STMicroelectronics STM32
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Optimizing crypto

I This talk: optimize for speed
I Implement algorithms in assembly
I Available instructions and registers are determined by the target

architecture

I Throughput: number of instructions (of a certain type) we can do
per cycle

I Latency of an instruction: number of cycles we have to wait before
using the result

I Latency and throughput are determined by the microarchitecture
I Optimizing software in assembly means:

I Find good representation of data
I Choose suitable instructions that implement the algorithm
I Schedule those instruction to hide latencies
I Assign registers efficiently (avoid spills)
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Keccak on ARM11

Joint work with Bo-Yin Yang and Shang-Yi Yang
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The ARM11

I 16 32-bit integer registers (1 used as PC, one used as SP): 14 freely
available

I Executes at most one instruction per cycle
I 1 cycle latency for all relevant arithmetic instructions, 3 cycles for

loads from cache
I Standard 32-bit RISC instruction set; two exceptions:

I One input of arithmetic instructions can be rotated or shifted for free
as part of the instruction

I This input is needed one cycle earlier in the pipeline ⇒ “backwards
latency” + 1

I Loads and stores can move 64-bits between memory and 2 adjacent
32-bit registers (same cost as 32-bit load/store)
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Keccak

I State of 5× 5 matrix of 64-bit lanes
I Absorb message in blocks of 128 bytes
I Perform state transformation in 24 rounds; each round:

I Compute b0, . . . , b4 as XORs of columns
I Compute c0, . . . , c4, each as bi ⊕ (bj ≪ 1)

I Update state columnwise
I Pick up 5 lanes from a diagonal
I XOR each lane with one of the ci
I Rotate each lane by a different fixed distance
I Obtain each new lanes as li ⊕ ((¬lj)&lk)
I One lane per column is additionally XORed with a round constant
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A 64-bit hash-function on a 32-bit CPU
I Represent each lane in two registers, XOR and AND are trivial
I How about 64-bit rotate with 32-bit registers?

I Answer by the Keccak implementation guide: bit interleaving
I Put all bits from even positions into one 32-bit register, all odd bits

into the other
I Perform all rotates for free on 32-bit registers
I a← b� (c ≪ n) is free rotation, but a← (b� c) ≪ n is not
I Don’t rotate output, rotate for free when the value is used as input
I When both inputs of an instruction need to be rotated:

a← (b ≪ n1)� (c ≪ n2).

I Compute:
a← b� (c ≪ (n2 − n1))

and set the implicit rotation distance of a to n1

I Need to keep implicit rotation distances invariant over loop iterations
I Full unrolling essentially makes all rotates free
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Memory access overhead

I 200-byte state is way too large for 56 register bytes
I Simple structure of main transformations:

I Load 5 half-lanes
I Load 5 values ci
I Perform arithmetic (10 XOR, 5 AND)
I Store 5 result lanes

I This means 50% load/store overhead
I Even worse for computation of bi and ci
I Not easy to use 64-bit loads ands stores (needs smart memory

layout)
I Can eliminate some loads of ci, but still huge overhead
I Overall we have 4800 arithmetic instructions in 24 rounds
I Lower bound on performance: 4800/128 = 37.5 cycles/byte
I Actual performance: 79.32 cycles/byte
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Salsa20 on ARM Cortex-A8

Joint work with Daniel J. Bernstein
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The ARM Cortex-A8

The ARM core
I Essentially the same instruction set as ARM 11
I Again, 16 integer registers, 14 freely available
I Can issue two instructions per cycle
I Only one load/store per cycle
I More serious latency constraints than ARM11

The NEON vector unit
I 16 128-bit vector registers
I One arithmetic + one load/store/shuffle per cycle
I No free shifts or rotates
I Fairly complex latency rules
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Salsa20

I Generates random stream in 64-byte blocks, works on 32-bit integers
I Blocks are independent
I Per block: 20 rounds; each round doing 16 add-rotate-xor

sequences, such as
s4 = x0 + x12
x4 ^= (s4 >>> 25)

I These sequences are 4-way parallel

I In ARM without NEON: 2 instructions, 1 cycle
I Sounds like total of (20 · 16)/64 = 5 cycles/byte

, but:
I Only 14 integer registers (need at least 17)
I Latencies cause big trouble
I Actual implementations slower than 15 cycles/byte
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A first approach in NEON

I Per round do 4× something like:
4x a0 = diag1 + diag0
4x b0 = a0 << 7
4x a0 unsigned >>= 25

diag3 ^= b0
diag3 ^= a0

I + some (free) shuffles

I Intuitive cycle lower bound:
(5 · 4 · 20)/64 = 6.25 cycles/byte

I Problem: The above sequence has a 9-cycle latency, thus:
(9 · 4 · 20)/64 = 11.25 cycles/byte
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Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism

I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism
I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte
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Going even further

I NEON is basically a coprocessor to the ARM core
I ARM decodes instructions, forwards NEON instructions to the

NEON unit

I Idea: Also keep the ARM core busy with Salsa20 computations
I New bottleneck: ARM core decodes at most 2 instructions per cycle
I Add-rotate-xor is only 2 ARM instructions
I Best tradeoff: One block on ARM, two blocks on NEON
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A flavor of the code
4x a0 = diag1 + diag0

4x next_a0 = next_diag1 + next_diag0
s4 = x0 + x12
s9 = x5 + x1

4x b0 = a0 << 7
4x next_b0 = next_a0 << 7

4x a0 unsigned>>= 25
4x next_a0 unsigned>>= 25

x4 ^= (s4 >>> 25)
x9 ^= (s9 >>> 25)
s8 = x4 + x0
s13 = x9 + x5

diag3 ^= b0
next_diag3 ^= next_b0

diag3 ^= a0
next_diag3 ^= next_a0

x8 ^= (s8 >>> 23)
x13 ^= (s13 >>> 23)
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Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON
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The case of AES
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Importance of AES

I Most widely used symmetric crypto algorithm
I Used in many constructions:

I 10 SHA-3 submissions were AES-based
I 25 CAESAR submissions use AES

I Only accepted encryption algorithm for various security certifications
I You need a stream cipher? “Use AES-CTR”
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AES on 32-bit processors

I Idea from the AES proposal: Merge SubBytes, ShiftRows, and
MixColumns

I Use 4 lookup tables T0, T1, T2, and T3 (1 KB each)

The first round of AES in C
I Input: 32-bit integers y0, y1, y2, y3
I Output: 32-bit integers z0, z1, z2, z3
I Round keys in 32-bit-integer array rk[44]
z0 = T0[ y0 >> 24 ] ^ T1[(y1 >> 16) & 0xff] \

^ T2[(y2 >> 8) & 0xff] ^ T3[ y3 & 0xff] ^ rk[4];
z1 = T0[ y1 >> 24 ] ^ T1[(y2 >> 16) & 0xff] \

^ T2[(y3 >> 8) & 0xff] ^ T3[ y0 & 0xff] ^ rk[5];
z2 = T0[ y2 >> 24 ] ^ T1[(y3 >> 16) & 0xff] \

^ T2[(y0 >> 8) & 0xff] ^ T3[ y1 & 0xff] ^ rk[6];
z3 = T0[ y3 >> 24 ] ^ T1[(y0 >> 16) & 0xff] \

^ T2[(y1 >> 8) & 0xff] ^ T3[ y2 & 0xff] ^ rk[7];
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Foot-shooting prevention

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Fast symmetric crypto on embedded CPUs 21

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


The problem with T tables

I T tables perform loads from secret locations
I Timing information leaks memory addresses

I Easiest case: Cache timing
I Load of data in cache is fast
I Load of data not in cache is slow

I Various other sources for timing leaks from memory access
I Timing attacks are practical. Osvik, Shamir, Tromer, 2006: Use

cache-timing attack to steal AES-256 key for Linux hard-disk
encryption in just 65 ms.

I To put it bluntly:
I AES is a well understood secure algorithm
I Implementations of AES are horribly insecure
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How could AES be chosen?

“Table lookup: not vulnerable to timing attacks; relatively easy
to effect a defense against power attacks by software balancing
of the lookup address.”

—Report on the Development of the Advanced Encryption
Standard (AES), October 2000
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Modern AES software

T tables
I Use only on machines with

constant-time loads
I Caches are not the only problem
I Use assembly to prevent(?)

foot-shooting

Bitslicing
I Transpose binary state matrix

in registers
I Simulate hardware

implementation in software
I Needs fast XOR and AND

instructions
I Example: 384 bit operations

per cycle on 64-bit Intel CPUs

Vector permutes
I Implement AES through F28

arithmetic
I Represent F28 as quadratic

extension of F24

I Use vector-permute instructions
as lookups

I Needs fast and powerful
vector-permute instructions

I Example: AltiVec, NEON(?)

Hardware support
I Intel has AES-NI since

Westmere
I ARMv8 has HW AES
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Challenges

I Beat our Keccak ARM11 implementation

I Implement AES with vector permute in NEON
I Implement AES without T tables in plain ARM
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