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“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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The end of crypto as we know it

Shor’s algorithm (1994)

• Factor integers in polynomial time

• Compute discrete logarithms in polynomial time

• Complete break of RSA, ElGamal, DSA, Diffie-Hellman

• Complete break of elliptic-curve variants (ECSDA, ECDH, . . . )

Forward-secure post-quantum crypto

• Threatening today:
• Attacker records encrypted messages now
• Uses quantum computer in 1-2 decades to break encryption

• “Perfect forward secrecy” (PFS) does not help
• Countermeasure against key compromise
• Not a countermeasure against cryptographic break

• Consequence: Want post-quantum PFS crypto today
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Ring-Learning-with-errors (RLWE)

• Let Rq = Zq[X ]/(X n + 1)

• Let χ be an error distribution on Rq

• Let s ∈ Rq be secret

• Attacker is given pairs (a, as + e) with
• a uniformly random from Rq

• e sampled from χ

• Task for the attacker: find s

• Common choice for χ: discrete Gaussian

• Common optimization for protocols: fix a
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RLWE-based Encryption, KEM, KEX

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′
u←−−−−

Alice has t = us = ass′ + e′s
Bob has t′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• t and t′ are approximately the same
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USENIX Security 2016: NewHope

• Improve IEEE S&P 2015 results by Bos, Costello, Naehrig, Stebila
(BCNS)

• Use reconcilation to go from approximate agreement to agreement
• Originally proposed by Ding (2012)
• Improvements by Peikert (2014)
• More improvements in NewHope

• NewHope-Simple (2016): Scrap complex reconciliation (pay 6.25%
increase in ciphertext size)

• Very conservative parameters (n = 1024, q = 12289)
• Centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)
• Achieve ≈ 256 bits of post-quantum security according to very

conservative analysis
• Higher security, shorter messages, and > 10× speedup
• Choose a fresh parameter a for every protocol run
• Encode polynomials in NTT domain
• Multiple implementations
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NewHope in the real world

• July 7, 2016, Google announces 2-year post-quantum experiment

• NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary

• Used in access to select Google services

• November 28, 2016: “At this point the experiment is concluded.”
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Conclusions for Google’s experiment

“[. . . ] we did not find any unexpected impediment to deploying
something like NewHope. There were no reported problems caused by
enabling it.”
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Conclusions for Google’s experiment

“[. . . ] if the need arose, it would be practical to quickly deploy NewHope
in TLS 1.2. (TLS 1.3 makes things a little more complex and we did not
test with CECPQ1 with it.)”
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Conclusions for Google’s experiment

“Although the median connection latency only increased by a millisecond,
the latency for the slowest 5% increased by 20ms and, for the slowest
1%, by 150ms. Since NewHope is computationally inexpensive, we’re
assuming that this is caused entirely by the increased message sizes.
Since connection latencies compound on the web (because subresource
discovery is delayed), the data requirement of NewHope is moderately
expensive for people on slower connections.”
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Are we done? Is the Internet safe again?

Disadvantages of NewHope

• Security analysis assumes that we have an LWE instance

• Structure of RLWE is ignored

• Somewhat large messages (≈ 2KB each way)

• Maybe overly conservative security. . . ?

• “Only” does ephemeral key exchange

• Must not reuse keys/noise

• No CCA security

• Message format depends on multiplication algorithm

Back to the drawing board!
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K Y B E R

The KEM

Shi Bai Joppe Bos Léo Ducas
Eike Kiltz Tancrède Lepoint Vadim Lyubashevsky
John M. Schanck Peter Schwabe Damien Stehlé
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The design of Kyber (WiP)

• Use Module-Lattices and MLWE
• RLWE: large polynomials (e.g., n = 1024)
• LWE: matrices of integers with large dimension (e.g., 752× 752,

752× 8)
• MLWE: matrices of smaller polynomials (e.g., n = 256) of small

dimension (e.g., 3× 3, 3× 1)
• Less structure than RLWE, more efficient than LWE

• First construct IND-CPA-secure encryption of 256-bit messages
• Use Fujisake-Okamoto CCA transform to build CCA-secure KEM

• Can be used just like NewHope (but can cache keys!)
• Can also be used for KEM-DEM to encrypt messages
• Can be used in authenticated key exchange (without signatures)

• Choose d = 3, n = 256, q = 7681 for very conservative security
• Messages in “standard” format

• No dependency on particular multiplication algorithm
• Possibility for further compression of keys and ciphertext (WiP)

• Easy to scale security by changing d
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Kyber’s encryption scheme
q = 7681, n = 256, d = 3

We work with matrices of polynomials in Z7681[x ]/(x256 + 1) of dim.
d = 3 and a distribution of poly with binomial coeffs. Ψ4

KeyGen():

• seed←{0, . . . , 255}32

• A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

← SHAKE(seed)

• s, e← Ψd
4

• b = A · s + e

• Define pk = (seed, b) and sk = s
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Kyber’s encryption scheme
q = 7681, n = 256, d = 3

We work with matrices of polynomials in Z7681[x ]/(x256 + 1) of dim.
d = 3 and a distribution of poly with binomial coeffs. Ψ4

Encrypt(pk,m ∈ {0, 1}256, coins):

• seed, b←pk

• A = SHAKE(seed)

• s′←Ψd
4(coins, 1)

• e′←Ψd
4(coins, 2)

• e′′←Ψ4(coins, 3)

• u = (s′)t · A + e′

• v = 〈b, s′〉+ e′′ + bq/2c ·
∑

i mix
i

• Output (u, v)

Decrypt(sk, (u, v)):

• w = v − 〈u, s〉

• for i ∈ {0, . . . , 255},

mi←

{
1 if wi ∈ ( q

4 ,
3·q
4 )

0 otherwise

• Output (m0, . . . ,m255)
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Idea of the CCA transformation

Alice (Server) Bob (Client)

Gen(): Enc(seed, b):
pk, sk←KeyGen() x←{0, . . . , 255}32

seed, b←pk seed,b→ x←SHA3-256(x)
k, coins←SHA3-512(x)

u,v← u, v←Encrypt((seed, b), x , coins)
Dec(s, (u, v)):
x ′← Decrypt(s, (u, v))
k ′, coins ′←SHA3-512(x ′)
u′, v ′←Encrypt((seed, b), x ′, coins′)
verify if (u′, v ′) = (u, v)

Additionally:

• Hash the public key into the coins

• Hash the ciphertext into the final key
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Kyber performance guesstimates

NewHope Kyber
public-key bytes 1824 1088
ciphertext bytes 2048 1152
Gen cycles 258 246 296 544
Enc cycles 384 994 401 960
Dec cycles 86 280 469 872

• Cycles are for C reference implementation on Haswell

• Optimized implementations for Kyber will follow
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Stay tuned

http://pq-crystals.org/kyber
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