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» Elliptic-curve signature scheme and corresponding software
» Based on arithmetic on twisted Edwards curves

Security features

128 bits of security
Timing-attack resistant implementation

Foolproof session keys

vV v v v

Hash-function-collision resilience

Speed features

» Fast signing: 87548 cycles on Intel Nehalem/Westmere
» Fast verification: 273364 cycles

» Even faster batch verification: < 134000 cycles/signature
» Fast key generation: 93288 cycles

» Short signatures (64 bytes), short public keys (32 bytes)
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» Variant of ElGamal Signatures

» Many more variants (DSA, ECDSA, KCDSA, ...)

» Uses finite group G = (B), with |G| =¢

» Uses hash-function H : G x Z — {0,...,2" — 1}

» Originally: G <%, here: consider elliptic-curve group
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Variant of ElGamal Signatures

Many more variants (DSA, ECDSA, KCDSA, ...)
Uses finite group G = (B), with |G| = ¢

Uses hash-function H : G x Z — {0,...,2" — 1}
Originally: G <%, here: consider elliptic-curve group
Private key: a € {1,...,¢}, public key: A =—aB

Sign: Generate secret random r € {1,...,¢}, compute signature
(H(R,M),S) on M with

R=rB
S=(r+ H(R,M)a) mod ¢

Verifier computes R = SB + H(R, M)A and checks that

H(R,M) = H(R, M)
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EdDSA and Ed25519 parameters %‘%

EdDSA Ed25519-SHA-512
» Integer b > 10 > b =256
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» Integer b > 10 > b =256
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elements of F, {0,...,2%%° — 20}
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EdDSA and Ed25519 parameters

EdDSA Ed25519-SHA-512

v

Integer b > 10

Prime power ¢ = 1 (mod 4)
(b — 1)-bit encoding of
elements of I,

Hash function H with 2b-bit
output

v

v

v

» b= 256
> g =225 —19 (prime)

» little-endian encoding of
{0,...,22%5 — 20}
» H = SHA-512
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EdDSA Ed25519-SHA-512
» Integer b > 10 > b =256
» Prime power ¢ = 1 (mod 4) > ¢ = 2255 — 19 (prime)
» (b — 1)-bit encoding of » little-endian encoding of
elements of I, {0,...,2%5 — 20}
» Hash function H with 2b-bit » H = SHA-512
output

» Non-square d € F,

> Be{(ry) e
FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve E)

» prime £ € (2°7%,2=3) with
(B =(0,1)

v

d = —121665/121666
B = (x,4/5), with  "even”
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¢ a 253-bit prime
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EdDSA Ed25519-SHA-512
» Integer b > 10 > b =256
» Prime power ¢ = 1 (mod 4) > ¢ = 2255 — 19 (prime)
» (b — 1)-bit encoding of » little-endian encoding of
elements of I, {0,...,2%5 — 20}
» Hash function H with 2b-bit » H = SHA-512
output

» Non-square d € F,

» Be{(x,y) €
FyxFy, —22+y? = 1+dz?y?}
(twisted Edwards curve E)

» prime £ € (20~ 25=3) with » ( a 253-bit prime
/B =(0,1)

v

d = —121665/121666
B = (x,4/5), with  "even”

v

Ed25519 curve is birationally equivalent to the Curve25519 curve.
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EdDSA keys

> Secret key: b-bit string k
» Compute H(k) = (ho, ..

i) h2b—1)
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Secret key: b-bit string k

Compute H (k) = (ho, ..., hap—1)

Derive integer a =272 + Y, ., . 2'h;
Note that a is a multiple of 8 o
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EdDSA keys Z5

Secret key: b-bit string k

Compute H (k) = (ho, ..., hap—1)

Derive integer a =272 + Y, ., . 2'h;
Note that a is a multiple of 8 o
Compute A =aB

vV v.v. v v .Y

Public key: Encoding A of A = (z4,y4) as ya and one (parity) bit
of x4 (needs b bits)
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EdDSA keys
> Secret key: b-bit string k
» Compute H(k) = (ho,...,hap—1)
» Derive integer a =272+ .., .2%h;
» Note that a is a multiple of 8 o
» Compute A =aB
» Public key: Encoding A of A = (xa,ya) as y4 and one (parity) bit

of x4 (needs b bits)
Compute A from A: x4 = j:\/ /(dy% + 1)
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EdDSA signatures %@fdj

Signing
» Message M determines 7 = H (hy, ..., hoy_1, M) € {0,...,2%* — 1}
Define R =rB
Define S = (r + H(R, A, M)a) mod ¢
Signature: (R, .S), with S the b-bit little-endian encoding of S
(R, S) has 2b bits (3 known to be zero)

v
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High-speed high-security signatures 6



EdDSA signatures %@f’\ij

Signing
» Message M determines 7 = H (hy, ..., hoy_1, M) € {0,...,2%* — 1}
» Define R=1rB
> Define S = (r+ H(R, A, M)a) mod ¢
» Signature: (R,S), with S the b-bit little-endian encoding of S
» (R,S) has 2b bits (3 known to be zero)

Verification

» Verifier parses A from A and R from R
» Computes H(R, A, M)
» Checks group equation

8SB=8R+8H(R,A, M)A
» Rejects if parsing fails or equation does not hold
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» ECDSA uses H(M)
» Collisions in H allow existential forgery
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v

ECDSA uses H(M)
Collisions in H allow existential forgery
Schnorr signatures and EdDSA include R in the hash

» Schnorr: H(R, M)
» EdDSA: H(R, A, M)

Signatures are hash-function-collision resilient

v

v
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Collision resilience %‘%ﬁ%

» ECDSA uses H(M)
» Collisions in H allow existential forgery
» Schnorr signatures and EdDSA include R in the hash
» Schnorr: H(R, M)
» EdDSA: H(R, A, M)
» Signatures are hash-function-collision resilient
» Including A alleviates concerns about attacks against multiple keys
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Foolproof session keys %@f’\y

» Each message needs a different, hard-to-predict r (“session key”)
» Just knowing a few bits of r for many signatures allows to recover a

» Usual approach (e.g., Schnorr signatures): Choose random r for
each message
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» Each message needs a different, hard-to-predict r (“session key”)
» Just knowing a few bits of r for many signatures allows to recover a

» Usual approach (e.g., Schnorr signatures): Choose random r for
each message

» Potential problems: Bad random-number generators,
off-by-one(-byte) bugs

» Even worse: No random-number generator: Sony's PS3 security
disaster

» EdDSA uses deterministic, pseudo-random session keys
H(hy, ..., hop—1, M)

» Same security as random 7 under standard PRF assumptions

» Does not consume per-message randomness

» Better for testing (deterministic output)
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Fast arithmetic in Fy2s5_1g %‘f)

Radix 264

» Standard: break elements of Fq2s5_19 into 4 64-bit integers

» (Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

» Adding up partial results requires many add-with-carry (adc)
» Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle
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Fast arithmetic in Fy2ss_1g %‘ff\%

Radix 26
Standard: break elements of Fy2s5 _19 into 4 64-bit integers

v

v

(Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

v

Adding up partial results requires many add-with-carry (adc)

v

Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2°!

Instead break into 5 64-bit integers, use radix 2°!

Schoolbook multiplication now 25 64-bit integer multiplications
Partial results have < 128 bits, adding upper part is add, not adc
Easy to merge multiplication with reduction (multiplies by 19)

vV v.v v .Yy

Better performance on Westmere/Nehalem, worse on 65 nm Core 2
and AMD processors
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Fast signing

» Main computational task: Compute R = rB

» First compute » mod /¢, write it as rg + 1671 + - - -

% ?’f\ )/

+ 16637‘63, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}
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» Main computational task: Compute R = rB

» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 16537143, with
ri€ {8, —7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

» Precompute 16|r;|B for i = 0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time
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Fast signing %@f\)}

Main computational task: Compute R = rB

v

v

First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

v

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8},in a
lookup table at compile time

Compute R = 3% 16'r; B

v
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Main computational task: Compute R = rB
First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8},in a
lookup table at compile time

Compute R = 3% 16'r; B
64 table lookups, 64 conditional point negations, 63 point additions
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Main computational task: Compute R = rB
First compute  mod ¢, write it as 7g + 1611 + - - - + 165373, with

ri € {—8,-7,—6,—5,—4,-3,-2,-1,0,1,2,3,4,5,6,7}

Precompute 16¢|r;|B for i = 0,...,63 and |r;] € {1,...,8},in a
lookup table at compile time

Compute R = 3% 16'r; B
64 table lookups, 64 conditional point negations, 63 point additions
Wait, table lookups?
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Fast signing
» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 16537143, with
r; € {-8,-7,—6,-5,—-4,-3,-2,-1,0,1,2,3,4,5,6,7}

» Precompute 16|r;|B for i = 0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time

» Compute R = 3% 16'r; B

> 64 table lookups, 64 conditional point negations, 63 point additions

» Wait, table lookups?

» In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one

High-speed high-security signatures
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Fast signing
» Main computational task: Compute R = rB
» First compute  mod ¢, write it as ro 4+ 167 + - - - 4+ 16537143, with
r; € {-8,-7,—6,-5,—-4,-3,-2,-1,0,1,2,3,4,5,6,7}

» Precompute 16|r;|B for i = 0,...,63 and |r;| € {1,...,8},ina
lookup table at compile time

» Compute R = 3% 16'r; B

> 64 table lookups, 64 conditional point negations, 63 point additions

» Wait, table lookups?

» In each lookup load all 8 relevant entries from the table, use

v

arithmetic to obtain the desired one
Signing takes 87548 cycles on an Intel Westmere CPU

» Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures
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Fast verification % 9« 5/

» First part: point decompression, compute = coordinate zg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required
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» First part: point decompression, compute = coordinate zg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square o we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —
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» First part: point decompression, compute = coordinate zg of R as

fo:I:\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square o we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by /=1 if 2 = —
> Decompression has a = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

a8/ (Ta=10 /8 _ 8 (00 TY(a-5)/8.
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» First part: point decompression, compute = coordinate zg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

» As g =5 (mod 8) for each square o we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by /=1 if 2 = —
> Decompression has a = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

a8/ (Ta=10 /8 _ 8 (00 TY(a-5)/8.

» Second part: computation of SB — H(R, A, M)A
» Double-scalar multiplication using signed sliding windows

» Different window sizes for B (compile time) and A (run time)

High-speed high-security signatures 11



Fast verification

>

First part: point decompression, compute = coordinate xg of R as

JJR—:E\/ dyR+1)

» Looks like a square root and an inversion is required

As g =5 (mod 8) for each square a we have o? = 34, with
6 — a(Q+3)/8

» Standard: Compute 3, conditionally multiply by v/—1 if 82 = —

vV v vy

Decompression has o = u/v, merge square root with inversion:
8= (u/v)(q+3)/8 — y(a+3)/8,a—1—(q+3)/8

a8/ (Ta=10 /8 _ 8 (00 TY(a-5)/8.

Second part: computation of SB — H(R, A, M)A
Double-scalar multiplication using signed sliding windows
Different window sizes for B (compile time) and A (run time)
Verification takes 273364 cycles

High-speed high-security signatures
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Faster batch verification %@f\y

» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;
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» Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

» Choose independent uniform random 128-bit integers z;
» Compute H; = H(R;, As, M;)
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v

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

v

Choose independent uniform random 128-bit integers z;
Compute H; = H(R;, Ai, M;)
Verify the equation

< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0

%

v

v
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Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

v

Choose independent uniform random 128-bit integers z;
Compute H; = H(R;, Ai, M;)
Verify the equation

< > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0

%

v

v

v

Use Bos-Coster algorithm for multi-scalar multiplication
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Faster

batch verification %@f’\y

Verify a batch of (M;, A;, R;, S;), where (R;, S;) is the alleged
signature of M; under key A;

Choose independent uniform random 128-bit integers z;

» Compute H; = H(R;, A;, M;)

Verify the equation
( > 28 mod €>B + 3 zRi+ Y (2H; mod ()A; =0
Use Bos-Coster algorithm for multi-scalar multiplication

Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)
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The Bos-Coster algorithm

» Computation of Q = > s; P
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The Bos-Coster algorithm %;%K)

v

Computation of @ = Y7 s; P;

Idea: Assume s1 > s > -+ > s,. Recursively compute

Q= (s1—82)P1 +s2(P1+ P) +s3P5---+5,P,

Each step requires the two largest scalars, one scalar subtraction and
one point addition

v

v

v

Each step “eliminates” expected log n scalar bits
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» Computation of Q = >} s; P;

» Idea: Assume s > s9 > -+ > s,. Recursively compute
Q= (s1—82)P1 +s2(P1+ P) +s3P5---+5,P,

» Each step requires the two largest scalars, one scalar subtraction and
one point addition

» Each step “eliminates” expected log n scalar bits

» Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation
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» Computation of Q = >} s; P;

» Idea: Assume s > s9 > -+ > s,. Recursively compute
Q = (51— 52)P1 + 52(P1 + P2) +83P3- -+ 5, P,

» Each step requires the two largest scalars, one scalar subtraction and
one point addition

» Each step “eliminates” expected log n scalar bits

» Requires fast access to the two largest scalars: put scalars into a
heap

» Crucial for good performance: fast heap implementation

» Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

» Floyd's heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors
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New fast and secure signature scheme

(Slow) C and Python reference implementations

Fast AMD64 assembly implementations

Also new speed records for Curve25519 ECDH

All software in the public domain and included in eBATS

vV v v v v Yy

All reported benchmarks (except batch verification) are eBATS
benchmarks

» All reported benchmarks had TurboBoost switched off
» Software to be included in the NaCl library

http://ed25519.cr.yp.to/
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