High-assurance crypto software

Peter Schwabe
Radboud University, Nijmegen, The Netherlands

June 22, 2016

CECC 2016, Piešťany, Slovakia
Some questions...

Who has ever implemented cryptography?
Some questions...

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?
Some questions...

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?
Some questions...

Who has ever implemented cryptography?

Who has ever implemented cryptography that is actually being used?

Who believes that their software is secure and correct?

Who is sure that their software is secure and correct?
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
- Similar bug, again in OpenSSL, fixed in Jan. 2015
- Unclear whether that one can be exploited
Bug attacks

- Imagine bug in crypto that is triggered with very low probability
- Attacker finds this bug, crafts input that
 - triggers the bug if secret bit is 0
 - does not trigger the bug if secret bit is 1
- Attacker observes output, learns secret bit
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit such a bug in OpenSSL 0.9.8g elliptic-curve Diffie-Hellman
- Bug was a mis-handled carry bit (which was almost always zero)
- Similar bug, again in OpenSSL, fixed in Jan. 2015
- Unclear whether that one can be exploited
- Similar bug, again in OpenSSL, fixed in Dec. 2015
- Hard to exploit, but probably possible
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence$^{-1}$ to obtain secret data
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence\(^{-1}\) to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence$^{-1}$ to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
 - Some attacks work by measuring network delays
 - Attacker does not even need an account on the target machine
Timing Attacks

General idea of those attacks

- Secret data has influence on timing of software
- Attacker measures timing
- Attacker computes influence$^{-1}$ to obtain secret data

Two kinds of remote...

- Timing attacks are a type of side-channel attacks
- Unlike other side-channel attacks, they work remotely:
 - Some need to run attack code in parallel to the target software
 - Attacker can log in remotely (ssh)
 - Some attacks work by measuring network delays
 - Attacker does not even need an account on the target machine
- Can’t protect against timing attacks by locking a room
Examples of timing attacks

- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s dmcrypt in just 65 ms
- AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of CBC-mode encryption in pretty much all TLS implementations
- Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13: “On average, the attack is able to recover 96.7% of the secret key by observing a single signature or decryption round.”
- Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of success in recovering the secret key” for OpenSSL ECDSA using secp256k1 “with as little as 200 signatures.”
Examples of timing attacks

- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s dmcrypt in just 65 ms
- AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of CBC-mode encryption in pretty much all TLS implementations
- Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13: “On average, the attack is able to recover 96.7% of the secret key by observing a single signature or decryption round.”
- Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of success in recovering the secret key” for OpenSSL ECDSA using secp256k1 “with as little as 200 signatures”
Examples of timing attacks

- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s dmcrypt in just 65 ms
- AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of CBC-mode encryption in pretty much all TLS implementations
- Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13: “On average, the attack is able to recover 96.7% of the bits of the secret key by observing a single signature or decryption round.”
Examples of timing attacks

- Osvik, Shamir, Tromer, 2006: Recover AES-256 secret key of Linux’s dmcrypt in just 65 ms
- AlFardan, Paterson, 2013: “Lucky13” recovers plaintext of CBC-mode encryption in pretty much all TLS implementations
- Yarom, Falkner, 2014: Attack against RSA-2048 in GnuPG 1.4.13: “On average, the attack is able to recover 96.7% of the bits of the secret key by observing a single signature or decryption round.”
- Benger, van de Pol, Smart, Yarom, 2014: “reasonable level of success in recovering the secret key” for OpenSSL ECDSA using secp256k1 “with as little as 200 signatures”
Example for this talk: X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: “Curve25519”)
- Secret keys: 32-byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on
 $$E : y^2 = x^3 + 486662x^2 + x$$
 over $\mathbb{F}_{2^{255} - 19}$
- Base point: $(9, 0, \ldots, 0)$
Example for this talk: X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: “Curve25519”)
- Secret keys: 32-byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on

$$E : y^2 = x^3 + 486662x^2 + x$$

over $\mathbb{F}_{2^{255} - 19}$
- Base point: $(9, 0, \ldots, 0)$
- Given secret key s and public key (or base point) P:
 - Copy s to s'
 - Set least significant 3 bits of s' to zero
 - Set most significant bit of s' to zero
 - Set second-most significant bit of s' to one
 - Compute x-coordinate of $s'P$
The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_P of some point P

Ensure: x_{kP}

$X_1 = x_P; \ X_2 = 1; \ Z_2 = 0; \ X_3 = x_P; \ Z_3 = 1$

for $i \leftarrow n - 1$ downto 0 do

if bit i of k is 1 then

$(X_3, Z_3, X_2, Z_2) \leftarrow$ ladderstep(X_1, X_3, Z_3, X_2, Z_2)

else

$(X_2, Z_2, X_3, Z_3) \leftarrow$ ladderstep(X_1, X_2, Z_2, X_3, Z_3)

end if

end for

return $X_2 \cdot Z_2^{-1}$
One Montgomery “ladder step”

\[
\text{const } a_{24} = (A + 2)/4 \quad (A \text{ from the curve equation})
\]

\[
\text{function ladderstep}(X_{Q-P}, X_P, Z_P, X_Q, Z_Q)
\]

\[
t_1 \leftarrow X_P + Z_P
\]

\[
t_6 \leftarrow t_1^2
\]

\[
t_2 \leftarrow X_P - Z_P
\]

\[
t_7 \leftarrow t_2^2
\]

\[
t_5 \leftarrow t_6 - t_7
\]

\[
t_3 \leftarrow X_Q + Z_Q
\]

\[
t_4 \leftarrow X_Q - Z_Q
\]

\[
t_8 \leftarrow t_4 \cdot t_1
\]

\[
t_9 \leftarrow t_3 \cdot t_2
\]

\[
X_{P+Q} \leftarrow (t_8 + t_9)^2
\]

\[
Z_{P+Q} \leftarrow X_{Q-P} \cdot (t_8 - t_9)^2
\]

\[
X_{2P} \leftarrow t_6 \cdot t_7
\]

\[
Z_{2P} \leftarrow t_5 \cdot (t_7 + a_{24} \cdot t_5)
\]

\[
\text{return } (X_{2P}, Z_{2P}, X_{P+Q}, Z_{P+Q})
\]

end function
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform
Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers
- All of this software set speed records on the respective platform
Constant-time software

Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- “Balancing branches” is typically insufficient
- \[\Rightarrow\] No data flow from secret data into branch conditions!
Constant-time software

Avoid secret branch conditions

- Branches largely influence timing of program
- Secret branch conditions leak information
- “Balancing branches” is typically insufficient
- ⇒ No data flow from secret data into branch conditions!

Avoid memory access at secret positions

- Caches influence timing depending on address
- Attackers can potentially control cache lines
- Caches are not the only problem (e.g., store-to-load forwarding)
- ⇒ No data flow from secret data into addresses!
The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_P of some point P

Ensure: x_{kP}

$X_1 = x_P; X_2 = 1; Z_2 = 0; X_3 = x_P; Z_3 = 1$

for $i \leftarrow n - 1$ downto 0 do

if bit i of k is 1 then

$(X_3, Z_3, X_2, Z_2) \leftarrow \text{ladderstep}(X_1, X_3, Z_3, X_2, Z_2)$

else

$(X_2, Z_2, X_3, Z_3) \leftarrow \text{ladderstep}(X_1, X_2, Z_2, X_3, Z_3)$

end if

end for

return $X_2 \cdot Z_2^{-1}$
The Montgomery ladder rewritten

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_P of some point P

Ensure: x_{kP}

1. $X_1 = x_P$; $X_2 = 1$; $Z_2 = 0$; $X_3 = x_P$; $Z_3 = 1$
2. For $i \leftarrow n - 1$ downto 0 do
 1. $b \leftarrow$ bit i of s
 2. $c \leftarrow b \oplus p$
 3. $p \leftarrow b$
 4. $(X2, X3) \leftarrow \text{cswap}(X2, X3, c)$
 5. $(Z2, Z3) \leftarrow \text{cswap}(Z2, Z3, c)$
 6. $(X2, Z2, X3, Z3) \leftarrow \text{ladderstep}(X1, X2, Z2, X3, Z3)$
3. end for
4. return $X_2 \cdot Z_2^{-1}$
/* decision bit b has to be either 0 or 1 */
void cmov(uint64_t *r, uint64_t *a, uint64_t b) {
 uint64_t t;

 b = -b; /* Now b is either 0 or 0xffffffff */
 t = (*r ^ *a) & b;
 *r ^= t;
}
“Verifying” constant-time behavior

Run in valgrind with *uninitialized secret data* (or use Langley’s ctgrind)

[short demo]
“Verifying” constant-time behavior

Run in valgrind with *uninitialized secret data*
(or use Langley's ctgrind)

[short demo]

Static verification

Vagrant (Almeida, Barbosa, Barthe, Dupressoir, Emmi):
https://github.com/imdea-software/verifying-constant-time

FlowTracker (Rodrigues, Pereira, Aranha):
http://cuda.dcc.ufmg.br/flowtracker/
“Verifying” constant-time behavior

Run in valgrind with *uninitialized secret data* (or use Langley’s ctgrind)

[short demo]

Static verification

Vagrant (Almeida, Barbosa, Barthe, Dupressoir, Emmi):
https://github.com/imdea-software/verifying-constant-time

FlowTracker (Rodrigues, Pereira, Aranha):
http://cuda.dcc.ufmg.br/flowtracker/

- Both work on LLVM IL level
Correct software?

“Are you actually sure that your software is correct?”

Arithmetic in $\mathbb{F}_{2^{255}-19}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle
Arithmetic in $\mathbb{F}_{2^{255-19}}$ for AMD64

Radix 2^{64}
- Standard: break elements of $\mathbb{F}_{2^{255-19}}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}
- Instead, break into 5 64-bit integers, use radix 2^{51}
- Can delay carry operations; carry “en bloc”
- Schoolbook multiplication now 25 64-bit integer multiplications
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors
Bug in the radix-64 reduction

```
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r13
adc  %rdx,%r14
adc  $0,%r14
mov  %r9,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r14
adc  %rdx,%r15
adc  $0,%r15
mov  %r10,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%r15
adc  %rdx,%rbx
adc  $0,%rbx
mov  %r11,%rax
mulq  crypto_sign_ed25519_amd64_64_38
add  %rax,%rbx
mov  $0,%rsi
adc  %rdx,%rsi
```
Bug in the radix-64 reduction

```c
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```
Bug in the radix-64 reduction

```c
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```

Full software package contains 8912 lines of qasm code!
Directions to correct crypto

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs
Directions to correct crypto

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of crypto software
Directions to correct crypto

Formal verification
 ▶ Strongest guarantees of correctness
 ▶ Probably conflicts with performance
Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- **Should focus on cases where tests fail**
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
 - Limbs a_0, \ldots, a_n compose a field element A
 - Limbs b_0, \ldots, b_n compose a field element B
 - Limbs r_0, \ldots, r_n compose a field element R
 - $R = A \cdot B$

- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
- Even better: feed to even higher level verification
- Verify that the sequence of field operations accomplishes EC arithmetic
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
Verification approach 1

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
 - Annotate qhasm code
 - Translate annotated qhasm automatically to SMT-solver boolector
 - Use boolector to verify software
Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in \texttt{qhasm}
- \texttt{qhasm} is a portable assembly language by Bernstein
- Idea for verification:
 - Annotate \texttt{qhasm} code
 - Translate annotated \texttt{qhasm} automatically to SMT-solver \texttt{boolector}
 - Use \texttt{boolector} to verify software
- Verification target: Montgomery ladder step of X25519:
 - 5 multiplications in $\mathbb{F}_{2^{255} - 19}$
 - 4 squarings in $\mathbb{F}_{2^{255} - 19}$
 - 1 multiplication by 121666
 - Several additions and subtractions
Example: Addition in radix 2^{51}

```plaintext
// assume 0 <= u x0, x1, x2, x3, x4 <= u 2**51 + 2**15
// assume 0 <= u y0, y1, y2, y3, y4 <= u 2**51 + 2**15
r0 = x0
r1 = x1
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4

// var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 + x3@u320 * 2**153 + x4@u320 * 2**204
// sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 + y3@u320 * 2**153 + y4@u320 * 2**204
// sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 + r3@u320 * 2**153 + r4@u320 * 2**204
// assert (sum_r - (sum_x + sum_y)) % (2**255 - 19) = 0 &&
// 0 <= u r0, r1, r2, r3, r4 < u 2**53
```
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- *Huge amount* of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- *Huge amount* of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
 - 217 lines of *qhasm*, including variable declarations
 - 589 lines of annotations
How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the “limb size”
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annotations for an auditor to look at
- *Huge amount* of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
 - 217 lines of `qhasm`, including variable declarations
 - 589 lines of annotations
- Large amount of manual work on top of assembly optimization
- Writing verifiable code requires expert knowledge from two domains!
- Verification of just multiplication takes > 90 hours
Overall results

- Formally verified Montgomery ladderstep
 - “Redundant” radix-2^{51} representation
 - Non-redundant radix-2^{64} representation
 - Reproduced bug in original version of the software
- Most verification used automatic qhasm \rightarrow boolector translation
- Tiny bit of code in radix-2^{64} needed proof assistant Coq
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness
Another approach...

- 2 problems with SMT approach:
 - Huge amount of (manual) annotations
 - Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Work in progress with Bernstein

- Annotate C code (later: also qhasm)
- (Currently) use C++ compiler and operator overloading to
 - Keep track of computation graph
 - Keep track of worst-case ranges of limbs
 - Output polynomial relations to Sage
 - Use Sage to verify correctness of C code
Example: addition (radix $2^{25.5}$)

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_add(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);
Example: multiplication

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_mul(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}} - 1$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127} - 1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
- Still too slow for big chunks of code
 - Problem: verification always goes back to the beginning
 - Idea: Declare that we trust already verified results
 - This is known as “cutting” the verification
Let’s “cut some limbs”
Let’s call it a draw
First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in \(\approx 1:10 \) minutes
- Translate to higher-level view (ECC arithmetic, inversion)

TODOs

- Support assembly
- Support “non-redundant” arithmetic
- Support ECC signatures
- Change interface
- Test, test, test
First results and TODOs

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1:10$ minutes
- Translate to higher-level view (ECC arithmetic, inversion)

TODOs

- Support assembly
- Support “non-redundant” arithmetic
- Support ECC signatures
- Change interface
- Test, test, test
Papers and Software

 https://cryptojedi.org/papers/#verify25519

- Many X25519 implementations in SUPERCOP
 (crypto_scalarmult/curve25519)
 http://bench.cr.yp.to/supercop.html

- Verification using boolector:
 https://cryptojedi.org/crypto/#verify25519

- Verification using Sage: http://gfverif.cryptojedi.org/