
X-Wing

Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Peter Schwabe, Karolin
Varner, Bas Westerbaan

December 20, 2024

Key agreement since 1976

1

Key agreement since 1976

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

1

DH today

2

DH today

• Use elliptic-curve version (ECDH)

• Most protocols: X25519 (Bernstein, 2016)

• DH not as a “protocol” but as a building block

• In TLS: use signatures for authentication

• In WireGuard, Noise, Signal: DH also for authentication

2

DH today

• Use elliptic-curve version (ECDH)

• Most protocols: X25519 (Bernstein, 2016)

• DH not as a “protocol” but as a building block

• In TLS: use signatures for authentication

• In WireGuard, Noise, Signal: DH also for authentication

2

3

Going post-quantum: NIST PQC

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
4

NIST PQC – how it went

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

5

NIST PQC – how it went

NIST PQC

Nov. 2017
69 proposals

Round 1−−−−→ Feb. 2019
26 proposals

Round 2−−−−→ Jul. 2020
7+8 proposals

Round 3−−−−→ Jul. 2022
4 “winners”

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER. The digital signatures that will be standardized are CRYSTALS-Dilithium,
FALCON, and SPHINCS+. While there are multiple signature algorithms selected, NIST
recommends CRYSTALS-Dilithium as the primary algorithm to be implemented”

—NIST IR 8413-upd1

5

The one-slide summary of ML-KEM

Lattice-based encryption K-PKE
• Arithmetic inRq = Zq[X]/(Xn + 1) with q = 3329, n = 256

• Computations of the form As + e with A ∈ Rk×k
q and s, e ∈ R3

q

• Security reduction from variant of Module-Learning-with-Errors (MLWE)

Fujisaki-Okamoto Transform
• Required to achieve active (IND-CCA) security

• Enforce honestly generated ciphertexts

• Encapsulation generates all randomness as PRF(H(m))

• Decapsulation re-encrypts and compares ciphertexts

6

The one-slide summary of ML-KEM

Lattice-based encryption K-PKE
• Arithmetic inRq = Zq[X]/(Xn + 1) with q = 3329, n = 256

• Computations of the form As + e with A ∈ Rk×k
q and s, e ∈ R3

q

• Security reduction from variant of Module-Learning-with-Errors (MLWE)

Fujisaki-Okamoto Transform
• Required to achieve active (IND-CCA) security

• Enforce honestly generated ciphertexts

• Encapsulation generates all randomness as PRF(H(m))

• Decapsulation re-encrypts and compares ciphertexts

6

The one-slide summary of ML-KEM

ML-KEM parameter sets
• ML-KEM-512

• k = 2

• NIST level 1 (≈ AES-128)
• PK: 800 B, CT: 768 B

• ML-KEM-768 (“recommended”)
• k = 3

• NIST level 3 (≈ AES-192)
• PK: 1184 B, CT: 1088 B

• ML-KEM-1024
• k = 4

• NIST level 5 (≈ AES-256)
• PK: 1568 B, CT: 1568 B

6

Now, switch all (EC)DH to ML-KEM and. . .

Mission accomplished – The world is safe again!

7

DH vs. KEMs

Alice Bob

A← ga B← gb

A

B

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

8

DH vs. KEMs

Alice Bob

A← ga B← gb

B

A

K← Ba = (gb)a = gab K← Ab = (ga)b = gab

8

DH vs. KEMs

Initiator Responder

(pk, sk)← KEM.Gen

pk

(ct,K)← KEM.Enc(pk)

ct

K← KEM.Dec(ct, sk)

8

“Post-quantum schemes should only be used in combination with classical schemes (“hybrid”)
if possible.”

—Recommendations by the BSI
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/

quantentechnologien-und-post-quanten-kryptografie_node.html

9

https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/quantentechnologien-und-post-quanten-kryptografie_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/quantentechnologien-und-post-quanten-kryptografie_node.html

Motivation for hybrid deployments

Don’t make systems less secure in the attempt to make them more secure against future
quantum attackers!

• Cryptanalysis of PQ schemes is not as stable as for ECC
• SIKE. . . (was deployed, hybrid, by Google and Cloudflare)
• Late breaks of GeMSS and Rainbow

• Implementation security of PQ schemes is not as mature as for ECC
• SCA protection for ECC based on rich algebraic structure
• For lattices: mostly masking + shuffling
• Continued successful SCA against protected implementations
• Compilers screwing with code in new ways (“Kyberslash”)

10

Motivation for hybrid deployments

Don’t make systems less secure in the attempt to make them more secure against future
quantum attackers!

• Cryptanalysis of PQ schemes is not as stable as for ECC
• SIKE. . . (was deployed, hybrid, by Google and Cloudflare)
• Late breaks of GeMSS and Rainbow

• Implementation security of PQ schemes is not as mature as for ECC
• SCA protection for ECC based on rich algebraic structure
• For lattices: mostly masking + shuffling
• Continued successful SCA against protected implementations
• Compilers screwing with code in new ways (“Kyberslash”)

10

Motivation for hybrid deployments

Don’t make systems less secure in the attempt to make them more secure against future
quantum attackers!

• Cryptanalysis of PQ schemes is not as stable as for ECC
• SIKE. . . (was deployed, hybrid, by Google and Cloudflare)
• Late breaks of GeMSS and Rainbow

• Implementation security of PQ schemes is not as mature as for ECC
• SCA protection for ECC based on rich algebraic structure
• For lattices: mostly masking + shuffling
• Continued successful SCA against protected implementations
• Compilers screwing with code in new ways (“Kyberslash”)

10

Isn’t hybrid to expensive?

Computational complexity
• Today’s systems use ECC

• ML-KEM is about as costly as ECC

• Hybrid costs about 2× slowdown

• Argument needs some more care with
HW acceleration

• Anyway already have ECC

• Anyway will need PQC

Sizes
• PQC cryptographic objects are much

bigger than for ECC

• X25519 PK: 32 B

• Additing 32 Bytes to 1KB makes a small
difference

11

Isn’t hybrid to expensive?

Computational complexity
• Today’s systems use ECC

• ML-KEM is about as costly as ECC

• Hybrid costs about 2× slowdown

• Argument needs some more care with
HW acceleration

• Anyway already have ECC

• Anyway will need PQC

Sizes
• PQC cryptographic objects are much

bigger than for ECC

• X25519 PK: 32 B

• Additing 32 Bytes to 1KB makes a small
difference

11

Isn’t hybrid to expensive?

Computational complexity
• Today’s systems use ECC

• ML-KEM is about as costly as ECC

• Hybrid costs about 2× slowdown

• Argument needs some more care with
HW acceleration

• Anyway already have ECC

• Anyway will need PQC

Sizes
• PQC cryptographic objects are much

bigger than for ECC

• X25519 PK: 32 B

• Additing 32 Bytes to 1KB makes a small
difference

11

Hybrid and the NIST competition

“NIST recognizes that some users may wish to deploy systems that use “hybrid modes,” which
combine post-quantum cryptographic algorithms with existing cryptographic algorithms
(which may not be post-quantum). These “hybrid modes” are outside of the scope of this
document, which is focused on post-quantum cryptographic algorithms only.

—NIST PQC Call for Proposals, 2016

Consequences
• Reduce complexity and probably discussions

• Non-mandatory hybrid deployment lead to other discussions:
• Long discussions if Kyber512 meets level-1 security
• No question if Kyber512+X25519 meets level-1 security

• For targeted hybrid deployment, designs could have (and would have!) made other
choices

12

Hybrid and the NIST competition

“NIST recognizes that some users may wish to deploy systems that use “hybrid modes,” which
combine post-quantum cryptographic algorithms with existing cryptographic algorithms
(which may not be post-quantum). These “hybrid modes” are outside of the scope of this
document, which is focused on post-quantum cryptographic algorithms only.

—NIST PQC Call for Proposals, 2016

Consequences
• Reduce complexity and probably discussions

• Non-mandatory hybrid deployment lead to other discussions:
• Long discussions if Kyber512 meets level-1 security
• No question if Kyber512+X25519 meets level-1 security

• For targeted hybrid deployment, designs could have (and would have!) made other
choices

12

Hybrid and the NIST competition

“NIST recognizes that some users may wish to deploy systems that use “hybrid modes,” which
combine post-quantum cryptographic algorithms with existing cryptographic algorithms
(which may not be post-quantum). These “hybrid modes” are outside of the scope of this
document, which is focused on post-quantum cryptographic algorithms only.

—NIST PQC Call for Proposals, 2016

Consequences
• Reduce complexity and probably discussions
• Non-mandatory hybrid deployment lead to other discussions:

• Long discussions if Kyber512 meets level-1 security
• No question if Kyber512+X25519 meets level-1 security

• For targeted hybrid deployment, designs could have (and would have!) made other
choices

12

Hybrid and the NIST competition

“NIST recognizes that some users may wish to deploy systems that use “hybrid modes,” which
combine post-quantum cryptographic algorithms with existing cryptographic algorithms
(which may not be post-quantum). These “hybrid modes” are outside of the scope of this
document, which is focused on post-quantum cryptographic algorithms only.

—NIST PQC Call for Proposals, 2016

Consequences
• Reduce complexity and probably discussions
• Non-mandatory hybrid deployment lead to other discussions:

• Long discussions if Kyber512 meets level-1 security
• No question if Kyber512+X25519 meets level-1 security

• For targeted hybrid deployment, designs could have (and would have!) made other
choices

12

Three approaches to hybrid KEMs

Protocol-level
• + Potential for optimal performance

• +/- Flexible choice of KEMs

• - High (per-protocol) analysis effort

Generic combiner
• + Low analysis effort (analyze once)

• +/- Flexible choice of KEMs

• - Computational overhead for being generic

Hybrid KEM
• + Low analysis effort (analyze once)

• + Close-to optimal performance

• +/- Cryptographically opinionated

13

Three approaches to hybrid KEMs

Protocol-level
• + Potential for optimal performance

• +/- Flexible choice of KEMs

• - High (per-protocol) analysis effort

Generic combiner
• + Low analysis effort (analyze once)

• +/- Flexible choice of KEMs

• - Computational overhead for being generic

Hybrid KEM
• + Low analysis effort (analyze once)

• + Close-to optimal performance

• +/- Cryptographically opinionated

13

Three approaches to hybrid KEMs

Protocol-level
• + Potential for optimal performance

• +/- Flexible choice of KEMs

• - High (per-protocol) analysis effort

Generic combiner
• + Low analysis effort (analyze once)

• +/- Flexible choice of KEMs

• - Computational overhead for being generic

Hybrid KEM
• + Low analysis effort (analyze once)

• + Close-to optimal performance

• +/- Cryptographically opinionated 13

The protocol-level approach

• CECPQ1, CECPQ2, PQXDH, PQ3, . . .

• Let’s look at X3DH→ PQXDH

• X3DH derives key as

sk = KDF(DH1|DH2|DH3|DH4)

• PQXDH:
• Additionally obtain SS from PQ KEM
• Compute final shared key as

sk = KDF(DH1|DH2|DH3|DH4|SS)

https://signal.org/docs/specifications/x3dh/

14

https://signal.org/docs/specifications/x3dh/

The protocol-level approach

• CECPQ1, CECPQ2, PQXDH, PQ3, . . .

• Let’s look at X3DH→ PQXDH

• X3DH derives key as

sk = KDF(DH1|DH2|DH3|DH4)

• PQXDH:
• Additionally obtain SS from PQ KEM
• Compute final shared key as

sk = KDF(DH1|DH2|DH3|DH4|SS)

https://signal.org/docs/specifications/x3dh/

14

https://signal.org/docs/specifications/x3dh/

The protocol-level approach

• CECPQ1, CECPQ2, PQXDH, PQ3, . . .

• Let’s look at X3DH→ PQXDH

• X3DH derives key as

sk = KDF(DH1|DH2|DH3|DH4)

• PQXDH:
• Additionally obtain SS from PQ KEM
• Compute final shared key as

sk = KDF(DH1|DH2|DH3|DH4|SS)

https://signal.org/docs/specifications/x3dh/

14

https://signal.org/docs/specifications/x3dh/

The protocol-level approach

• CECPQ1, CECPQ2, PQXDH, PQ3, . . .

• Let’s look at X3DH→ PQXDH

• X3DH derives key as

sk = KDF(DH1|DH2|DH3|DH4)

• PQXDH:
• Additionally obtain SS from PQ KEM
• Compute final shared key as

sk = KDF(DH1|DH2|DH3|DH4|SS)

https://signal.org/docs/specifications/x3dh/

14

https://signal.org/docs/specifications/x3dh/

PQXDH security

• X3DH security:
• Confidentiality
• Mutual authentication
• Forward secrecy
• Deniability

• PQXDH: Additionally protect against harvest-now-decrypt-later (HNDL)

15

PQXDH security

Analysis by Bhargavan, Jacomme, Kiefer, Schmidt
https://cryspen.com/post/pqxdh/

Key confusion attack
• Attacker (malicious server) swaps KEM and DH keys

• KEM encapsulations to DH public key

• Resulting shared secret likely not secure

• Vice-versa, can downgrade DH security!

• Requires same length for KEM PK and DH PK

15

https://cryspen.com/post/pqxdh/

PQXDH security

Analysis by Bhargavan, Jacomme, Kiefer, Schmidt
https://cryspen.com/post/pqxdh/

Key confusion attack
• Attacker (malicious server) swaps KEM and DH keys

• KEM encapsulations to DH public key

• Resulting shared secret likely not secure

• Vice-versa, can downgrade DH security!

• Requires same length for KEM PK and DH PK

15

https://cryspen.com/post/pqxdh/

PQXDH security

Analysis by Bhargavan, Jacomme, Kiefer, Schmidt
https://cryspen.com/post/pqxdh/

KEM re-encapsulation attack
• Compromise one KEM private key

• MitM future exchanges of that user even when they use a different KEM key!

• Requires encapsulator to “control shared secret”

• Does not work with ML-KEM

• Requires PK-binding property not implied by IND-CCA!

15

https://cryspen.com/post/pqxdh/

PQXDH security

Analysis by Bhargavan, Jacomme, Kiefer, Schmidt
https://cryspen.com/post/pqxdh/

KEM re-encapsulation attack
• Compromise one KEM private key

• MitM future exchanges of that user even when they use a different KEM key!

• Requires encapsulator to “control shared secret”

• Does not work with ML-KEM

• Requires PK-binding property not implied by IND-CCA!

15

https://cryspen.com/post/pqxdh/

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security

• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)

• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)

• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner

• Attack:
• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)

• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)

• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)
• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)
• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM

• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

The combiner approach

• Reminder: Two KEMs KEM1 and KEM2

• Want IND-CCA security, as long as one has IND-CCA security
• Simple idea: H(ss1, ss2)

• Problem: Not a robust IND-CCA KEM combiner
• Attack:

• Assume KEM1 is broken
• Assume given ct1 it’s easy to compute ct′1, s.t. KEM1 .Decaps(ct1) = KEM1 .Decaps(ct′1)
• Challenge (ct1||ct2),Kc

• Adversary queries K′ = Decaps(ct′1||ct2), check if K = K′

• Solution: Use H(ss1, ss2, ct1, ct2):
Giacon, Heuer, Poettering. KEM Combiners. PKC 2018

• But, hang on, ECDH is not an IND-CCA KEM
• Solution: DHKEM (RFC 9180: Hybrid Public Key Encryption)

16

https://www.rfc-editor.org/rfc/rfc9180.html

Motivation for X-Wing

When I get asked what KEM to use, I don’t want to answer

“use Kyber768, but of course you should go for a hybrid solution together with some ECDH;
look at this standard for a generic combiner, but if your protocol hashes full transcripts into the
session key, it might be OK to not hash in the long ciphertext and gain some performance,
except there is no formal proof of that.”

I want to answer

“use X-Wing.”

17

Motivation for X-Wing

When I get asked what KEM to use, I don’t want to answer

“use Kyber768, but of course you should go for a hybrid solution together with some ECDH;
look at this standard for a generic combiner, but if your protocol hashes full transcripts into the
session key, it might be OK to not hash in the long ciphertext and gain some performance,
except there is no formal proof of that.”

I want to answer

“use X-Wing.”

17

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

X-Wing: the original idea

• Take the best™ ECDH: X25519

• Take the best™ PQ-KEM: ML-KEM-768

• Build KEM from ECDH

• Use generic combiner

• Fix hash-function H = SHAKE-256

• Give the whole thing a cool name

• Implement, advertise, done.

18

Get rid of the ciphertext hash!

Me: “Would you use X-Wing in TLS?”

Sophie Schmieg: “Get rid of the ciphertext hash and we might.”

19

What’s the deal of hashing 1 KB of data?

20

What’s the deal of hashing 1 KB of data?

“Lastly, there is also a performance angle. If saving a single hash in TLS saves compute time
worth millions of dollars/CO2 emissions/energy, then it’s probably worth our collective time to
review this single protocol by itself and remove unneeded hash function calls.”

—Sophie Schmieg, Feb 21, 2024.

20

C2PRI

What if

• KEM is not broken in an arbitrary way

• but “only” broken to allow private-key recovery

C2PRI security notion
AdvC2PRI

KEM,A = Pr
[

Decaps(c, sk) = k∗ ∧ c ̸= c∗
∣∣∣∣ (sk,pk)←$Keygen()
(k∗,c∗)←$Encaps(pk)

c←A(sk,pk,k∗,c∗)

]
.

• Attacker needs to produce 2nd ciphertext preimage

• Attacker is given the private key

• Prove that ML-KEM is C2PRI secure

• Intuition: ML-KEM involves a bunch of hashes

• Proof models these hashes as random oracles

21

C2PRI

What if

• KEM is not broken in an arbitrary way

• but “only” broken to allow private-key recovery

C2PRI security notion
AdvC2PRI

KEM,A = Pr
[

Decaps(c, sk) = k∗ ∧ c ̸= c∗
∣∣∣∣ (sk,pk)←$Keygen()
(k∗,c∗)←$Encaps(pk)

c←A(sk,pk,k∗,c∗)

]
.

• Attacker needs to produce 2nd ciphertext preimage

• Attacker is given the private key

• Prove that ML-KEM is C2PRI secure

• Intuition: ML-KEM involves a bunch of hashes

• Proof models these hashes as random oracles

21

C2PRI

What if

• KEM is not broken in an arbitrary way

• but “only” broken to allow private-key recovery

C2PRI security notion
AdvC2PRI

KEM,A = Pr
[

Decaps(c, sk) = k∗ ∧ c ̸= c∗
∣∣∣∣ (sk,pk)←$Keygen()
(k∗,c∗)←$Encaps(pk)

c←A(sk,pk,k∗,c∗)

]
.

• Attacker needs to produce 2nd ciphertext preimage

• Attacker is given the private key

• Prove that ML-KEM is C2PRI secure

• Intuition: ML-KEM involves a bunch of hashes

• Proof models these hashes as random oracles

21

C2PRI

What if

• KEM is not broken in an arbitrary way

• but “only” broken to allow private-key recovery

C2PRI security notion
AdvC2PRI

KEM,A = Pr
[

Decaps(c, sk) = k∗ ∧ c ̸= c∗
∣∣∣∣ (sk,pk)←$Keygen()
(k∗,c∗)←$Encaps(pk)

c←A(sk,pk,k∗,c∗)

]
.

• Attacker needs to produce 2nd ciphertext preimage

• Attacker is given the private key

• Prove that ML-KEM is C2PRI secure

• Intuition: ML-KEM involves a bunch of hashes

• Proof models these hashes as random oracles

21

C2PRI

What if

• KEM is not broken in an arbitrary way

• but “only” broken to allow private-key recovery

C2PRI security notion
AdvC2PRI

KEM,A = Pr
[

Decaps(c, sk) = k∗ ∧ c ̸= c∗
∣∣∣∣ (sk,pk)←$Keygen()
(k∗,c∗)←$Encaps(pk)

c←A(sk,pk,k∗,c∗)

]
.

• Attacker needs to produce 2nd ciphertext preimage

• Attacker is given the private key

• Prove that ML-KEM is C2PRI secure

• Intuition: ML-KEM involves a bunch of hashes

• Proof models these hashes as random oracles

21

Putting it together: QSF

QSF (Quantum Superiority Fighter)
• KEM

• Nominal group G

22

Putting it together: QSF

Algorithm Keygen()
(sk1, pk1)←$ KEM .Keygen()
sk2 ←$ εh

pk2 ← exp(g, sk2)

pk← (pk1, pk2)

sk← (sk1, sk2, pk2)

return (sk, pk)

Algorithm Encaps(pk)
(pk1, pk2)← pk
k1, c1 ←$ KEM .Encaps(pk1)

ske ←$ εh

c2 ← exp(g, ske)

k2 ← exp(pk2, ske)

k← H(label|k1|k2|c2|pk2)

c← (c1, c2)

return (k, c)

Algorithm Decaps(c, sk)
(sk1, sk2, pk2)← sk
(c1, c2)← c
k1 ← KEM .Decaps(c1, sk1)

k2 ← exp(c2, sk2)

if k1 = ⊥ then
return ⊥

end if
k← H(label|k1|k2|c2|pk2)

return k

22

Putting it together: QSF

QSF provides IND-CCA security, if

• SDH is hard in G and KEM is C2PRI secure (ROM), or

• KEM is an IND-CCA-secure KEM (standard model)

22

The final design

X-Wing private key (2464 bytes):

ML-KEM-768 private key
(2400 bytes)

X25519 private key
(32 bytes)

X25519 public key
(32 bytes)

X-Wing public key (1216 bytes):

ML-KEM-768 public key
(1184 bytes)

X25519 public key
(32 bytes)

X-Wing ciphertext (1120 bytes):

ML-KEM-768 ciphertext
(1088 bytes)

X25519 ciphertext
(32 bytes)

23

The final design

X-Wing shared key (32 bytes):

SHA3-256


\./
/^\

(6 bytes)

ML-KEM-768
shared key
(32 bytes)

X25519
shared key
(32 bytes)

X25519
ciphertext
(32 bytes)

X25519
public key
(32 bytes)



23

The final design

23

“Final” you say?

The label
Q: “Could you please put the label at the end of the hash input?”

A: Yes.

24

“Final” you say?

ML-KEM private-key format
• FIPS 203 allows two formats for private keys:

• “Expanded format” (also includes PK and H(PK))
• Seed format (64-byte randomness to generate keypair)
• Different security with regards to MAL-BIND-K-CT and MAL-BIND-K-PK notions; see

Cremers, Dax, Medinger. Keeping Up with the KEMs: Stronger Security Notions for KEMs and
automated analysis of KEM-based protocols.
Schmieg. Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor
MAL-BIND-K-PK.

• In most scenarios this is a local choice

• In some scenarios it’s not, most notably HPKE
• Choice in X-Wing IETF draft:

• Private key is 32-byte seed
• Expand with SHAKE-256 to 32-byte X25519 private key and 64-byte ML-KEM private key in

seed format

24

https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2024/523
https://eprint.iacr.org/2024/523
https://www.ietf.org/archive/id/draft-connolly-cfrg-xwing-kem-06.html

“Final” you say?

ML-KEM private-key format
• FIPS 203 allows two formats for private keys:

• “Expanded format” (also includes PK and H(PK))
• Seed format (64-byte randomness to generate keypair)
• Different security with regards to MAL-BIND-K-CT and MAL-BIND-K-PK notions; see

Cremers, Dax, Medinger. Keeping Up with the KEMs: Stronger Security Notions for KEMs and
automated analysis of KEM-based protocols.
Schmieg. Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor
MAL-BIND-K-PK.

• In most scenarios this is a local choice

• In some scenarios it’s not, most notably HPKE

• Choice in X-Wing IETF draft:
• Private key is 32-byte seed
• Expand with SHAKE-256 to 32-byte X25519 private key and 64-byte ML-KEM private key in

seed format

24

https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2024/523
https://eprint.iacr.org/2024/523
https://www.ietf.org/archive/id/draft-connolly-cfrg-xwing-kem-06.html

“Final” you say?

ML-KEM private-key format
• FIPS 203 allows two formats for private keys:

• “Expanded format” (also includes PK and H(PK))
• Seed format (64-byte randomness to generate keypair)
• Different security with regards to MAL-BIND-K-CT and MAL-BIND-K-PK notions; see

Cremers, Dax, Medinger. Keeping Up with the KEMs: Stronger Security Notions for KEMs and
automated analysis of KEM-based protocols.
Schmieg. Unbindable Kemmy Schmidt: ML-KEM is neither MAL-BIND-K-CT nor
MAL-BIND-K-PK.

• In most scenarios this is a local choice

• In some scenarios it’s not, most notably HPKE
• Choice in X-Wing IETF draft:

• Private key is 32-byte seed
• Expand with SHAKE-256 to 32-byte X25519 private key and 64-byte ML-KEM private key in

seed format
24

https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2024/523
https://eprint.iacr.org/2024/523
https://www.ietf.org/archive/id/draft-connolly-cfrg-xwing-kem-06.html

Learn more

https://x-wi.ng

25

https://x-wi.ng

