Verifying crypto
Many questions and the beginning of an answer

Peter Schwabe
Radboud University Nijmegen, The Netherlands

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang and Shang-Yi Yang

May 20, 2014

Brouwer Seminar
About me

- **2001-2006**: Studies of computer science at RWTH Aachen (Germany)
- **2006-2007**: Ph.D. student at RWTH Aachen
- **2008-2011**: Ph.D. student at TU Eindhoven
- **2011-2012**: Postdoc at Academia Sincia (Taiwan) and National Taiwan University
- **Since 2013**: UD in the Digital Security Group
- **Since 2014**: Work on VENI project “High-speed high-security cryptography”
Research topics

During Ph.D. time

- High-speed cryptography
 - Optimizing the Advanced Encryption Standard (AES)
 - Elliptic-curve cryptography (ECC)
 - Cryptographic pairings
 - NaCl (http://nacl.cr.yp.to)

- High-speed cryptanalysis
 - Attacking ECC (parallel Pollard rho algorithm)
 - Attacking code-based crypto (generalized birthday attack)
Research topics

During Ph.D. time

- High-speed cryptography
 - Optimizing the Advanced Encryption Standard (AES)
 - Elliptic-curve cryptography (ECC)
 - Cryptographic pairings
 - NaCl (http://nacl.cr.yp.to)
- High-speed cryptanalysis
 - Attacking ECC (parallel Pollard rho algorithm)
 - Attacking code-based crypto (generalized birthday attack)

As a Postdoc

- Focus on constructive side (NaCl)
- Starting to look into automated optimization
VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers

- Very restricted environment (speed, memory, storage)
- Typically exposed to physical attacks
VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers

- Very restricted environment (speed, memory, storage)
- Typically exposed to physical attacks

A finite-field compiler

- ECC needs operations in large finite fields
- Idea: compile sequence of field operations to superfast assembly
VENI project
“High-speed high-security crypto”

NaCl for embedded microcontrollers
▶ Very restricted environment (speed, memory, storage)
▶ Typically exposed to physical attacks

A finite-field compiler
▶ ECC needs operations in large finite fields
▶ Idea: compile sequence of field operations to superfast assembly

Verification of crypto software
▶ Started in the context of the finite-field compiler
▶ Generally important: ensure correctness of crypto software
▶ Additional: ensure security of crypto software
▶ Verification on the assembly level
High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices
High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices
- Serious optimization is feasible and worth the effort
- Typical high-speed crypto:
 - Optimize on the assembly level
 - Use instruction set to an extent that C does not allow
 - Inline, unroll, ...
High-speed crypto

- Crypto algorithms are typically small in software
- Example: AES, just a few lines of C
- Executed very often (AES encrypts terabytes each day)
- Crypto needs to work fast on busy servers
- Crypto needs to work fast on small embedded devices
- Serious optimization is feasible and worth the effort
- Typical high-speed crypto:
 - Optimize on the assembly level
 - Use instruction set to an extent that C does not allow
 - Inline, unroll, ...
- 10% speedup are typically a paper!
High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
 - Execution time must be independent of secret data
High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
 - Execution time must be independent of secret data
 - No data flow from secrets into branch conditions
 - No data flow from secrets into load/store addresses
High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
 - Execution time must be independent of secret data
 - No data flow from secrets into branch conditions
 - No data flow from secrets into load/store addresses
 - *Timing attacks* are practical and efficient
High-security crypto

- Best known attacks take $\geq 2^{128}$ operations
- Attacks have been extensively studied
- Implementations must not leak secret information
 - Execution time must be independent of secret data
 - No data flow from secrets into branch conditions
 - No data flow from secrets into load/store addresses
 - *Timing attacks* are practical and efficient
- Implementations must be correct (bug attacks!)
“Are you actually sure that your implementations are correct?”
Correct crypto?

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs
Correct crypto?

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of (crypto) software
Correct crypto?

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
Correct crypto?

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- **Should focus on cases where test and audits fail**
Elliptic-curve cryptography

- Let \(\mathbb{F}_q \) be a finite field
- For \(a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q \), an equation of the form

\[
E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6
\]

defines an elliptic curve \(E \) over \(\mathbb{F}_q \)
Elliptic-curve cryptography

- Let \mathbb{F}_q be a finite field
- For $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$, an equation of the form

 $$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

 defines an elliptic curve E over \mathbb{F}_q
- Points $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ on E together with a “point at infinity” form a group $E(\mathbb{F}_q)$
Elliptic-curve cryptography

- Let \mathbb{F}_q be a finite field
- For $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$, an equation of the form

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

defines an elliptic curve E over \mathbb{F}_q

- Points $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ on E together with a “point at infinity” form a group $E(\mathbb{F}_q)$

- Group addition can be computed with a few operations in \mathbb{F}_q
Elliptic-curve cryptography

- Let \mathbb{F}_q be a finite field
- For $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$, an equation of the form
 \[
 E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6
 \]
defines an elliptic curve E over \mathbb{F}_q
- Points $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ on E together with a “point at infinity” form a group $E(\mathbb{F}_q)$
- Group addition can be computed with a few operations in \mathbb{F}_q
- For $P \in E(\mathbb{F}_q)$ and $k \in \mathbb{Z}$, computing kP is easy ($\Theta(\log(k))$)
Elliptic-curve cryptography

Let \mathbb{F}_q be a finite field

For $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$, an equation of the form

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

defines an elliptic curve E over \mathbb{F}_q

Points $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ on E together with a “point at infinity” form a group $E(\mathbb{F}_q)$

Group addition can be computed with a few operations in \mathbb{F}_q

For $P \in E(\mathbb{F}_q)$ and $k \in \mathbb{Z}$, computing kP is easy ($\Theta(\log(k))$)

Given $Q \in \langle P \rangle$ and P, computing k with $kP = Q$ is hard ($\Theta(\sqrt{k})$)
Elliptic-curve cryptography

- Let \mathbb{F}_q be a finite field
- For $a_1, a_2, a_3, a_4, a_6 \in \mathbb{F}_q$, an equation of the form

$$E : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

defines an elliptic curve E over \mathbb{F}_q
- Points $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ on E together with a “point at infinity” form a group $E(\mathbb{F}_q)$
- Group addition can be computed with a few operations in \mathbb{F}_q
- For $P \in E(\mathbb{F}_q)$ and $k \in \mathbb{Z}$, computing kP is easy ($\Theta(\log(k))$)
- Given $Q \in \langle P \rangle$ and P, computing k with $kP = Q$ is hard ($\Theta(\sqrt{k})$)
- Use in crypto: choose random k, compute and publish kP
Curve25519 ECDH

- Diffie-Hellman key exchange protocol by Bernstein (2006)
- Uses curve $E : y^2 = x^3 + 486662x^2 + x$ defined over $\mathbb{F}_{2^{255}−19}$
- Conservative parameter choice, targeting high security
- Set speed records on a variety of platforms
Curve25519 ECDH

- Diffie-Hellman key exchange protocol by Bernstein (2006)
- Uses curve $E : y^2 = x^3 + 486662x^2 + x$ defined over $\mathbb{F}_{2^{255}-19}$
- Conservative parameter choice, targeting high security
- Set speed records on a variety of platforms
- High-level view:
 - Input: x-coordinate x_P of a point P, scalar k
 - Compute x-coordinate x_{kP} of kP as $x_{kP} = X_{kP}/Z_{kP}$
 - Invert Z_{kP}, multiply by X_{kP} to obtain x_{kP}
 - Inputs and outputs encoded as little-endian byte arrays of length 32
The Montgomery ladder

Require: A scalar \(0 \leq k \in \mathbb{Z}\) and the \(x\)-coordinate \(x_P\) of some point \(P\)

Ensure: \((X_{kP}, Z_{kP})\) fulfilling \(x_{kP} = X_{kP}/Z_{kP}\)

\[
\begin{align*}
X_1 &= x_P; \quad X_2 = 1; \quad Z_2 = 0; \quad X_3 = x_P; \quad Z_3 = 1 \\
\text{for } i &\leftarrow n - 1 \text{ downto } 0 \text{ do} \\
&\quad \text{if bit } i \text{ of } k \text{ is 1 then} \\
&\quad \quad (X_3, Z_3, X_2, Z_2) \leftarrow \text{ladderstep}(X_1, X_3, Z_3, X_2, Z_2) \\
&\quad \quad \text{else} \\
&\quad \quad \quad (X_2, Z_2, X_3, Z_3) \leftarrow \text{ladderstep}(X_1, X_2, Z_2, X_3, Z_3) \\
&\quad \text{end if} \\
\text{end for} \\
\text{return } (X_2, Z_2)
\end{align*}
\]
One Montgomery “ladder step”

\[
\begin{align*}
\text{const } a_{24} &= 121666 \text{ (from the curve equation)} \\
\text{function } \text{ladderstep}(X_{Q-P}, X_P, Z_P, X_Q, Z_Q) \\
& \quad t_1 \leftarrow X_P + Z_P \\
& \quad t_6 \leftarrow t_1^2 \\
& \quad t_2 \leftarrow X_P - Z_P \\
& \quad t_7 \leftarrow t_2^2 \\
& \quad t_5 \leftarrow t_6 - t_7 \\
& \quad t_3 \leftarrow X_Q + Z_Q \\
& \quad t_4 \leftarrow X_Q - Z_Q \\
& \quad t_8 \leftarrow t_4 \cdot t_1 \\
& \quad t_9 \leftarrow t_3 \cdot t_2 \\
& \quad X_{P+Q} \leftarrow (t_8 + t_9)^2 \\
& \quad Z_{P+Q} \leftarrow X_{Q-P} \cdot (t_8 - t_9)^2 \\
& \quad X_{2P} \leftarrow t_6 \cdot t_7 \\
& \quad Z_{2P} \leftarrow t_5 \cdot (t_7 + a_{24} \cdot t_5) \\
\text{return } (X_{2P}, Z_{2P}, X_{P+Q}, Z_{P+Q}) \\
\text{end function}
\end{align*}
\]
Arithmetic in $\mathbb{F}_{2^{255} - 19}$

- Need arithmetic on 255-bit integers and reduction mod $2^{255} - 19$
- Speed typically determined by speed of multiplications
- Use fastest hardware multiplier
- On Intel Nehalem: $64 \times 64 \rightarrow 128$-bit integer multiply
Arithmetic in $\mathbb{F}_{2^{255}-19}$

- Need arithmetic on 255-bit integers and reduction mod $2^{255} - 19$
- Speed typically determined by speed of multiplications
- Use fastest hardware multiplier
- On Intel Nehalem: $64 \times 64 \rightarrow 128$-bit integer multiply
- Represent 256-bit integer A through 4 64-bit integers a_0, a_1, a_2, a_3
- Value of A is $\sum_{i=0}^{3} a_i 2^{64 \cdot i}$

```c
typedef struct{
    unsigned long long v[4];
} fe25519;
```
Addition

int64 r0
t0 = 0
int64 r1
t1 = 38
int64 r2
t1 = t0 if !carry
int64 r3
carry? r0 += t1
carry? r1 += t0 + carry
carry? r2 += t0 + carry
carry? r3 += t0 + carry
int64 t0
t0 = t1 if carry
int64 t1
r0 += t0

t0 = mem64[input_1 + 0]
mem64[input_0 + 0] = r0
t1 = mem64[input_1 + 8]
mem64[input_0 + 8] = r1
t2 = mem64[input_1 + 16]
mem64[input_0 + 16] = r2
t3 = mem64[input_1 + 24]
mem64[input_0 + 24] = r3
carry? r0 += mem64[input_2 + 0] + carry
return
Multiplication

\[x_0 = \text{mem64}[\text{input}_1 + 0] \]
\[\text{rax} = \text{mem64}[\text{input}_2 + 0] \]
\[(\text{uint128}) \ \text{rdx} \ \text{rax} = \text{rax} \times x_0 \]
\[r_0 = \text{rax} \]
\[r_1 = \text{rdx} \]

\[\text{rax} = \text{mem64}[\text{input}_2 + 8] \]
\[(\text{uint128}) \ \text{rdx} \ \text{rax} = \text{rax} \times x_0 \]
\[\text{carry?} \ r_2 += \text{rax} \]
\[r_3 = 0 \]
\[r_3 += \text{rdx} + \text{carry} \]

\[\text{rax} = \text{mem64}[\text{input}_2 + 16] \]
\[(\text{uint128}) \ \text{rdx} \ \text{rax} = \text{rax} \times x_0 \]
\[\text{carry?} \ r_2 += \text{rax} \]
\[r_4 = 0 \]
\[r_4 += \text{rdx} + \text{carry} \]
Multiplication

\[
x_1 = \text{mem64}[\text{input}_1 + 8] \\
\text{rax} = \text{mem64}[\text{input}_2 + 0] \\
(\text{uint128}) \text{rdx} \text{ rax} = \text{rax} \times x_1 \\
carry? \text{ r1} += \text{rax} \\
c = 0 \\
c += \text{rdx} + \text{carry} \\
\]

\[
\text{rax} = \text{mem64}[\text{input}_2 + 8] \\
(\text{uint128}) \text{rdx} \text{ rax} = \text{rax} \times x_1 \\
carry? \text{ r2} += \text{rax} \\
\text{rdx} += 0 + \text{carry} \\
carry? \text{ r2} += c \\
c = 0 \\
c += \text{rdx} + \text{carry} \\
\]

\[
\text{rax} = \text{mem64}[\text{input}_2 + 16] \\
(\text{uint128}) \text{rdx} \text{ rax} = \text{rax} \times x_1 \\
carry? \text{ r3} += \text{rax} \\
\text{rdx} += 0 + \text{carry} \\
carry? \text{ r3} += c \\
c = 0 \\
c += \text{rdx} + \text{carry} \\
\]

\[
\text{rax} = \text{mem64}[\text{input}_2 + 24] \\
(\text{uint128}) \text{rdx} \text{ rax} = \text{rax} \times x_1 \\
carry? \text{ r4} += \text{rax} \\
\text{rdx} += 0 + \text{carry} \\
carry? \text{ r4} += c \\
r5 = 0 \\
r5 += \text{rdx} + \text{carry} \\
\ldots
\]
x3 = mem64[input_1 + 24]
rax = mem64[input_2 + 0]
(uint128) rdx rax = rax * x3
carry? r3 += rax
c = 0
c += rdx + carry

rax = mem64[input_2 + 8]
(uint128) rdx rax = rax * x3
carry? r4 += rax
rdx += 0 + carry
carry? r4 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 16]
(uint128) rdx rax = rax * x3
carry? r5 += rax
rdx += 0 + carry
carry? r5 += c
c = 0
c += rdx + carry

rax = mem64[input_2 + 24]
(uint128) rdx rax = rax * x3
carry? r6 += rax
rdx += 0 + carry
carry? r6 += c
r7 = 0
r7 += rdx + carry
Reduction mod $2^{255} - 19$

- “Lazy” reduction modulo $2^{256} - 38$: multiply upper half by 38, add to lower half

In assembly:

```plaintext
rax = r4
(ruint128) rdx rax = rax * mem64[&const_38]
r4 = rax
rax = r5
r5 = rdx
(ruint128) rdx rax = rax * mem64[&const_38]
carry? r5 += rax
rax = r6
r6 = 0
r6 += rdx + carry
...
(ruint128) rdx rax = rax * mem64[&const_38]
carry? r7 += rax
r8 = 0
r8 += rdx + carry
```

Verifying crypto
Reduction mod $2^{255} - 19$

- “Lazy” reduction modulo $2^{256} - 38$: multiply upper half by 38, add to lower half
- In assembly:

  ```
  rax = r4
  (uint128) rdx rax = rax * mem64[&const_38]
  r4 = rax
  rax = r5
  r5 = rdx
  (uint128) rdx rax = rax * mem64[&const_38]
  carry? r5 += rax
  rax = r6
  r6 = 0
  r6 += rdx + carry
  ...

  (uint128) rdx rax = rax * mem64[&const_38]
  carry? r7 += rax
  r8 = 0
  r8 += rdx + carry
  ```

Verifying crypto
Reduction mod $2^{255} - 19$

- “Lazy” reduction modulo $2^{256} - 38$: multiply upper half by 38, add to lower half
- In assembly:

```assembly
carry? r0 += r4
carry? r1 += r5 + carry
carry? r2 += r6 + carry
carry? r3 += r7 + carry

zero = 0
r8 += zero + carry
r8 *= 38
carry? r0 += r8
carry? r1 += zero + carry
carry? r2 += zero + carry
carry? r3 += zero + carry
zero += zero + carry
zero *= 38
r0 += zero
```
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Let’s get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

$$A = \sum_{i=0}^{4} a_i 2^{51\cdot i}$$

- This is called radix-2^{51} representation
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Let’s get rid of the carries, represent A as $(a_0, a_1, a_2, a_3, a_4)$ with

\[A = \sum_{i=0}^{4} a_i 2^{51 \cdot i} \]

- This is called radix-2^{51} representation
- Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $(2^{52}, 0, 0, 0, 0)$
 - $(0, 2, 0, 0, 0)$
Changing the radix

- Radix-2^{64} representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- Example: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Let’s get rid of the carries, represent A as $\left(a_0, a_1, a_2, a_3, a_4\right)$ with

$$A = \sum_{i=0}^{4} a_i \cdot 2^{51 \cdot i}$$

- This is called radix-2^{51} representation
- Multiple ways to write the same integer A, for example $A = 2^{52}$:
 - $\left(2^{52}, 0, 0, 0, 0\right)$
 - $\left(0, 2, 0, 0, 0\right)$
- Call a representation $\left(a_0, a_1, a_2, a_3, a_4\right)$ reduced, if all $a_i \in [0, \ldots, 2^{52} - 1]$
Addition

```
enter fe25519_add
r0 = mem64[input_1 + 0]
r1 = mem64[input_1 + 8]
r2 = mem64[input_1 + 16]
r3 = mem64[input_1 + 24]
r4 = mem64[input_1 + 32]

r0 += mem64[input_2 + 0]
r1 += mem64[input_2 + 8]
r2 += mem64[input_2 + 16]
r3 += mem64[input_2 + 24]
r4 += mem64[input_2 + 32]

mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r1
mem64[input_0 + 16] = r2
mem64[input_0 + 24] = r3
mem64[input_0 + 32] = r4
return
```
Multiplication

rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
0 = rax
0h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
1 = rax
1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
2 = rax
2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
3 = rax
3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
4 = rax
4h = rdx
Multiplication

rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx
Multiplication

...

\[
\begin{align*}
\text{mem64}[\text{input}_0 + 0] &= r0 \\
\text{mem64}[\text{input}_0 + 8] &= r0h \\
\text{mem64}[\text{input}_0 + 16] &= r1 \\
\text{mem64}[\text{input}_0 + 24] &= r1h \\
\text{mem64}[\text{input}_0 + 32] &= r2 \\
\text{mem64}[\text{input}_0 + 40] &= r2h \\
\end{align*}
\]

...

\[
\begin{align*}
\text{mem64}[\text{input}_0 + 128] &= r8 \\
\text{mem64}[\text{input}_0 + 136] &= r8h \\
\end{align*}
\]
Reduction mod p

- We now have r_0, \ldots, r_8, such that

\[
\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i \right) \left(\sum_{i=0}^{4} b_i X^i \right)
\]

- We want to have r_0, \ldots, r_4, such that

\[
\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i} \right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i} \right) \pmod{2^{255} - 19}
\]
Reduction mod p

- We now have r_0, \ldots, r_8, such that

$$
\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i \right) \left(\sum_{i=0}^{4} b_i X^i \right)
$$

- We want to have r_0, \ldots, r_4, such that

$$
\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i} \right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i} \right) \pmod{2^{255} - 19}
$$

- We can reduce modulo p as

$$
r_0 \leftarrow r_0 + 19r_5
$$
Reduction mod p

▶ We now have r_0, \ldots, r_8, such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i \right) \left(\sum_{i=0}^{4} b_i X^i \right)$$

▶ We want to have r_0, \ldots, r_4, such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i} \right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i} \right) \pmod{2^{255} - 19}$$

▶ We can reduce modulo p as

$$r_0 \leftarrow r_0 + 19r_5$$
$$r_1 \leftarrow r_1 + 19r_6$$
$$r_2 \leftarrow r_2 + 19r_7$$
$$r_3 \leftarrow r_3 + 19r_8$$

Verifying crypto
Reduction mod p

- We now have r_0, \ldots, r_8, such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i \right) \left(\sum_{i=0}^{4} b_i X^i \right)$$

- We want to have r_0, \ldots, r_4, such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i} \right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i} \right) \pmod{2^{255} - 19}$$

- We can reduce modulo p as

$$r_0 \leftarrow r_0 + 19r_5$$
$$r_1 \leftarrow r_1 + 19r_6$$
$$r_2 \leftarrow r_2 + 19r_7$$
$$r_3 \leftarrow r_3 + 19r_8$$

- Can even merge this reduction with multiplication:
 - Precompute $19a_1, 19a_2, 19a_3, 19a_4$
 - Multiply b_j by $19a_i$ if $i + j > 4$
Carrying after multiplication

- Coefficients r_i are way too large
- Need to carry. In pseudocode:

  ```
  carry = (r0h.r0) >> 51
  (r1h.r1) += carry
  carry <<= 51
  (r0h.r0) -= carry
  ```
Carrying after multiplication

- Coefficients r_i are way too large
- Need to carry. In pseudocode:

  ```
  carry = (r0h.r0) >> 51
  (r1h.r1) += carry
  carry <<= 51
  (r0h.r0) -= carry
  ```

- Carry from r_0 to r_1; from r_1 to r_2, and so on
- Multiply carry from r_4 by 19 and add to r_0
Carrying after multiplication

- Coefficients r_i are way too large
- Need to carry. In pseudocode:

  ```
  carry = (r0h.r0) >> 51
  (r1h.r1) += carry
  carry <<= 51
  (r0h.r0) -= carry
  ```
- Carry from r_0 to r_1; from r_1 to r_2, and so on
- Multiply carry from r_4 by 19 and add to r_0
- After one round of carries we have signed 64-bit integers
- Perform another round of carries to obtain reduced coefficients
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255} - 19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255} - 19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)
- No dynamic memory allocations
- No function calls
- No side effects (except for flags)
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255} - 19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

Nice for formal verification

- Code is completely branch-free
- Can even write down branch-free Montgomery ladder (unrolling)
- No dynamic memory allocations
- No function calls
- No side effects (except for flags)
- “abnormally straight line code” —Adam Langley
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255} - 19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

... not so nice

- Only very high-level and very low-level description
 - Pseudocode – sequence of operations in $\mathbb{F}_{2^{255} - 19}$
 - Hand-optimized assembly (2 versions with different radices)
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of \mathbb{F}_2^{255-19} operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

... not so nice

- Only very high-level and very low-level description
 - Pseudocode – sequence of operations in \mathbb{F}_2^{255-19}
 - Hand-optimized assembly (2 versions with different radices)
- Non-linear operations on non-native data types
Ladderstep observations

Ladderstep

- Two versions, fully inlined sequence of $\mathbb{F}_{2^{255}-19}$ operations:
 - One using radix-2^{64} representation
 - One using radix-2^{51} representation

... not so nice

- Only very high-level and very low-level description
 - Pseudocode – sequence of operations in $\mathbb{F}_{2^{255}-19}$
 - Hand-optimized assembly (2 versions with different radices)
- Non-linear operations on non-native data types
- 1419 LOC in radix 2^{64}
- 1533 LOC in radix 2^{51}
Assembly?

- The code I showed you is not native assembly
- It’s qasm code:
 - High-level (“portable”) assembler by Bernstein
 - Unified syntax across architectures
 - Efficient register allocation (linear-scan like)
 - All freedom of assembly but faster development time
Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don’t verify ladderstep “en bloc”, chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
- Carries cause trouble (verification of radix-2⁵¹ implementation is easier)
- Cannot prove everything with boolector, need 2 proofs in Coq (not automated)
Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don’t verify ladderstep “en bloc”, chop in pieces, use composition of Hoare logic
Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don’t verify ladderstep “en bloc”, chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don’t verify ladderstep “en bloc”, chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
- Carries cause trouble (verification of radix-2^{51} implementation is easier)
Annotated qhasm

Idea for proof of correctness

- Annotate qhasm code with pre- and post-conditions
- Automatically translate to boolector
- Use boolector -minisat to prove correctness

Experience so far

- Don’t verify ladderstep “en bloc”, chop in pieces, use composition of Hoare logic
- Extensive annotation needed, in particular for multiplication
- Carries cause trouble (verification of radix-2^{51} implementation is easier)
- Cannot prove everything with boolector, need 2 proofs in Coq (not automated)
Results

- Fully verified ladderstep (code matches annotations)
Results

- Fully verified ladderstep (code matches annotations)
- Most costly to verify: radix-2^{51} multiplication:
 - 27 intermediate conditions/annotations
 - 5658 minutes, ≈ 4 days
 - Out of this, 2723 minutes for delayed carry
 - Two-phase carry is only 264 minutes
Results

- Fully verified ladderstep (code matches annotations)
- Most costly to verify: radix-2\(^{51}\) multiplication:
 - 27 intermediate conditions/annotations
 - 5658 minutes, \(\approx 4\) days
 - Out of this, 2723 minutes for delayed carry
 - Two-phase carry is only 264 minutes
- Finding a known bug in early radix-2\(^{64}\) multiplication is fast: < 9 seconds
Questions

- Is annotated assembly/qhasm the right approach?
Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
 - Highly interleaved operations
 - Arithmetic using floats
 - Vector instructions
Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
 - Highly interleaved operations
 - Arithmetic using floats
 - Vector instructions
- How about proofs of timing-attack resistance?
Questions

- Is annotated assembly/qhasm the right approach?
- Is translation to boolector the right approach?
- How can we reduce the amount of annotations?
- How can we automate the whole process (incl. Coq)?
- Will this scale to less friendly cases
 - Highly interleaved operations
 - Arithmetic using floats
 - Vector instructions
- How about proofs of timing-attack resistance?
- Can we prove equivalence with a reference implementation?
An equivalent(?) Curve25519 implementation

TweetNaCl
- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C
An equivalent (?) Curve25519 implementation

TweetNaCl

- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C
- Curve25519 is $> 10 \times$ slower on Ivy Bridge than speed-optimized software

Code available at http://tweetnacl.cr.yp.to
An equivalent(?) Curve25519 implementation

TweetNaCl

- Joint work with Bernstein, Janssen, and Lange
- Re-implementation of NaCl in just 100 Tweets
- Aims at auditability
- Contains Curve25519, Ed25519 signatures, Salsa20 stream cipher, Poly1305 authenticator, SHA-512 hash
- All written in portable ISO C
- Curve25519 is $>10\times$ slower on Ivy Bridge than speed-optimized software
- Code available at http://tweetnacl.cr.yp.to
Resources online

- Paper:
 http://cryptojedi.org/papers/#verify25519
- Translator, proofs:
 http://cryptojedi.org/crypto/#verify25519
- qhasm:
 http://cr yp.to/qhasm.html