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Introduction

In 1976, Diffie and Hellman published their groundbreaking paper New Directions
in Cryptography [DH76], in which they introduced the concept of public-key crypto-
graphy. By then, the conventional cryptosystems were built on symmetric tech-
niques, where a common secret key is used to encrypt data sent from one party to
another. In contrast to that, Diffie and Hellman proposed asymmetric methods: A
user A provides a public key, with which other users encrypt messages destined for
A. The user A holds a corresponding secret key, only known to A, with which A can
decrypt those messages. This solves the problem of securely distributing keys over
insecure channels that always occurs in symmetric, secret-key systems. While sym-
metric methods are still the most efficient choice for encrypting data, asymmetric
techniques provide key agreement, digital signatures, and authentication.

The security of cryptosystems as proposed by Diffie and Hellman relies on the exis-
tence of one-way functions. Evaluating such functions is easy, while inverting is in-
feasible. Exponentiation of integers modulo a prime number q is the most important
example in [DH76]. Cryptosystems based on this function rely on the intractability
of the discrete logarithm problem in the multiplicative group of a finite field Fq for
sufficiently large primes q. The discrete logarithm problem (DLP) is defined for any
group G as follows: Given a, y ∈ G, find an integer x with y = ax if it exists. For
an abelian group, this problem is often formulated additively: Given P,Q ∈ G with
Q = [x]P being the x-fold sum of P , find x. If the DLP is hard to solve in a group
G, then G can be used for realizing public-key protocols as indicated by Diffie and
Hellman.

It was suggested independently by Miller [Mil86b] and Koblitz [Kob87] to use the
group of rational points on an elliptic curve defined over a finite field. Later, Koblitz
[Kob89] also proposed the Picard group of a hyperelliptic curve over a finite field.
Since then, cryptosystems based on elliptic and hyperelliptic curves and algorithms
to solve the DLP in the corresponding groups have been studied thoroughly, and
have been widely used. In practice, one takes subgroups of prime order. The size
of such groups must be large enough such that with all known algorithms the DLP
in the group is infeasible to solve. With respect to the best known algorithms, the
DLP on a curve group is harder than in a finite-field group of the same size. Hence
curve groups have the advantage that the same security level can be achieved with
smaller parameters.

1



2 Introduction

Pairings in cryptography

The group of points on an elliptic curve or the Picard group of a hyperelliptic curve
is equipped with additional structure. With the help of such curves, it is possible to
define pairings. For two additive groups G1 and G2 and a multiplicative group G3,
a pairing is a bilinear, non-degenerate map

e : G1 ×G2 → G3.

The first example of a pairing used in cryptography was the Weil pairing on an
elliptic curve E over a finite field Fq. For a prime r different from the characteristic
of Fq, the Weil pairing is a map Wr : E[r] × E[r] → µr. The group E[r] is the
group of r-torsion points on E, and µr is the group of rth roots of unity, which is
contained in an extension of Fq. The degree k of the minimal extension Fqk ⊇ Fq
that contains µr is called the embedding degree of E with respect to r. The first
appearance of the Weil pairing in cryptography was of a destructive nature. Menezes,
Okamoto, and Vanstone [MOV93] applied the Weil pairing for attacking the elliptic-
curve discrete logarithm problem (ECDLP). They showed that for an r-torsion point
P ∈ E[r], the Weil pairing yields a group isomorphism ψ : 〈P 〉 → µr ⊆ F∗

qk from

the cyclic group 〈P 〉 of order r generated by P to the group of rth roots of unity,
which lies in Fqk . Instead of solving the ECDLP given by Q = [x]P , one can solve
the DLP in F∗

qk given by ψ(Q) = ψ(P )x. If k is small, this reduction provides
a way of solving the ECDLP more easily because of the subexponential attacks
on the DLP in finite fields. Elliptic curves which have a small embedding degree
should therefore be avoided for conventional curve-based cryptography. Frey and
Rück [FR94] generalized this to a reduction of the DLP in the Picard group of an
arbitrary projective, irreducible, non-singular curve by using another pairing, the
Tate-Lichtenbaum pairing, an explicit version of the Tate pairing. First constructive
applications of pairings arose in 2000 as key agreement protocols with new features.
Joux [Jou00] proposed a one-round, tripartite key agreement protocol, and Sakai,
Ohgishi, and Kasahara [SOK00] showed how to realize identity-based non-interactive
key agreement. In 2001, Boneh and Franklin [BF01, BF03] solved a long-standing
open problem by proposing a practical way to realize identity-based encryption with
pairings. These papers initialized a variety of constructive applications in pairing-
based cryptography. Paterson [Pat05] gives a survey of such applications.
Most of the pairings used in practice are variants of the Tate pairing on elliptic
curves, such as the ate pairing or the twisted ate pairing [HSV06]. Many improve-
ments [MKHO07, ZZH08, LLP08] have led to the notion of optimal pairings intro-
duced by Vercauteren [Ver08] and the framework of pairing lattices, under which
Heß [Heß08] subsumes all variants of the Tate pairing.
For all applications, the choice of curve parameters is crucial. It is important that
in all three groups G1, G2, and G3, the DLP is infeasible, i. e. the subgroups of prime
order r must be large enough. The embedding degree then determines the size of
qk and thus the difficulty of the DLP in F∗

qk
. Computation of pairings is done with
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variants of Miller’s algorithm [Mil86a]. It comprises arithmetic on the elliptic curve
or in the Picard group, respectively, and arithmetic in F∗

qk . If the embedding degree
is too large, the pairing can not be computed efficiently.
Under these conditions, curves for pairing applications should be chosen to be as
economical as possible, i. e. the prime divisor r of the group order should be as large
as possible in relation to the full group size. The relative size of r compared to the
group order is expressed by the ρ-value ρ = g log(q)/ log(r), where g is the genus of
the curve. The optimal ρ-value is 1, which means that the Picard group over Fq has
prime order r. Since for randomly chosen curves and large primes r the embedding
degree is of the size of r which is much too large in general [BK98, LMS04], it is
necessary to systematically construct pairing-friendly curves.
To improve the efficiency of practical applications of pairings in cryptography, it is
required to solve two closely related problems:

• Construct pairing-friendly curves with a small embedding degree and small
ρ-value.

• Improve the efficiency and flexibility of algorithms to compute pairings.

These problems suggest the distinction between constructive and computational
aspects. This work contributes to the solution of both problems.

Overview

Chapter 1 provides the foundations for the remaining chapters. We define Pi-
card groups (Jacobian varieties, respectively) of elliptic and hyperelliptic curves,
which are the groups that are used for cryptographic applications. For that, we
discuss affine and projective curves, their properties such as irreducibility and non-
singularity, maps between them, their function fields, and divisors. In order to give
a geometric interpretation of the group law on elliptic curves in Weierstraß form
and Edwards curves as well as to deduce functions for pairing computation, we in-
troduce intersection multiplicities and state Bézout’s Theorem. In this work, we
mainly consider Weierstraß curves, Edwards curves, and hyperelliptic curves.
We introduce the Tate-Lichtenbaum pairing and the Weil pairing on the Jacobian
of a hyperelliptic curve and deduce practical relevant variants of the Tate pairing.
Detailed discussions are given for pairings on elliptic curves, including the description
of Miller’s algorithm and formulas for line functions. We illustrate the use of twists
for a more efficient representation of curve points.
Finally, we describe conditions for pairing-friendly curves, and with a focus on elliptic
curves, we describe methods for their construction. This includes an overview of
the complex multiplication (CM) method to construct elliptic curves with a given
number of rational points.
In Chapter 2, we describe a parametrized family of pairing-friendly elliptic curves
with embedding degree 12 and prime order (ρ-value 1). The results in this chapter
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are based on joint work with Barreto [BN06]. After discussing existence and a con-
struction method, we consider properties of these curves that can be used to improve
pairing computation, e. g. the existence of a twist of degree 6, the use of efficient
endomorphisms, and the possibilities for point compression and pairing-value com-
pression. We show how to compute all parameters needed for implementing pairings
on such curves, and give examples of curves with different bit sizes corresponding to
different levels of security.
Compressed pairing computation is the topic of Chapter 3. This chapter is based
on joint work with Barreto and Schwabe [NBS08]. Pairing values are elements of
algebraic tori. This fact leads to a compressed representation for pairing values and
the possibility to implicitly carry out computations on the compressed values. We
define compressed pairings and describe a way for their computation by including
the compression into the Miller loop. The method can be applied for elliptic curves
with even embedding degree, giving a compression of pairing values to one half of
their original length. For the special case that 6 divides the embedding degree, the
compression factor is one third. In particular, this method works for the curves
introduced in Chapter 2, and can be implemented without using any finite field
inversions. We determine explicit formulas for the evaluation of line functions and
torus arithmetic. Timing results for a C-implementation of the proposed compressed
pairings are given and are compared to conventional pairings.
Chapter 4 is dedicated to pairing computation on Edwards curves. The contents of
this chapter result from joint work with Arène, Lange, and Ritzenthaler. We give a
geometric interpretation of the group law on a twisted Edwards curve. In contrast
to the group law on a Weierstraß curve, not only lines are involved, but also conic
sections. We deduce the necessary curves of degree 1 and 2, and describe a variant of
Miller’s algorithm that uses functions arising from these lines and conics. This shows
that pairings can be computed directly on the Edwards curve, without transforming
back to Weierstraß form. Explicit formulas for the addition and doubling steps
in Miller’s algorithm are given. The formulas are more efficient than previously
proposed formulas for pairings on Edwards curves and are competitive with formulas
for pairing computation on Weierstraß curves.
In Chapter 5, we propose algorithms to construct genus-2 curves with p-rank 1
using the complex multiplication method. The chapter contains joint work with Hitt
O’Connor, McGuire, and Streng [HMNS08]. First, we give theoretical foundations
on abelian varieties and complex multiplication (CM). After that, we discuss genus-2
curves with p-rank 1 and the CM method in genus 2. The proposed algorithms can
be used to construct curves defined over a field Fp2 that have a prime number of
Fp2-rational points on their Jacobian. Examples with different bit sizes of the group
order are given. Finally, we propose an algorithm for the construction of p-rank 1
curves of genus 2 with a small embedding degree.



Chapter 1

Preliminaries

In this chapter, we provide definitions and fundamental results for the subsequent
chapters. We discuss the necessary background for curves in Section 1.1. In Sec-
tion 1.2, we define pairings, and explain how they can be computed. Section 1.3
gives a brief introduction to the problem of constructing pairing-friendly curves along
with algorithms to solve it, mainly for elliptic curves. The theoretical background
for Chapter 5 is not given here. Instead, fundamentals on abelian varieties and
complex multiplication can be found in Section 5.1, since they are not required in
Chapters 2, 3, and 4.

1.1 Curves

In this section, we give a brief introduction to plane curves. We define affine and
projective curves, discuss general concepts and properties, and then move to elliptic
and hyperelliptic curves. There are almost no proofs in this section since we just
gather results that are necessary for the following chapters. Details and proofs can
be found in the following references: For a general treatise on algebraic geometry, we
refer to Hartshorne’s book [Har77]. The more specific theory focusing on algebraic
curves is presented by Fulton [Ful69]. Lorenzini [Lor96] gives a detailed introduction
to plane curves in the context of arithmetic geometry. For results on function fields
and a view on curves from that perspective, we point at Stichtenoth [Sti93]. Many
facts about curves and in particular elliptic curves can be found in Silverman’s book
[Sil86]. An overview of the background on curves required for cryptography is given
in [FL05a]. We follow parts of these books in this chapter.

1.1.1 Affine and projective curves

Let F be a perfect field, and let F be an algebraic closure of F. For a positive integer n,
we define the affine n-space An(F) to be the n-fold Cartesian product An(F) := F

n
.

The space A1(F) = F is called affine line, and A2(F) = F× F is called affine plane.
For any field F ⊆ F̃ ⊆ F, we call An(F̃) = F̃n ⊆ An(F) the set of F̃-rational points

5



6 1.1. Curves

in An(F). Given a polynomial f ∈ F[x1, x2, . . . , xn] in n variables, we can evaluate
f at a point P = (a1, a2, . . . , an) ∈ An(F) as f(P ) = f(a1, a2, . . . , an) ∈ F.

Definition 1.1. Let f ∈ F[x1, x2, . . . , xn] be a polynomial in n variables. Define an
algebraic set Cf by

Cf := {P ∈ An(F) | f(P ) = 0}. (1.1)

For any algebraic field extension F ⊆ F̃ ⊆ F, the set

Cf(F̃) = {P ∈ Cf | P ∈ An(F̃)}

of points with coordinates in F̃ is called the set of F̃-rational points in Cf .

In this thesis, we mainly consider sets Cf ⊆ A2(F). We then usually write the
polynomial ring in two variables over F as F[x, y].

Definition 1.2. Let f ∈ F[x, y] be a polynomial in two variables. The algebraic set
Cf is called an affine plane curve. The degree of Cf is defined as the degree of f .

Example 1.3. An affine plane line is an affine plane curve of degree 1. It is given
by a polynomial l = cxx + cyy + c1 ∈ F[x, y] of degree 1, i. e. (cx, cy) 6= (0, 0).
Note that a line is uniquely determined by two different points. We call an affine
plane curve of degree 2 an affine plane conic. It is given by a polynomial fC =
cx2x2+cy2y

2+cxyxy+cxx+cyy+c1 ∈ F[x, y] of degree 2, i. e. (cx2, cy2 , cxy) 6= (0, 0, 0).
An affine plane curve of degree 3 is called an affine plane cubic, and an affine plane
curve of degree 4 is called an affine plane quartic.

Let P = (a1, a2, . . . , an+1) ∈ An+1(F) be a point in the affine (n+1)-space. Suppose
P 6= (0, . . . , 0). Then P defines a unique line that passes through P and the origin
(0, . . . , 0). We identify all non-zero points on this line, i. e. we define an equivalence
relation ∼ on An+1(F) \ {(0, . . . , 0)} as follows: We say that P = (a1, a2, . . . , an+1)
and Q = (b1, b2, . . . , bn+1) are equivalent, i. e. P ∼ Q, if there exists λ ∈ F

∗
with

(a1, a2, . . . , an+1) = λ(b1, b2, . . . , bn+1) = (λb1, λb2, . . . , λbn+1).

We denote the equivalence class with respect to ∼ that contains P by

P∼ := (a1 : a2 : · · · : an+1) := {Q ∈ An+1(F) | Q ∼ P}.

The set P∼ contains all points on the above mentioned line through P and (0, . . . , 0),
except for the point (0, . . . , 0) itself. We define the projective n-space Pn(F) to be
the set of all such equivalence classes,

Pn(F) := {P∼ | (0, . . . , 0) 6= P ∈ An+1(F)}.
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The set P1(F) is called projective line, and the set P2(F) is called projective plane.
An equivalence class P∼ is called a projective point. The set of F̃-rational points in
Pn(F) for F ⊆ F̃ ⊆ F is defined as

Pn(F̃) := {P∼ = (a1 : a2 : · · · : an+1) | ∃ λ ∈ F
∗

with λai ∈ F̃ for all i} ⊆ Pn(F).

The affine n-space An(F) can be embedded into the projective n-space by identifying
(a1, a2, . . . , an) ∈ An(F) with the point (a1 : a2 : · · · : an : 1) ∈ Pn(F).

Lemma 1.4. Let Un+1 := {(a1 : a2 : · · · : an+1) ∈ Pn(F) | an+1 6= 0} ⊆ Pn(F). Then
the map

ϕn+1 : Un+1 → An(F),

(a1 : a2 : · · · : an+1) 7→
(

a1

an+1
,
a2

an+1
, . . . ,

an
an+1

)

is a bijection.

Proof. This is [Har77, Proposition I.2.2].

The inverse map ϕ−1
n+1 is given by (a1, a2, . . . , an) 7→ (a1 : a2 : · · · : an : 1). From now

on, we understand An(F) as a subset of Pn(F). When speaking of points in Pn(F),
we abuse notation and denote the class P∼ by P as well. We have chosen one special
embedding of the affine space into the projective space by choosing Un+1, i. e. fixing
the last coordinate to be different from 0. Of course, we could also take each of the
other coordinates, and get in this way n + 1 different sets Ui, 1 ≤ i ≤ n + 1, with
corresponding embeddings of the affine space into Pn(F) (see [Har77, Section I.2]).
The sets Ui cover all of Pn(F).
To define a projective curve, we need to explain what it means that a projective point
is a zero of a polynomial. A polynomial f ∈ F[x1, . . . , xn+1] may have a zero at one
representative of a projective point, while it might be different from zero at another
representative. Therefore, we consider homogeneous polynomials. The monomials of
a homogeneous polynomial all have the same degree. Thus f(λa1, λa2, . . . , λan+1) =
λdf(a1, a2, . . . , an+1) for a homogeneous polynomial f ∈ F[x1, x2, . . . , xn+1] of degree
d. This shows that for homogeneous polynomials either all representatives of a
projective point are a zero or none.
From now on, we write homogeneous polynomials with capital letters. Also the
variables for homogeneous polynomials are written with capital letters to distinguish
between the affine and the projective case.

Definition 1.5. Let F ∈ F[X1, X2, . . . , Xn+1] be a homogeneous polynomial in n+1
variables. Define a projective algebraic set

CF := {P ∈ Pn(F) | F (P ) = 0}. (1.2)
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For any field F ⊆ F̃ ⊆ F, the set

CF (F̃) := {P ∈ CF | P ∈ Pn(F̃)}

of points in the projective space over F̃ is called the set of F̃-rational points in CF .

As above for affine algebraic sets, we choose different notation for the variables when
defining projective algebraic sets CF ⊆ P2(F).

Definition 1.6. Let F ∈ F[X, Y, Z] be a homogeneous polynomial in three variables.
The projective algebraic set CF is called a projective plane curve. Its degree is defined
as the degree of the polynomial F .

Example 1.7. We use the same terminology as for affine curves. A projective plane
line is a projective plane curve of degree 1. A plane line is given by a polynomial
L = cXX + cY Y + cZZ, where at least one of the coefficients cX , cY , cZ is different
from 0. A projective plane conic is a projective plane curve of degree 2. It is given
by a polynomial

FC = cX2X2 + cY 2Y 2 + cZ2Z2 + cXYXY + cXZXZ + cY ZY Z

with at least one of the coefficients cX2 , cY 2, cZ2, cXY , cXZ , cY Z being different from
0. Projective plane curves of degree 3 and degree 4 are called projective plane cubics
and projective plane quartics, respectively.

Let F ∈ F[X1, X2, . . . , Xn+1] be a homogeneous polynomial. Define the dehomoge-
nization F∗ of F as

F∗(x1, x2, . . . , xn) := F (x1, x2, . . . , xn, 1) ∈ F[x1, x2, . . . , xn].

And vice versa, for a polynomial f ∈ F[x1, x2, . . . , xn] of degree d, we define the
homogenization of f as

f ∗(X1, X2, . . . , Xn+1) := Xd
n+1f(X1/Xn+1, X2/Xn+1, . . . , Xn/Xn+1),

a polynomial in F[X1, X2, . . . , Xn+1]. Note that (f ∗)∗ = f for all f ∈ F[x1, . . . , xn]. If
Xn+1 ∤ F , then (F∗)

∗ = F . By means of homogenization and dehomogenization and
the map ϕ3, we may associate to every affine plane curve a corresponding projective
plane curve and to every projective plane curve a special affine plane curve. Any
projective curve CF contains the affine curve CF∗

. The points that only lie in CF
and not in CF∗

, i. e. the points of form (a1 : a2 : 0), are called points at infinity.

Remark 1.8. Throughout this work, we use the well-known notation Cf : f = 0
and CF : F = 0 for plane curves.
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Curves as defined here are special algebraic sets (see [Har77, Sections I.1 and I.2]
and [Ful69, Chapters 1 and 4]). An algebraic set is the set of common zeros of a
collection of polynomials. Algebraic sets form the closed sets of a topology on affine
and projective n-space, the Zariski topology [Har77, Sections I.1 and I.2]. Affine
and projective spaces are thus equipped with the structure of a topological space,
and we can define the notion of irreducibility as follows: A nonempty subset X of a
topological space is called irreducible, if it can not be expressed as the union of two
proper subsets, each one of which is closed in X [Har77, Definition in Section I.1].
For an algebraic set, this means that it can not be expressed as the union of two
non-trivial algebraic subsets.
The Zariski topology depends on the base field, over which the algebraic set is
defined. An algebraic set that is irreducible over F might become reducible over an
extension field. If it stays irreducible when considered over any algebraic extension
of F, i. e. it stays irreducible over F, we call it absolutely irreducible.

Definition 1.9. A curve over F is called absolutely irreducible if it can not be
expressed as the union of two distinct nontrivial algebraic subsets over F.

For a plane curve, we can determine irreducibility by considering the associated
polynomial. A polynomial over F is called absolutely irreducible if it is irreducible
as a polynomial over F.

Lemma 1.10. An affine plane curve Cf (or a projective plane curve CF , respec-
tively) is absolutely irreducible, if f (or F , respectively) is absolutely irreducible.

Proof. This is Example 4.15 (ii) from [FL05a].

Any algebraic set can be written uniquely as a union of distinct irreducible algebraic
sets, each one of which is not contained in another (see [Har77, Proposition I.1.5] and
[Ful69, Chapter 1, Theorem 2 and Chapter 4, Section 2]). These algebraic sets are
called the irreducible components of the algebraic set. For an affine plane curve Cf
over F, the factorization of f displays the decomposition into irreducible components
[Ful69, Chapter 1, Section 6, Corollary 3]. The homogenizations of the irreducible
components are the irreducible components of the corresponding projective curve
Cf∗ [Ful69, Chapter 4, Section 3, Proposition 3].

1.1.2 Singular points and tangent lines

From now on, we restrict ourselves to plane curves. This means that curves are
given by a polynomial f ∈ F[x, y] or by a homogeneous polynomial F ∈ F[X, Y, Z].

Definition 1.11. Let Cf be an affine curve with f ∈ F[x, y]. A point P ∈ Cf is
called singular if both partial derivatives of f vanish at P , i. e. (∂f/∂x)(P ) = 0 =
(∂f/∂y)(P ).
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Definition 1.12. Let CF be a projective curve and F ∈ F[X, Y, Z]. A point P ∈ CF
is called singular if all three partial derivatives of F vanish at P , i. e. (∂F/∂X)(P ) =
(∂F/∂Y )(P ) = (∂F/∂Z)(P ) = 0.

Let C be an affine or a projective curve. If P ∈ C is a singular point, C is called
singular at P . Otherwise, it is called nonsingular at P , and the point P is called
nonsingular. If there are no singular points on C, it is called nonsingular.

Remark 1.13. The definition of a singular point on a projective curve as in Defini-
tion 1.12 is the same as Definition 3.9 in Chapter VI of [Lor96]. Usually, a point on
a projective curve is said to be singular if the corresponding affine point in a suitable
dehomogenization is singular. The following lemma states that these definitions are
equivalent.

Lemma 1.14. Let P = (XP : YP : ZP ) ∈ CF be a point on the projective curve CF ,
which lies in U3, i. e. ZP 6= 0 (see Lemma 1.4). Then P is singular if and only if
the point (XP/ZP , YP/ZP ) is singular on CF∗

.

Proof. This is Lemma 3.10 from Chapter VI of [Lor96].

Remark 1.15. In his book, Fulton uses the terminology simple point for a nonsin-
gular point [Ful69, Chapter 3, Section 1]. The notion simple can be explained as
follows: To each point P ∈ CF a multiplicity mP (CF ) is assigned. The multiplicity
of a projective point P on a projective curve CF is defined as the multiplicity of the
corresponding affine point P∗ on the affine curve CF∗

. Dehomogenization is done
with respect to a nonzero coordinate of P .
Let Cf be an irreducible affine curve. Transform the curve by shifting the coordinates
of P to (0, 0). The multiplicity of P on Cf is defined to be the minimal degree of
all monomials in the resulting curve polynomial. For details, see [Ful69]. A point
P ∈ CF is nonsingular if and only if mP (CF ) = 1.

If we have a nonsingular point on a curve, there is a unique tangent line to the curve
in that point. It is given by the partial derivatives of the defining polynomial as
follows:

Definition 1.16. Let Cf be an affine curve, f ∈ F[x, y], and P = (xP , yP ) ∈ Cf a
nonsingular point. The line

tf,P :
∂f

∂x
(P )(x− xP ) +

∂f

∂y
(P )(y − yP ) = 0

is called the tangent line to Cf at P .

Definition 1.17. Let CF be a projective curve, F ∈ F[X, Y, Z], and P ∈ CF a
nonsingular point. The line

TF,P :
∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z = 0

is called the tangent line to CF at P .
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Remark 1.18. Note that the defining polynomials of the tangents in the previous
definitions have degree 1 since P is nonsingular; in particular, they are not 0. The
defining polynomial for the projective tangent line depends on the representative of
the point P , but since the partial derivatives are homogeneous polynomials of degree
one less than F , the tangent line is uniquely determined [Lor96, Section VI.7].
One might expect the projective tangent line at P = (XP : YP : ZP ) to be defined
as

TF,P :
∂F

∂X
(P )(X −XP ) +

∂F

∂Y
(P )(Y − YP ) +

∂F

∂Z
(P )(Z − ZP ) = 0.

Since ∂F
∂X
X+ ∂F

∂Y
Y + ∂F

∂Z
Z = deg(F )F as polynomials, we get ∂F

∂X
(P )XP + ∂F

∂Y
(P )YP +

∂F
∂Z

(P )ZP = 0, and both definitions of the tangent line are equal.

Let P = (xP , yP ) ∈ Cf be nonsingular. Then from Lemma 1.14 it follows that
P ∗ := ϕ−1

3 (P ) = (xP : yP : 1) is a nonsingular point on Cf∗ and the tangent line
Tf∗,P ∗ is given by the homogenization of tf,P [Lor96, Section VI.7].

1.1.3 Intersection numbers and Bézout’s Theorem

We abbreviate A2 := A2(F), and let F(A2) := F(x, y) := Quot(F[x, y]) be the
rational function field in two variables. Its elements are rational functions on A2,
i. e. fractions of polynomials in F[x, y]. For a point P ∈ A2, we define

OP (A2) := {g/h ∈ F(A2) | h(P ) 6= 0}.

The subring OP (A2) ⊆ F(A2) is a local ring with maximal ideal

MP (A2) := {g/h ∈ OP (A2) | g(P ) = 0}

(see [Sti93, Appendix B.1]). Let f, g ∈ F[x, y], then f, g ∈ OP (A2). Let (f, g) denote
the ideal in OP (A2) generated by f and g. Then OP (A2)/(f, g) is an F-vector space.
Let P2 := P2(F). Similarly, we define the rational function field

F(P2) := {G/H | G,H ∈ F[X, Y, Z] homogen., H 6= 0, deg(G) = deg(H)} ∪ {0},

as the field of homogeneous rational functions, i. e. fractions of homogeneous poly-
nomials of the same degree. For a point P ∈ P2, we define

OP (P2) := {G/H ∈ F(P2) | H(P ) 6= 0}.

The ring OP (P2) is a local ring with maximal ideal

MP (P2) := {G/H ∈ OP (P2) | G(P ) = 0}

(see [Sti93, Appendix B.2]). Note that F(P2) is F-isomorphic to F(A2) [Sti93, Ap-
pendix B.3], and hence also the local rings at P and ϕ3(P ) are isomorphic for P ∈ U3.
We map a homogeneous polynomial F ∈ F[X, Y, Z] of degree d into OP (P2) by
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choosing a projective line L, not passing through P , and setting F× := F/Ld. If
P ∈ U3, i. e. it is a point with a nonzero Z-coordinate, we can choose L = Z, and
F× is the usual dehomogenization F∗. Let F,G ∈ F[X, Y, Z] be homogeneous, then
F×, G× ∈ OP (P2). If (F×, G×) denotes the ideal generated by F× and G×, the ring
OP (P2)/(F×, G×) is an F-vector space.

Definition 1.19. Let f, g ∈ F[x, y] and P ∈ A2(F). The intersection number of Cf
and Cg at P is defined as

I(P,Cf ∩ Cg) := dimF(OP (A2)/(f, g)),

where (f, g) is the ideal in OP (A2) generated by f and g.

Let F,G ∈ F[X, Y, Z] be two homogeneous polynomials and P ∈ P2(F). The inter-
section number of CF and CG at P is defined as

I(P,CF ∩ CG) := dimF(OP (P2)/(F×, G×)),

where (F×, G×) is the ideal in OP (P2) generated by F× and G×.

It is clear from the definition that for a projective point P ∈ U3, it holds I(P,CF ∩
CG) = I(ϕ3(P ), CF∗

∩ CG∗
). The intersection number is the unique integer that

satisfies the seven properties given in [Ful69, Chapter 3, Section 3]. We only list a
selection of those properties, which are important for further considerations.

Lemma 1.20. The intersection number defined in Definition 1.19 satisfies the fol-
lowing properties: (We use the notation of the affine case.)

(a) I(P,Cf ∩Cg) ∈ N0 for any f, g, and P such that Cf and Cg intersect properly
at P , i. e. they have no common component which passes through P . If the
curves do not intersect properly at P , I(P,Cf ∩ Cg) =∞.

(b) I(P,Cf ∩ Cg) = 0 if and only if P /∈ Cf ∩ Cg. The intersection number only
depends on the components of f and g that pass through P .

(c) I(P,Cf ∩ Cg) ≥ mP (Cf)mP (Cg), with equality if and only if Cf and Cg have
no tangent lines in common at P . In particular, if P is a nonsingular point
on both Cf and Cg, then I(P,Cf ∩ Cg) = 1 if and only if Cf and Cg have no
tangent lines in common at P . See Remark 1.15 for the definition of mP (Cf ).

Proof. See Theorem 3 in Chapter 3, Section 3 of [Ful69].

The above properties suffice to understand the simple cases we consider in this work.
Next we state Bézout’s Theorem, which tells us how many intersection points two
projective curves of given degrees have.
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Theorem 1.21 (Bézout’s Theorem). Let F,G ∈ F[X, Y, Z] be two homogeneous
polynomials of degree d and e, respectively, such that the curves CF and CG have no
component in common. Then

∑

P∈CF∩CG

I(P,CF ∩ CG) = d · e.

Proof. This is the main theorem in [Ful69, Chapter 5, Section 3] or [Har77, Corollary
I.7.8].

Bézout’s Theorem shows that two projective curves of degree d and e that are
sufficiently different intersect at exactly d · e points when counting multiplicities in
the right way.

1.1.4 Functions, morphisms, and twists

We have already seen examples of function fields, namely the rational function fields
corresponding to the affine space and to the projective space. Now we are going
to associate a function field to every absolutely irreducible curve. We follow [Sti93,
Appendix B].
Let Cf be an absolutely irreducible, affine curve with absolutely irreducible defining
polynomial f ∈ F[x, y]. Let (f) ⊆ F[x, y] be the ideal in F[x, y] generated by f .
Then (f) is a prime ideal and the ring

F[Cf ] := F[x, y]/(f)

is an integral domain. It is called the coordinate ring of Cf .

Definition 1.22. The quotient field F(Cf) := Quot(F(Cf)) is called the function
field of Cf .

Elements of the function field are called rational functions, and are fractions of
polynomials modulo the curve equation. Let GF/F be the Galois group of F/F. The

action of GF/F on F can be extended to affine space, polynomial rings, and thus to
coordinate rings and function fields.
We define F[Cf ], the coordinate ring of Cf over F, and F(Cf), the function field of
Cf over F, as the subsets of F[Cf ] and F(Cf), respectively, that are fixed under the
action of GF/F. The field F is contained in F(Cf), and Cf is absolutely irreducible if
and only if F is algebraically closed in F(Cf) [Sti93, Corollary III.6.7].
The elements in F(Cf) define functions on Cf since polynomials in F[x, y] are maps
A2(F) → F. For the projective space, the situation is different since polynomials
in F[X, Y, Z] yield different values when evaluated at different representatives of a
projective point.
Let CF be an absolutely irreducible, projective curve with an absolutely irreducible
and homogeneous defining polynomial F ∈ F[X, Y, Z]. Denote by (F ) the homo-
geneous ideal in F[X, Y, Z] which is generated by F . As in the affine case, define
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the homogeneous coordinate ring of CF by Fhom[CF ] := F[X, Y, Z]/(F ). It is an
integral domain, and we denote its quotient field by Fhom(CF ) := Quot(Fhom[CF ]).
An element g ∈ Fhom[CF ] is called a form if there exists a homogeneous polynomial
G such that g = G+ (F ).

Definition 1.23. The function field of CF is the subfield of Fhom(CF ) given by
F(CF ) := {g/h | g, h ∈ Fhom[CF ] are forms of the same degree and h 6= 0} ∪ {0}.

The function field F(CF ) over F is defined as the fixed field under the action of the
Galois group GF/F on F(CF ). The elements of F(CF ) define functions on CF since
they are represented as quotients of forms of the same degree. Therefore, the value of
such an element is independent of the chosen representative of the projective point.
The map ϕ3 : U3 → A2(F), P = (XP : YP : ZP ) 7→ (XP/ZP , YP/ZP ) induces an
F-isomorphism

(ϕ−1
3 )∗ : F(CF )→ F(CF∗

).

Thus the function field of a projective curve is isomorphic to the function field of
the affine curve given by the dehomogenization (see [Lor96, Proposition VI.8.5] and
[Sti93, Appendix B.3]).
The localization of the coordinate ring at a point P is a subring of F(CF ) given by

OP (CF ) := {g/h ∈ F(CF ) | h(P ) 6= 0}.

It is a local ring with maximal ideal

MP (CF ) := {g/h ∈ OP (CF ) | g(P ) = 0}

[Sti93, Appendix B.2]. If P is nonsingular (i. e. simple, see Remark 1.15), OP (CF )
is a discrete valuation ring [Sil86, Proposition II.1.1]. In this case, we can define a
valuation on OP (CF ).

Definition 1.24. Let P ∈ CF be a nonsingular point. The valuation on OP (CF ),
defined by

ordP : OP (CF ) → N0 ∪ {∞},
φ 7→ max{m ∈ Z | φ ∈MP (CF )m}

is called the order of φ at P .

The order function is extended to the whole function field by defining

ordP : F(CF )→ Z ∪ {∞}, φ = f/g 7→ ordP (f)− ordP (g).

An element t ∈ F(CF ) with ordP (t) = 1 is called a uniformizing parameter for CF
at P .
Since algebraic sets are defined by polynomials, the natural maps between them
are also given by polynomials. In terms of the Zariski topology, we consider maps
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which are continuous with respect to that topology. A morphism of affine curves
is a map ϕ : Cf → Cg given by a pair (ϕx, ϕy) of polynomials in F[x, y] that maps
a point P ∈ Cf to the point (ϕx(P ), ϕy(P )) ∈ Cg. If ϕx, ϕy ∈ F[x, y], we say that
ϕ is defined over F. Any morphism between curves induces an F-algebra morphism
ϕ∗ : F[Cg] → F[Cf ] between the coordinate rings. By [FL05a, Remark 4.37], ϕ∗ is
injective if and only if ϕ is surjective, and if ϕ∗ is surjective, then ϕ is injective. The
map ϕ is an isomorphism if there exists an inverse map that is a morphism. This is
equivalent to ϕ∗ being an F-algebra isomorphism [FL05a, Definition 4.38].
From now on, we only consider irreducible projective curves, always keeping in mind
that we have the affine part given by dehomogenization. Let CF , CG be absolutely
irreducible, projective plane curves defined over F. In our description of morphisms,
we follow [Sil86, §I.3].
A rational map from CF to CG is a map φ : CF → CG given by a triple (φX , φY , φZ)
with φX , φY , φZ ∈ F(CF ) such that for every point P ∈ CF at which φX , φY , φZ are
defined, φ(P ) = (φX(P ) : φY (P ) : φZ(P )) ∈ CG. We say that φ is defined over F if
there exists λ ∈ F

∗
such that λφX , λφY , λφZ ∈ F(CF ).

Definition 1.25. Two curves CF and CG are called birationally equivalent if there
exist rational maps φ : CF → CG and ψ : CG → CF such that ψ ◦ φ and φ ◦ ψ are
the identities on CF and CG, respectively. In that case, φ is called a birational map.

A rational map φ : CF → CG is called regular at P ∈ CF if there exists a func-
tion g ∈ F(CF ) such that gφX, gφY , gφZ are all defined at P and at least one of
gφX(P ), gφY (P ), gφZ(P ) is different from 0.

Definition 1.26. A morphism between CF and CG is a rational map φ : CF → CG
that is regular at every point P ∈ CF . The map φ is called an isomorphism if there
exists a morphism ψ : CG → CF such that ψ ◦ φ and φ ◦ ψ are the identities on
CF and CG, respectively. Let Mor(CF , CG) be the set of morphisms from CF to
CG and Isom(CF , CG) be its subset of isomorphisms. The sets of morphisms and
isomorphisms that are defined over F̃ for F ⊆ F̃ ⊆ F are denoted by MorF̃(CF , CG)
and IsomF̃(CF , CG), respectively. The curves CF and CG are called isomorphic over
F̃ or F̃-isomorphic if there exists an isomorphism defined over F̃.

Remark 1.27. Let φ : CF → CG be a rational map between the projective, non-
singular, absolutely irreducible curves CF and CG, then φ is a morphism [Sil86,
Proposition II.2.1]. If φ : CF → CG is a morphism, then φ is either constant or sur-
jective [Sil86, Theorem II.2.3]. By composition, φ induces an injection of function
fields φ∗ : F(CG)→ F(CF ), f 7→ f ◦φ [Sil86, Theorem II.2.4]. The extension degree
[F(CF ) : φ∗(F(CG))] is called the degree of φ.

Definition 1.28. Let C be a projective, nonsingular curve defined over F. A non-
singular curve C ′ defined over F is called a twist of C if C ′ is isomorphic to C over
F. This means that the set Isom(C,C ′) is not empty. We denote by Twist(C/F) the
set of F-isomorphism classes of curves that are twists of C and defined over F.
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If C ′/F is a twist of C/F, there exists an isomorphism ψ ∈ Isom(C,C ′) and a finite
field extension F̃ ⊇ F such that ψ is defined over F̃.

Definition 1.29. Let C/F be a projective curve and C ′/F a twist of C. The minimal
extension degree d for which there exists an isomorphism ψ ∈ Isom(C,C ′) that is
defined over F̃ with [F̃ : F] = d is called the degree of the twist C ′. A twist of degree
2 is called a quadratic twist, one of degree 3 a cubic twist and so on.

Remark 1.30. The set Twist(C/F) is determined by the Galois group GF/F and the
group Isom(C) of isomorphisms of C to itself. For details, we refer to [Sil86, §X.2].

1.1.5 Divisors, the Picard group and the genus

In this subsection, we define the Picard group Pic0
F(C). This group is used in curve-

based cryptographic applications for realizing discrete-logarithm-based protocols. In
its description we follow [Sil86, §II.3] and [FL05a, Section 4.4].
Let C/F be an absolutely irreducible, nonsingular, projective curve defined over
F with C : F (X, Y, Z) = 0. The divisor group Div(C) is the free abelian group
generated by the points of C. An element D ∈ Div(C) is written as a formal sum
D =

∑
P∈C nP (P ), where nP ∈ Z for all P and nP = 0 for all but finitely many

P . Any such D is called a divisor of C. The integer deg(D) :=
∑

P∈C nP is called
the degree of the divisor D. The set of all points P for which nP 6= 0 is called the
support of D. The subgroup of Div(C) containing all divisors of degree 0 is denoted
by Div0(C) := {D ∈ Div(C) | deg(D) = 0}. Since the Galois group GF/F acts on
the points of C, it also acts on divisors. A divisor that is fixed under that action
is said to be defined over F and is called an F-rational divisor. The subgroups of
Div(C) and Div0(C) of divisors defined over F are denoted by DivF(C) and Div0

F(C),
respectively.
With a nonzero element φ of the function field F(C) we associate a divisor div(f) :=∑

P∈C ordP (φ)(P ). A divisor D ∈ Div(C) is called principal if there exists a function

φ ∈ F(C)∗ with D = div(φ). We denote the set of all principal divisors by Princ(C).
The degree of a principal divisor is 0 [Sil86, Proposition II.3.1]. Note that Princ(C) ⊆
Div0(C) is a subgroup of Div0(C).

Definition 1.31. The divisor class group of degree 0 on C, also called the Picard
group of C, is defined as

Pic0(C) := Div0(C)/Princ(C).

The subgroup of Pic0(C) fixed by the Galois group GF/F is the group of divisor classes

defined over F and is denoted by Pic0
F(C).

Remark 1.32. There exists a nonsingular, absolutely irreducible, projective variety
JC defined over F such that JC(F̃) is isomorphic to Pic0

F̃
(C) for all intermediate fields

F ⊆ F̃ ⊆ F. The variety JC is called the Jacobian variety of C. It has the structure
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of a group, and the group law can be described by a morphism JC×JC → JC . Thus
it is an algebraic group. A projective, algebraic group is called an abelian variety .
More details can be found in [FL05a, Section 4.4.4]. We return to abelian varieties
in Chapter 5.

We conclude this subsection by introducing the genus of a curve. This notion occurs
in the important theorem of Riemann-Roch, which we state in the simplified version
as in [FL05a, Theorem 4.106].
But before doing so, we need to define a partial order on Div(C) as follows: A divisor
D =

∑
P∈C nP (P ) is called positive (or effective) if nP ≥ 0 for all P ∈ C. We write

D ≥ 0 in that case. Let D1, D2 ∈ Div(C). Then we write D1 ≥ D2 if D1 −D2 ≥ 0.
This notation is very useful for describing zeros and poles of a function. For example,
the inequality div(φ) ≥ (P )− 5(Q) implies that the function φ has a zero of order
at least 1 at P and a pole of order at most 5 at Q. The inequality div(φ) ≥ −2(P )
means that φ has a pole of order at most 2 at P . Let D ∈ Div(C) be a divisor of
C. Define

L(D) := {φ ∈ F(C)∗ | div(φ) ≥ −D} ∪ {0}.
The set L(D) is a finite dimensional F-vector space [Sti93, Lemmas I.4.6 and Propo-
sition I.4.9]. We denote its dimension by ℓ(D) := dimF(L(D)).

Theorem 1.33 (Riemann-Roch). Let C/F be an absolutely irreducible, nonsingular
curve over F. Then there exists an integer g ≥ 0 such that for every divisor D ∈
Div(C)

ℓ(D) ≥ deg(D)− g + 1.

If D ∈ Div(C) and deg(D) ≥ 2g − 2, then ℓ(D) = deg(D)− g + 1.

Proof. See [FL05a, Theorem 4.106]; or [Sti93, Theorem I.5.15], [Sil86, Theorem
II.5.4], and [Har77, Theorem IV.1.3] for the full version of the theorem.

Definition 1.34. The number g in Theorem 1.33 is called the genus of C.

1.1.6 Elliptic curves

This subsection is dedicated to elliptic curves. We summarize results that we need
in the following chapters. In large parts we follow [Sil86]. In this subsection, let F
be a perfect field.

Definition 1.35. An elliptic curve over F is a nonsingular, absolutely irreducible,
projective curve E of genus 1 defined over F together with an F-rational point
O ∈ E(F).

Using the Riemann-Roch Theorem 1.33, it can be shown that each such curve is
isomorphic to a plane curve given by a special equation, called Weierstraß equation.
In fact, the plane curves over F given by Weierstraß equations are exactly the elliptic
curves over F.
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Proposition 1.36. Let E/F be an elliptic curve defined over F. Then E is isomor-
phic over F to a curve C given by a Weierstraß equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (1.3)

with coefficients a1, a2, a3, a4, a6 ∈ F. The corresponding isomorphism maps the point
O to (0 : 1 : 0). Conversely, every nonsingular cubic given by a Weierstraß equation
(1.3) is an elliptic curve defined over F. We can take O = (0 : 1 : 0).

Proof. This is part of [Sil86, Proposition III.3.1].

Although an elliptic curve is a projective curve, we often write the corresponding
affine equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.4)

It can be seen easily by considering the homogenized curve equation that (0 : 1 : 0)
is the only point at infinity on E. Because of Proposition 1.36, we fix the point
O := (0 : 1 : 0).
If char(F) 6= 2, we may use the transformation (x, y) 7→ (x′, y′) = (x, y+ 1

2
(a1x+a3)),

and after substituting (x, y) for (x′, y′) again, we obtain the curve

E ′ : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
,

where b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6. The above transformation
is an F-isomorphism E → E ′ [FL05a, Section 4.4.2.a]. Assuming additionally that
char(F) /∈ {2, 3}, we further carry out the isomorphism (x, y) 7→ (x′, y′) = (x+ b2

12
, y).

This yields the curve

E ′′ : y2 = x3 − c4
48
x− c6

864
,

where c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6. Furthermore, define b8 :=
a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4 = 1
4
(b2b6 − b24), as well as

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6 and j :=
c34
∆
.

The quantity ∆ is called the discriminant of E, while j is called the j-invariant of
E. We also use the notation j(E) := j.
The curve E ′′ is isomorphic to E. Thus if char(F) /∈ {2, 3}, we may assume that E
is given by a short Weierstraß equation

E : y2 = x3 + ax+ b, a, b ∈ F. (1.5)

In that case, the discriminant and j-invariant can be computed as

∆ = −16(4a3 + 27b2) and j = −1728
(4a)3

∆
.
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When starting with a curve equation (1.4), the discriminant determines whether this
equation defines a nonsingular curve or not. The curve E is nonsingular if and only
if ∆ 6= 0 [Sil86, Proposition III.1.4(a)]. The j-invariant determines the isomorphism
class of an elliptic curve, since two elliptic curves are isomorphic over F if and only
if they have the same j-invariant [Sil86, Proposition III.1.4(b)].

Example 1.37. Let char(F) /∈ {2, 3} and f = y2−x3−b for 0 6= b ∈ F. We consider
the curve E = Cf : y2 = x3 + b over F. We compute ∆ = −16 ·27b2. This is nonzero
as all factors are nonzero in F and thus E is nonsingular and describes an elliptic
curve. The j-invariant is j = 0. Hence all curves E : y2 = x3 + b for b 6= 0 are
elliptic curves. Each two of them are isomorphic over F because they have the same
j-invariant.

Proposition 1.38. For every j0 ∈ F, there exists an elliptic curve E defined over
F(j0) with j-invariant j(E) = j0. If char(F) /∈ {2, 3}, the curve E can be given by
the following short Weierstraß equations:

(a) If j0 = 0, then E : y2 = x3 + b, for any 0 6= b ∈ F.

(b) If j0 = 1728, then E : y2 = x3 + ax, for any 0 6= a ∈ F.

(c) If j0 6= 0, 1728, then E : y2 = x3 − 27j0
4(j0−1728)

x− 27j0
4(j0−1728)

.

Proof. The first statement is [Sil86, Proposition III.1.4(c)]. It can be checked easily
that for char(F) /∈ {2, 3} the given curves have the claimed j-invariant. Notice that
the discriminant is non-zero in all three cases.

Of course, if char(F) ∈ {2, 3}, the curves can be given as well [Sil86, Proof of
Proposition III.1.4(c)]. We now turn to Picard groups of elliptic curves.

Proposition 1.39. Let E be an elliptic curve. For every divisor D ∈ Div0(E),
there exists a unique point P ∈ E such that D ∼ (P ) − (O). Denote this point by
σ(D). Then it follows for all D1, D2 ∈ Div0(E) that σ(D1) = σ(D2) if and only if
D1 ∼ D2. The map σ is surjective and thus induces a bijection of sets

σ : Pic0(E)→ E.

Proof. This is [Sil86, Proposition III.3.4].

Since Pic0(E) carries the structure of an abelian group, the bijection from the pre-
vious proposition induces a group structure on E. The sets Pic0(E) and E are then
isomorphic as groups. Choosing a Weierstraß equation for E, the group law on E
can be given by formulas involving the point coordinates. We give the formulas in
the case char(F) /∈ {2, 3} for a short Weierstraß equation.

Lemma 1.40. Let char(F) /∈ {2, 3}, and let E : y2 = x3 +ax+ b be an elliptic curve
over F. The commutative group law induced by σ from Proposition 1.39 is given as
follows: (We denote the group law by + as addition.)
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(a) For all P ∈ E, it holds P +O = P , i. e. O is the neutral element.

(b) If P = (x1, y1), then (x1, y1) + (x1,−y1) = O, i. e. the additive inverse (or
negative) of P is −P = (x1,−y1).

(c) Let P1 = (x1, y1) and P2 = (x2, y2) with P1 6= −P2. Define

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2,

(3x2
1 + a)/(2y1) if P1 = P2.

The point P3 = P1 + P2 is given by P3 = (x3, y3) with

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1.

Proof. Combine [Sil86, Proposition III.3.4(e)] and [Sil86, Algorithm III.2.3] or see
[FL05a, Section 4.4.5].

Remark 1.41. The group law on an elliptic curve E has a geometric interpretation,
from which the above formulas can be derived. To add two points P1 and P2, one
takes the line L passing through them. If the points are equal, take the tangent
to E in P1. From Bézout’s Theorem 1.21, we know that L intersects with E in a
third point. The reflection of this third intersection point about the x-axis is the
sum P3. Figure 1.1 shows the geometric interpretation of the group law on the curve
E : y2 = x3 − x over R. In Figure 1.1(a), the point P1 has x-coordinate x1 = −0.9
and P2 has x2 = −0.3; in Figure 1.1(b), P1 has x-coordinate x1 = −0.65.

b
b

b

b

P1
P2

P3

−P3

L

E

(a) Addition

b

b

b

P1

P3

−P3

L

E

(b) Doubling

Figure 1.1: Addition and doubling on E : y2 = x3 − x over R.

Next we consider morphisms between elliptic curves that are compatible with the
group law. Let E1, E2 be two elliptic curves. We denote the neutral elements in E1

and E2 by O1 and O2, respectively. A morphism ϕ : E1 → E2 with ϕ(O1) = O2 is
called an isogeny. If there is an isogeny between E1 and E2, the curves are called
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isogenous. It turns out that all isogenies are group homomorphisms, which is shown
in [Sil86, Theorem III.4.8]. We denote by Hom(E1, E2) the set of all isogenies from
E1 to E2, i. e. the set of all morphisms that are group homomorphisms. The subset
of all isogenies defined over F is denoted by HomF(E1, E2).

Remark 1.42. Since we are mainly interested in the group structure of E, all mor-
phisms of elliptic curves that occur in the following shall be group homomorphisms.
In particular, when we speak of isomorphisms, we mean group isomorphisms.

The set Hom(E1, E2) is an abelian group, since E2 is an abelian group, which means
that the sum of two isogenies can be defined pointwise. If E1 = E2, the composition
of isogenies turns Hom(E1, E1) into a ring.

Definition 1.43. The endomorphism ring End(E) of an elliptic curve E is defined
as End(E) := Hom(E,E). The invertible elements in End(E) are called automor-
phisms, and the set of all automorphisms is denoted by Aut(E). It is a group with
respect to composition. The sets of endomorphisms and automorphisms that are
defined over F are denoted by EndF(E) and AutF(E), respectively.

Example 1.44. For m ∈ Z define the multiplication-by-m map [m] : E → E on
an elliptic curve E/F as follows: Let P ∈ E be an arbitrary point. If m = 0, then
[m]P := O. If m > 0, then [m]P := P + P + · · ·+ P is the m-fold sum of P with
itself. Finally, if m ∈ Z, m < 0, then define [m]P := −[−m]P . The map [m] is an
endomorphism over F, i. e. [m] ∈ EndF(E).

Definition 1.45. For 0 6= m ∈ Z, the kernel of the multiplication-by-m map is
denoted by E[m] := ker([m]) = {P ∈ E | [m]P = O}. It is called the m-torsion
subgroup of E. Elements of E[m] are called m-torsion points. The set of F-rational
m-torsion points is denoted by E(F)[m].

Lemma 1.46. Let E be an elliptic curve over F and 0 6= m ∈ Z. Suppose that
char(F) = 0 or that m is prime to char(F). Then,

E[m] ∼= Z/mZ× Z/mZ,

in particular, if m > 0 is a prime, then E[m] is a 2-dimensional Fm-vector space.

Proof. See [Sil86, Corollary III.6.4].

The endomorphism ring of an elliptic curve is a domain of characteristic 0 [Sil86,
Proposition III.4.2(c)]. Since all the maps [m] are in End(E) for all m ∈ Z, the
ring Z can be embedded into End(E). Therefore, the endomorphism ring always
contains a copy of Z.

Theorem 1.47. Let E be an elliptic curve. Then the ring End(E) is isomorphic
either to Z, to an order in a quadratic imaginary field, or to an order in a quaternion
algebra.
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Proof. This statement is [Sil86, Corollary III.9.4].

Definition 1.48. If the endomorphism ring End(E) of an elliptic curve E is iso-
morphic to an order in a quadratic imaginary field, we say that E has complex
multiplication (CM).

In contrast to endomorphisms, the automorphisms of E are rather rare. Over fields
of characteristic different from 2 or 3, the automorphism group is a cyclic group of
order 2, 4, or 6.

Theorem 1.49. Let char(F) /∈ {2, 3}, and let E be an elliptic curve over F. Then,

Aut(E) ∼= µn,

where µn is the group of nth roots of unity with n = 2 if j(E) /∈ {0, 1728}, n = 4 if
j(E) = 1728, and n = 6 if j(E) = 0.

Proof. This is [Sil86, Corollary III.10.2].

An automorphism of E always has the form (x, y) 7→ (u2x, u3y) for some u ∈ F
∗
.

This means that au−4 = a and bu−6 = b. Depending on whether a or b are 0 or not,
this explains the above theorem.
We next describe the twists of E more closely. According to our convention that
an isomorphism is a group isomorphism (see Remark 1.42), we only consider twists
given by isomorphisms ϕ : E1 → E2 with ϕ(O1) = O2, i. e. ϕ is an isogeny. The set
of F-isomorphism classes of these twists is denoted by Twist((E,O)/F). Such twists
are related to the automorphism group of E (see Definition 1.28 and [Sil86, §X.5]).

Proposition 1.50. Let E be an elliptic curve defined over the field F with char(F) /∈
{2, 3}. Let E be given by an equation E : y2 = x3 + ax + b. Let δ = 2 if j(E) /∈
{0, 1728}, δ = 4 if j(E) = 1728 and δ = 6 if j(E) = 0.
There is a bijection F∗/(F∗)δ → Twist((E,O)/F). For ξ ∈ F∗ the twist Eξ, corre-
sponding to ξ mod (F∗)δ has the equation

Eξ : y2 = x3 + ξ−2ax+ ξ−3b if j(E) /∈ {0, 1728} (δ = 2),

Eξ : y2 = x3 + ξ−1ax if j(E) = 1728 (δ = 4),

Eξ : y2 = x3 + ξ−1b if j(E) = 0 (δ = 6).

Proof. This is [Sil86, Proposition X.5.4] with ξ replaced by ξ−1. This can be done,
since ξ1 and ξ2 are in the same class modulo (F∗)δ if and only if ξ−1

1 and ξ−1
2 are.

Remark 1.51. The corresponding isomorphism σξ : Eξ → E is given by

(x1, y1) 7→ (ξx1, ξ
3/2y1) if j(E) /∈ {0, 1728} (δ = 2),

(x1, y1) 7→ (ξ1/2x1, ξ
3/4y1) if j(E) = 1728 (δ = 4),

(x1, y1) 7→ (ξ1/3x1, ξ
1/2y1) if j(E) = 0 (δ = 6).
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Recall Definition 1.29 for the degree of a twist. The maximal degrees that can occur
are given by δ. The following table lists the degree d of the twist depending on j(E)
and ξ:

j(E) δ ξ d

/∈ {0, 1728} 2 ∈ (F∗)2 1
/∈ (F∗)2 2

1728 4 ∈ (F∗)4 1
∈ (F∗)2, /∈ (F∗)4 2

/∈ (F∗)2 4
0 6 ∈ (F∗)6 1

∈ (F∗)3, /∈ (F∗)2 2
∈ (F∗)2, /∈ (F∗)3 3
/∈ (F∗)2, /∈ (F∗)3 6

For all the cases with d = 1 we can take ξ1 := ξ1/δ ∈ F∗ and get an isomorphism
Eξδ

1

→ E, (x, y) 7→ (ξ2
1x, ξ

3
1y). In the same way, all the cases with d = 2 can be

treated like the cases with j(E) /∈ {0, 1728} by taking a (δ/2)th root of ξ.

From now on, we consider elliptic curves over a finite field. We fix F = Fq, a field of
order q. Let p = char(Fq) be the characteristic of Fq. Since there are only finitely
many elements that can occur as coordinates of Fq-rational points, the set E(Fq) is
finite. Hasse’s Theorem gives bounds for its cardinality.

Theorem 1.52 (Hasse). Let E/Fq be an elliptic curve defined over Fq. Then

#E(Fq) = q + 1− t, where |t| ≤ 2
√
q. (1.6)

Proof. This is [Sil86, Theorem V.1.1].

The number t from the previous theorem is called the trace of the Frobenius en-
domorphism of E over Fq. This terminology is justified in the following example.
Note that the q-power Frobenius automorphism on a finite field extension Fqk/Fq
generates the Galois group GF

qk
/Fq for any k ∈ N. As already mentioned in Subsec-

tion 1.1.4, the action of any field automorphism in GF
qk
/Fq extends to points on the

elliptic curve E/Fq. Extending the Frobenius automorphism in this way results in
an Fq-endomorphism of E:

Example 1.53. If E is an elliptic curve defined over Fq, the map

φq : E → E, (x1, y1) 7→ (xq1, y
q
1)

is an endomorphism of E, called the Frobenius endomorphism. Since the qth power
map is the identity on Fq, the set of points fixed by φq is the group E(Fq) of Fq-
rational points on E. The endomorphism φq satisfies φ2

q−[t]◦φq+[q] = 0, see [Sch85,
p. 485]. Therefore, we call χq := T 2 − tT + q ∈ Z[T ] the characteristic polynomial
of φq.
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Deuring [Deu41] describes the endomorphism ring of an elliptic curve over a finite
field. It can not be isomorphic to Z, since it always contains φq. Therefore, it
is isomorphic to an order in a quaternion algebra or to an order in a quadratic
imaginary field, see Theorem 1.47. The following theorem relates the structure of
End(E) with that of E[p].

Theorem 1.54. Let E be an elliptic curve defined over Fq. The following statements
are equivalent:

(a) The endomorphism ring End(E) is non-commutative.

(b) The ring End(E) is an order in a quaternion algebra.

(c) The p-torsion subgroup is E[p] = {O}.

(d) The trace of Frobenius t is divisible by p, i. e. p | t.

If the above conditions do not hold, then E[p] ∼= Z/pZ.

Proof. The theorem follows from [Sil86, Theorem V.3.1] with [Wat69, Theorem 4.1
and the definition before] or [Sil86, Exercise 5.10] concerning condition (d).

Definition 1.55. An elliptic curve E/Fq is called supersingular if one of the condi-
tions in Theorem 1.54 holds. Otherwise, the curve is called ordinary.

Returning to Hasse’s Theorem, the question arises whether for any number t with
|t| ≤ 2

√
q there exists an elliptic curve with q + 1 − t rational points. For most of

such numbers t this is true. There are only a few exceptions (see [Wat69, Theorem
4.1] and [Sch87, Theorem 4.2 and Theorem 4.6]). In the following lemma, we only
state the case that we need later.

Lemma 1.56. Let t ∈ Z with |t| ≤ 2
√
q and p ∤ t. Then there exists an ordinary

elliptic curve E defined over Fq, such that #E(Fq) = q + 1 − t. In particular, if
q = p is prime, then for every t 6= 0 with |t| ≤ 2

√
p there exists an ordinary elliptic

curve over Fp with #E(Fp) = p+ 1− t.

Proof. This result follows immediately from [Wat69, Theorem 4.1].

Consider the twists of an elliptic curve over a finite field Fq as described in Propo-
sition 1.50 and Remark 1.51. The number of Fq-rational points on the twist can be
given in terms of the trace t of the original curve E and the order q of the field.
Heß, Smart, and Vercauteren [HSV06] determine the possible group orders of the
twists of an ordinary elliptic curve over a finite field, which we give in the following
proposition. Note that #E(Fqd) = #E ′(Fqd) for a twist of degree d.

Proposition 1.57. Let E be an ordinary elliptic curve defined over Fq, and let
#E(Fq) = q + 1− t. Let E ′ be a twist of E of degree d. The possible group orders
of E ′(Fq) are given as follows:
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d #E ′(Fq)

2 q + 1 + t
3 q + 1− (3v − t)/2 with t2 − 4q = −3v2

q + 1− (−3v − t)/2 with t2 − 4q = −3v2

4 q + 1− v with t2 − 4q = −v2

q + 1 + v with t2 − 4q = −v2

6 q + 1− (3v + t)/2 with t2 − 4q = −3v2

q + 1− (−3v + t)/2 with t2 − 4q = −3v2

Proof. This is [HSV06, Proposition 8].

The groups of points on elliptic curves used in cryptography are cyclic groups of a
large prime order. Let E be an elliptic curve defined over Fq with n := #E(Fq). Let
r 6= p be a prime dividing n.

Definition 1.58. The embedding degree of E with respect to r is the smallest integer
k such that r | (qk − 1).

If r ∤ (q − 1), the embedding degree determines the smallest extension of Fq over
which all r-torsion points of E are defined.

Theorem 1.59. Let E/Fq be an elliptic curve, n = #E(Fq), r a prime with r | n
and r ∤ (q − 1). Then E[r] ⊆ E(Fqk) if and only if r | (qk − 1).

Proof. See [BK98, Theorem 1].

Let k > 1 be the embedding degree of E with respect to r. Since r | n, we know
that there are r-torsion points defined over Fq. Let φq be the q-power Frobenius
endomorphism as in Example 1.53. Since an r-torsion point is again mapped to an
r-torsion point by φq, its restriction to E[r] is a group endomorphism.

Lemma 1.60. Let E/Fq be an elliptic curve, r 6= p a prime with r | #E(Fq),
k > 1 the embedding degree of E with respect to r, and φq the q-power Frobenius
endomorphism.
Then E[r] is a 2-dimensional vector space over Fr. The restriction of φq to E[r],
φq : E[r]→ E[r] is a bijective linear map, which has the two eigenvalues λ1 = 1 and
λ2 = q. We have the following vector space decomposition into eigenspaces:

E[r] = (ker(φq − [1]) ∩ E[r])⊕ (ker(φq − [q]) ∩E[r]).

It is ker(φq − [1]) ∩ E[r] = E(Fq)[r] and ker(φq − [q]) ∩ E[r] ⊆ E(Fqk)[r].

Proof. It is clear that E[r] is a 2-dimensional Fr-vector space (see Lemma 1.46). It
can be seen easily that φq is injective and thus bijective on E[r]. There are r-torsion
points in E(Fq), because r | #E(Fq). Points defined over Fq are fixed under φq and
so 1 is an eigenvalue of φq, and the corresponding eigenspace is ker(φq− [1])∩E[r] =
E(Fq)[r]. The characteristic polynomial of the vector space homomorphism φq is
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the polynomial χq from Example 1.53. From r | q + 1 − t = χq(1), it can also be
seen that (T − 1) | χq modulo r. Over Fr, the polynomial χq = T 2− tT + q splits as
(T−1)(T−q) ∈ Fr[T ], showing that the other eigenvalue of φq on E[r] is q. Thus E[r]
is the direct sum of the eigenspaces. The statement ker(φq − [q])∩E[r] ⊆ E(Fqk)[r]
follows from r | n and k > 1.

1.1.7 Edwards curves and twisted Edwards curves

In this subsection, we briefly describe Edwards curves and twisted Edwards curves.
Edwards curves were introduced as a new normal form for elliptic curves by Edwards
in 2007 [Edw07]. Their importance for cryptography was shown by Bernstein and
Lange [BL07].
Let F be a field of characteristic different from 2. An Edwards curve over F is a
curve

Ed : x2 + y2 = 1 + dx2y2, d ∈ F \ {0, 1}. (1.7)

A group law on Ed can be defined as follows: The sum of two points P1 = (x1, y1)
and P2 = (x2, y2) in Ed(F) is given by

P1 + P2 =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
. (1.8)

The neutral element with respect to this addition is (0, 1). The point (0,−1) has
order 2 and the points (1, 0) and (−1, 0) have order 4. The above group law has the
advantage that it is complete for certain values of d, i. e. there are no exceptional
cases, the formulas work for any pair of input points. Theorem 3.3 in [BL07] shows
that this is the case if d is not a square in F.
Bernstein, Birkner, Joye, Lange, and Peters generalize the concept of Edwards curves
and introduce twisted Edwards curves in [BBJ+08].

Definition 1.61. Let F be a field with char(F) 6= 2. A twisted Edwards curve over
F is a curve

Ea,d : ax2 + y2 = 1 + dx2y2, a, d ∈ F∗, d 6= a. (1.9)

Remark 1.62. In fact, a twisted Edwards curve is a quadratic twist of an Edwards
curve. The curve Ea,d is a quadratic twist of the curve E1,d/a, see [BBJ+08, Section 2].
Note that for a = 1, the curve Ea,d = E1,d is an Edwards curve Ed as defined before.

The fact that many elliptic curves are birationally equivalent to twisted Edwards
curves can be used to represent elliptic curves by Edwards curves or twisted Edwards
curves. The following theorem shows that an elliptic curve E over F which has a
point of order 4 is birationally equivalent to an Edwards curve Ed.

Theorem 1.63. Let F be a field with char(F) 6= 2. Let E be an elliptic curve over
F that has a point of order 4. Then there exists d ∈ F \ {0, 1} such that the curve
Ed : x2 + y2 = 1 + dx2y2 is birationally equivalent to E over F.
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Proof. This is Theorem 3.3 in [BBJ+08].

The algorithm of how to determine the curve Ed from a given elliptic curve E is
described in the proof of [BBJ+08, Theorem 3.3]. Moreover, the group law on
the elliptic curve E corresponds to the group law on the Edwards curve under the
birational equivalence. Theorem 3.2 in [BL07] shows that two corresponding points
add to the corresponding point of the sum.
As a generalization of Edwards curves, twisted Edwards curves naturally cover a
larger set of elliptic curves that can be represented. The set of twisted Edwards
curves covers all elliptic curves that can be transformed into a Montgomery curve.

Definition 1.64. Let F be a field with char(F) 6= 2. Let A ∈ F \ {−2, 2} and
B ∈ F∗. A curve

EM
A,B : By2 = x3 + Ax2 + x

is called a Montgomery curve.

Details on Montgomery curves can be found in [DL05a, Section 13.2.3].

Theorem 1.65. Every twisted Edwards curve over F is birationally equivalent over
F to a Montgomery curve, and conversely, every Montgomery curve over F is bira-
tionally equivalent over F to a twisted Edwards curve.

Proof. This is proved as Theorem 3.2 in [BBJ+08].

The specific transformations are given in the proof of [BBJ+08, Theorem 3.2]. Over
a finite field Fq, many Montgomery curves are even birationally equivalent to an
Edwards curve. This is the case if q ≡ 3 (mod 4) [BBJ+08, Theorem 3.4].
The group law on a twisted Edwards curve is very similar to that on an Edwards
curve. For P1 = (x1, y1), P2 = (x2, y2) ∈ Ea,d(F) the sum of the two points is given
by

P1 + P2 =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
. (1.10)

If a is a square in F, Ea,d is F-isomorphic to E1,d/a under the isomorphism (x, y) 7→
(
√
ax, y) that fixes the neutral element (0, 1). Therefore, the above formulas are

complete on Ea,d(F) if a is a square in F and d is a nonsquare in F (see also [BBJ+08,
Section 6]).
For the remainder of this subsection, we consider a twisted Edwards curve in its
projective form

Ea,d : (aX2 + Y 2)Z2 = Z4 + dX2Y 2.

The point O := (0 : 1 : 1) is the neutral element of the addition, and the point
O′ := (0 : −1 : 1) has order 2. The points (1/

√
a : 0 : 1) and (−1/

√
a : 0 : 1) both

have order 4. All affine points are nonsingular, but there are two singular points at
infinity.
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Lemma 1.66. Let Ea,d be a twisted Edwards curve over F with char(F) 6= 2. The
points Ω1 := (1 : 0 : 0) and Ω2 := (0 : 1 : 0) are the only points at infinity on Ea,d.
Both points are singular, and their multiplicities are mΩ1

(Ea,d) = 2 = mΩ2
(Ea,d).

Proof. Let f = (aX2 + Y 2)Z2 − Z4 − dX2Y 2 be the polynomial defining Ea,d. A
point P = (XP : YP : 0) ∈ Ea,d must satisfy dX2

PY
2
P = 0. Since d 6= 0, the only two

possible points with Z-coordinate equal to 0 are Ω2 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0).
We compute the partial derivatives

∂f

∂X
= 2X(aZ2 − dY 2),

∂f

∂Y
= 2Y (Z2 − dX2),

∂f

∂Z
= 2Z(aX2 + Y 2 − 2Z2),

and see that they all vanish at Ω1 and Ω2. According to Definition 1.12, both
points are singular. To show that the multiplicity of each point is 2, we follow
Remark 1.15. Dehomogenize f with respect to the first coordinate such that Ω1

corresponds to the affine point (0, 0) on the affine curve given by the polynomial
az2 + y2z2 − z4 − dy2. The lowest-degree monomials az2 and −dy2 have degree 2,
which means that mΩ1

(Ea,d) = 2. The point Ω2 is handled similarly.

1.1.8 Hyperelliptic curves

In this section, we give a basic introduction to hyperelliptic curves, mainly to intro-
duce notation for hyperelliptic curves of genus 2. Let F be a perfect field.

Definition 1.67. A nonsingular projective curve C/F of genus g is called a hyper-
elliptic curve of genus g if its function field F(C) is a separable extension of degree
2 of the rational function field F(x), i. e. [F(C) : F(x)] = 2.

With the help of the Riemann-Roch Theorem 1.33, it can be shown that a hy-
perelliptic curve of genus g can be given by a nonsingular plane affine curve (see
Section 4.4.2.b in [FL05a]). For the purpose of this work, it suffices to characterize
hyperelliptic curves by their affine plane parts as given in the following proposition.

Proposition 1.68. The function field of a hyperelliptic curve of genus g over F is
the function field of a nonsingular, plane, affine curve given by

C : y2 + h(x)y = f(x),

where h(x), f(x) ∈ F[x], deg(f) ∈ {2g + 1, 2g + 2}, deg(h) ≤ g + 1.

Proof. This follows from Theorem 4.122 in [FL05a].

A Weierstraß point on C is a fixed point under the hyperelliptic involution induced
by the nontrivial automorphism of the field extension F(C)/F(x). For details, see
[FL05a, Section 4.4.2.b]. If there exists an F-rational Weierstraß point, the curve is
birationally equivalent to one of the form

C : y2 + h(x)y = f(x),

where h(x), f(x) ∈ F[x], deg(f) = 2g + 1, deg(h) ≤ g. The homogenization of any
such curve has a singular point at infinity.
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Remark 1.69. If deg(f) = 2g+1 and char(F) 6= 2, the equation can be transformed
by completing the square to achieve h(x) = 0 [FL05a, p.74]. If we have a curve given
by an equation y2 = f(x), a point P = (xP , yP ) being singular means that yP = 0
and xP is a double root of f(x). Therefore, a hyperelliptic curve over a field of
characteristic different from 2 can be given as C : y2 = f(x) such that f has only
simple roots in F[x].

With the above definition of hyperelliptic curves we may subsume elliptic curves as
hyperelliptic curves of genus 1. But if g > 1, the points on C do not form a group any-
more. Therefore, we use the Picard group Pic0(C), or in other words, the Jacobian
variety JC for cryptographic applications (see Definition 1.31 and Remark 1.32). The
following theorem gives a nice representation for elements of Pic0(C), from which
their field of definition can be read off.

Theorem 1.70 (Mumford representation). Let C : y2 + h(x)y = f(x) be a hy-
perelliptic curve of genus g with h, f ∈ F[x], deg(f) = 2g + 1, deg(h) ≤ g. Let
F ⊆ F̃ ⊆ F. Each nontrivial group element in Pic0

F̃
(C) can be represented by a

unique pair of polynomials (u(x), v(x)), u, v ∈ F̃[x], where

(a) the polynomial u is monic,

(b) deg(v) < deg(u) ≤ g,

(c) u | (v2 + vh− f).

Proof. See [FL05a, Theorem 4.145].

Remark 1.71. Arithmetic in the group Pic0
F̃
(C) with elements in Mumford repre-

sentation can be done with Cantor’s algorithm, see [Can87] or [DL05b, Algorithm
14.7]. The Mumford representation in the previous theorem shows that the Picard
group Pic0

Fq(C) of a hyperelliptic curve C over a finite field Fq is finite.

From now on, we identify the Jacobian variety JC (see Remark 1.32) with Pic0(C).
For the sake of brevity, we use the notation JC , always keeping in mind that for
us, elements of JC are divisor classes. We denote the class of a divisor D by D. It
has already been mentioned that JC is an abelian variety (see Remark 1.32). An
endomorphism of JC is a morphism of abelian varieties JC → JC , i. e. a morphism of
varieties that additionally is a group homomorphism (see [FL05a, Section 4.3.3]). In
particular, it fixes the neutral element of JC . We denote the set of all endomorphisms
of JC by End(JC). The set of all endomorphisms defined over a field F̃ with F ⊆
F̃ ⊆ F is denoted by EndF̃(JC).

Example 1.72. An important endomorphism of JC is the multiplication-by-m map
[m] : JC → JC for m ∈ Z. An element D ∈ JC is mapped to [m]D, which is defined
as the m-fold sum of D, understanding m = 0 and negative m as usual (compare
with Example 1.44). The kernel of [m] is denoted by

JC [m] := {D ∈ JC | [m]D = 0},
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where 0 is the class of the zero-divisor D = 0. The set JC [m] is called the subgroup
of m-torsion points on JC . For any F ⊆ F̃ ⊆ F, the subset of F̃-rational divisor
classes in JC [m] is denoted by JC(F̃)[m].

The previous example shows that there is an embedding Z → EndF(JC). Next we
state the generalization of Lemma 1.46.

Theorem 1.73. Let C be a hyperelliptic curve of genus g defined over F and let JC
be its Jacobian variety. Let 0 6= m ∈ Z. If char(F) = 0 or if m is prime to char(F),
then

JC [m] ∼= (Z/mZ)2g.

If char(F) = p > 0, then JC [pe] ∼= (Z/peZ)s, where 0 ≤ s ≤ g for all e ≥ 1.

Proof. This is [DL05b, Theorem 14.11].

Definition 1.74. The number s in Theorem 1.73 is called the p-rank of C over F.

For the remainder of this section, we consider hyperelliptic curves C over finite fields
F = Fq.

Definition 1.75. If the p-rank of C is equal to g, then JC is called ordinary. The
Jacobian JC is called supersingular if it is the product of supersingular elliptic curves.
The curve C is called ordinary or supersingular if JC is ordinary or supersingular,
respectively.

Remark 1.76. An elliptic curve is supersingular if and only if it has p-rank 0. For
curves of genus larger than 1, we have that if C is supersingular, then it has p-rank
0. The converse only holds for g ≤ 2 [FL05a, Remark 4.75].

If we extend the q-power Frobenius automorphism of Fq to points on C, to divisors,
and finally to divisor classes, we obtain an endomorphism φq : JC → JC , called
the Frobenius endomorphism on JC . When using the Mumford representation, the
endomorphism is carried out by applying the q-power map to the coefficients of the
polynomials u and v.

Theorem 1.77. The endomorphism φq satisfies a characteristic polynomial of de-
gree 2g given by

χq(T ) = T 2g + a1T
2g−1 + · · ·+ agT

g + · · ·+ a1q
g−1T + qg ∈ Z[T ].

Let αi ∈ C be the roots of χq over C, i. e.

χq(T ) =

2g∏

i=1

(T − αi).

Then the following statements hold:
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(a) The numbers αi satisfy |αi| =
√
q for all 1 ≤ i ≤ 2g. There exists an ordering

of the αi with αi+g = αi, i. e. αiαi+g = q for all 1 ≤ i ≤ g.

(b) For any positive integer k, it holds

#C(Fqk) = qk + 1−
2g∑

i=1

αki , #JC(Fqk) =

2g∏

i=1

(1− αki ),

as well as |#C(Fqk)− (qk + 1)| ≤ g⌊2qk/2⌋. In particular, #JC(Fq) = χq(1).

Proof. See Theorem 14.16 and Theorem 14.17 in [DL05b].

Example 1.78. Let C be a hyperelliptic curve of genus 2 over the finite field Fq.
The characteristic polynomial of the Frobenius endomorphism on JC is

χq(T ) = T 4 + a1T
3 + a2T

2 + a1qT + q2

with a1, a2 ∈ Z. The equations in Theorem 1.77 lead to a relation between the
coefficients a1, a2 and nk := #C(Fqk), k ∈ {1, 2}.
We have χq = T 4 −

∑4
i=1 αiT

3 +
∑

i<j αiαjT
2 − q

∑4
i=1 αiT + q2. It follows that

a1 = −(α1 + α2 + α3 + α4) and thus n1 = q + 1 + a1. Computing a2
1 shows that

n2 = q2 + 1 + 2a2 − a2
1. Knowing a1 and a2, it is possible to compute n1 and n2

and vice versa. From the inequality in part (b) of the previous theorem, it follows
|a1| ≤ 2⌊2√q⌋ and −2q ≤ a2 ≤ 10q. More accurate are the following bounds
depending on a1 (see [Rüc90, Theorem 1.1]):

2|a1|
√
q − 2q ≤ a2 ≤

a2
1

4
+ 2q.

The techniques from the example can be applied for arbitrary genus g. Thus the
order of the Jacobian JC(Fq) can be computed from the number of Fqk-rational
points on C for 1 ≤ k ≤ g. Knowing the coefficients of the characteristic polynomial
of the Frobenius endomorphism means knowing #C(Fqk) for 1 ≤ k ≤ g.

1.2 Pairings

In this section, we define pairings and introduce the Tate-Lichtenbaum pairing and
the Weil pairing on the Jacobian of a hyperelliptic curve. In the case of elliptic
curves, we describe the details of pairing computation for different variants of pair-
ings.
Pairings used in cryptography are efficiently computable bilinear maps on torsion
subgroups of the Jacobian variety of a hyperelliptic curve that map into the mul-
tiplicative group of a finite field. We call such a map a cryptographic pairing. In
contrast to the mathematical concept of a pairing, this additionally includes the
existence of algorithms for efficient pairing computation.
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Definition 1.79. Let G1, G2 be finite abelian groups written additively, and let G3

be a multiplicatively written finite abelian group. A cryptographic pairing is a map

e : G1 ×G2 → G3

that satisfies the following properties:

(a) It is non-degenerate, i. e. for all 0 6= P ∈ G1 there is a Q ∈ G2 with e(P,Q) 6= 1,
and for all 0 6= Q ∈ G2 there is a P ∈ G1 with e(P,Q) 6= 1.

(b) It is bilinear, i. e. for P1, P2 ∈ G1 and Q1, Q2 ∈ G2 we have

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2).

(c) It is efficiently computable.

An important property that is used in most applications, and that follows immedi-
ately from bilinearity is e([a]P, [b]Q) = e(P,Q)ab = e([b]P, [a]Q) for all a, b ∈ Z and
for all P ∈ G1 and Q ∈ G2.
The first applications in cryptography used the Weil pairing. Menezes, Okamoto,
and Vanstone [MOV93] describe a way of reducing the discrete logarithm problem
(DLP) on a supersingular elliptic curve to a DLP in the multiplicative group of a
finite field. They construct a group isomorphism from the Weil pairing. Frey and
Rück [FR94] use a map deduced from the Tate pairing for a more general reduc-
tion of the DLP in a torsion subgroup of the Jacobian of a curve. First construc-
tive applications were the identity-based non-interactive key agreement of Sakai,
Ohgishi, and Kasahara [SOK00], Joux’s tripartite one-round key agreement [Jou00],
the identity-based encryption scheme by Boneh and Franklin [BF01, BF03], and the
short signature scheme by Boneh, Lynn, and Shacham [BLS04b]. Currently, most
cryptographic pairings are variants of the Tate pairing.

1.2.1 The Tate-Lichtenbaum pairing

The Tate pairing can be defined on an arbitrary abelian variety. It induces a pairing
on the r-torsion subgroup of the abelian variety for a prime r. A brief overview of the
definition of the Tate pairing can be found in [DF05a, Sections 6.2 and 6.3]. Lichten-
baum describes a version of the Tate pairing which can be computed very efficiently
(see [DF05a, Corollary 6.17]). Since we are interested in practical implementations,
we restrict ourselves to discussing the Tate-Lichtenbaum pairing [DF05a, Definition
6.15]. We also refer to it simply as the Tate pairing, knowing that we use Lichten-
baum’s approach.
Let C be a hyperelliptic curve of genus g defined over a finite field Fq of characteristic
p. Let JC be the Jacobian variety of C. Note that we regard elements of JC as divisor
classes represented by a divisor of degree 0. Let n = #JC(Fq) and r > 5 be a prime
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different from p with r | n. The embedding degree can be defined as for elliptic
curves (Definition 1.58).

Definition 1.80. The smallest integer k with r | (qk − 1) is called the embedding
degree of C with respect to r.

Remark 1.81. The embedding degree as defined in the previous definition is a
function of r and q and actually does not depend on the curve itself. Nevertheless,
we attach it to the curve C if the prime r divides #JC(Fq).
If k is the smallest integer with r | (qk − 1), then the order of q modulo r is k.
Furthermore, the smallest field extension of Fq that contains the group µr of all rth
roots of unity is Fqk . This does not mean that Fqk is the smallest extension of Fp
that contains µr. As shown by Hitt [Hit07], this observation may have an influence
on the security of pairing-based cryptosystems.

Definition 1.82. Let C be a hyperelliptic curve of genus g over the finite field
Fq of characteristic p, and let r 6= p be a prime dividing #JC(Fq). Let k be the
embedding degree of C with respect to r. The Tate-Lichtenbaum pairing (or simply
Tate pairing) is a map

Tr : JC(Fqk)[r]× JC(Fqk)/[r]JC(Fqk)→ F∗
qk/(F

∗
qk)

r

defined as follows: Let P ∈ JC(Fqk)[r] be an Fqk-rational divisor class of order
dividing r represented by a divisor DP , and let Q ∈ JC(Fqk) be an Fqk-rational
divisor class represented by a divisor DQ such that its support is disjoint from the
support of DP . Let fr,P ∈ Fqk(C) be a function on C with div(fr,P ) = rDP . Then

Tr(P,Q+ [r]JC(Fqk)) = fr,P (DQ)(F∗
qk)

r.

The evaluation of fr,P at a divisor D =
∑

R∈C nR(R) is given as

fr,P (D) =
∏

R∈C
fr,P (R)nR.

Proposition 1.83. The Tate pairing as defined in Definition 1.82 is well defined,
bilinear, non-degenerate, and can be computed in O(log2(r)) operations in F∗

qk .

Proof. This is Proposition 2.3 in [FR94] and [DF05a, Theorem 6.15 and Corollary
6.17].

For a suitable curve, the Tate pairing is hence a cryptographic pairing in the sense
of Definition 1.79. The following lemma gives a simple statement from elementary
group theory that can be used to represent the group JC(Fqk)/[r]JC(Fqk) with points
in JC(Fqk)[r].

Lemma 1.84. Let G be a finite abelian group written additively, and let r be a
prime dividing |G|. Let G[r] be the subgroup of all points of order dividing r and rG
the set of all r-fold sums of elements in G. If there is no element of order r2 in G,
then G[r] ∼= G/rG.
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Proof. We show that the map G[r] → G/rG, g 7→ g + rG is a group isomorphism.
It is clear that it is a group homomorphism. Suppose g1 + rG = g2 + rG for
g1, g2 ∈ G[r]. Then it follows that g1 − g2 ∈ rG, i. e. g1 − g2 = rg for some g ∈ G.
Since g1, g2 ∈ G[r], we have 0 = rg1 − rg2 = r2g. As there is no element of order
r2 by assumption, we have rg = 0 and thus g1 = g2. Therefore, the above map is
injective. Consider the group homomorphism G → rG, g 7→ rg. The kernel of this
map is G[r] and it follows G/G[r] ∼= rG. Hence |G| = |G[r]| · |rG|. This proves the
lemma.

Corollary 1.85. If there are no points of order r2 in JC(Fqk), we have

JC(Fqk)[r] ∼= JC(Fqk)/[r]JC(Fqk),

i. e. we can choose the r-torsion points as representatives of the classes on the right
hand side.

Remark 1.86. Since r | #JC(Fq), there are r-torsion points in #JC(Fq), and we
may restrict the first argument to be taken from this set. Thus we can also define
the Tate pairing as a map

Tr : JC(Fq)[r]× JC(Fqk)/[r]JC(Fqk)→ F∗
qk/(F

∗
qk)

r.

From now on, we assume that JC(Fqk) does not contain any point of order r2. In
this case, by Corollary 1.85, the Tate pairing can be given as a map

Tr : JC(Fq)[r]× JC(Fqk)[r]→ F∗
qk/(F

∗
qk)

r.

Nevertheless, we keep in mind that we can take any other representative in JC(Fqk)
of a class for the second argument.
Values of the Tate pairing are classes in F∗

qk
/(F∗

qk
)r. By applying the multiplicative

version of Lemma 1.84, we see that F∗
qk
/(F∗

qk
)r ∼= µr, the subgroup of rth roots of

unity in F∗
qk . The isomorphism is made explicit by computing

F∗
qk/(F

∗
qk)

r → µr, a(F
∗
qk)

r 7→ a(qk−1)/r.

This map is called the final exponentiation.

Taking into account all the modifications made in the previous remark, we can define
a version of the Tate pairing suitable for practical implementations (compare with
the description in [DF05b, Section 16.1.1]).

Definition 1.87. The reduced Tate pairing is the map

er : JC(Fq)[r]× JC(Fqk)[r] → µr ⊆ F∗
qk ,

(P,Q) 7→ Tr(P,Q)(qk−1)/r = fr,P (DQ)(qk−1)/r,

induced by the Tate pairing.
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1.2.2 The Weil pairing

Early applications in cryptography used the Weil pairing on supersingular elliptic
curves (see [MOV93] or [BF03]). Here, we define the Weil pairing for arbitrary
hyperelliptic curves. Let the assumptions be as in the previous subsection. In
particular, let k be the embedding degree of C with respect to r.

Definition 1.88. The Weil pairing is defined as

Wr : JC [r]× JC [r] → µr ⊆ F∗
qk ,

(P,Q) 7→ fr,P (DQ)

fr,Q(DP )
.

The functions and divisors are defined as in the definition of the Tate-Lichtenbaum
pairing in Definition 1.82.

Note that there is no need for a final exponentiation. The pairing value itself is an
rth root of unity.

Remark 1.89. Rubin and Silverberg [RS08, Theorem 3.1] show that the q-eigenspace
U = JC [r] ∩ ker(φq − [q]) of the Frobenius endomorphism φq on JC [r] is con-
tained in JC(Fqk), and that the Weil pairing induces a non-degenerate pairing
JC(Fq)[r] × U → µr. For practical applications, one may therefore restrict the
Weil pairing to these groups.

Remark 1.90. Both the Weil and the reduced Tate pairing map into the group µr
of rth roots of unity. As already mentioned, in some cases, if q is not a prime, it
might happen that this group lies in an extension of Fp that is a proper subfield of
Fqk but not an extension of Fq. Then the discrete logarithm problem in µr is easier
to solve than that in Fqk . For details, we refer to Hitt’s paper [Hit07].

We have introduced the Tate pairing and the Weil pairing. We proceed with a more
detailed description of pairing computation on elliptic curves. But before doing so,
we shall note that pairings can only be computed efficiently if the embedding degree
of the underlying curve is small enough, since computations in the field F∗

qk must
be performed. Such curves are rare and need to be constructed. We return to this
problem in Section 1.3.

1.2.3 Pairing computation on elliptic curves

In [Mil86a], Miller gives an algorithm to compute the Weil pairing on elliptic curves.
A more detailed description of this algorithm, which is known as Miller’s algorithm,
is presented in [Mil04]. It explains an efficient way to compute the functions fr,P (DQ)
used in the Weil and Tate pairings.
Let E be an elliptic curve over the finite field Fq of characteristic p > 3 given by a
short Weierstraß equation E : y2 = x3 + ax+ b, a, b ∈ Fq. Let r 6= p be a prime such
that r | n = #E(Fq), and let k > 1 be the embedding degree of E with respect to r.
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Theorem 1.91. Let D =
∑

P∈E nP (P ) ∈ Div(E). Then D is a principal divisor
if and only if deg(D) = 0 and

∑
P∈E[nP ]P = 0, where the latter sum describes

addition on E.

Proof. This is Corollary III.3.5 in [Sil86] or Theorem 1 in [Mil04].

We use Proposition 1.39 to replace divisor classes by points, and find the reduced
Tate pairing to be the map

er = E(Fq)[r]× E(Fqk)[r] → µr ⊆ F∗
qk ,

(P,Q) 7→ fr,P (DQ)(qk−1)/r.

When computing fr,P (Q), i. e. when rDP is supposed to be the divisor of the function
fr,P , we can choose DP = (P ) − (O), see Proposition 1.39. The divisor DQ ∼
(Q)− (O) needs to have a support disjoint from {O, P}. To achieve that, one may
choose a suitable point S ∈ E(Fqk) and represent DQ as (Q+ S)− (S).
The Weil pairing is the map

Wr = E[r]× E[r] → µr ⊆ F∗
qk .

(P,Q) 7→ fr,P (DQ)/fr,Q(DP ).

For the computation of fr,Q(P ), we can take DQ = (Q)− (O) and need to choose a
suitable point R such that DP = (P +R)− (R) has support disjoint from {O, Q}.
In the following, we describe how to compute the functions fr,P and fr,Q. Since
both computations are totally analogous, we choose notation for fr,P , but allow
P ∈ E(Fqk). We need to compute the function fr,P having divisor div(fr,P ) =
r(P )−r(O). Theorem 1.91 shows that for m ∈ Z the divisor m(P )− ([m]P )− (m−
1)(O) is principal, such that there exists a function fm,P ∈ Fq(E) with div(fm,P ) =
m(P )− ([m]P )− (m− 1)(O). Since P is an r-torsion point, we see that div(fr,P ) =
r(P ) − r(O), and fr,P is actually a function we are looking for, which justifies our
notation.

Definition 1.92. Given m ∈ Z and P ∈ E(Fqk)[r], a function fm,P ∈ Fqk(E) with
divisor div(fm,P ) = m(P )− ([m]P )− (m− 1)(O) is called a Miller function.

The computation of fr,P makes use of the lines arising when two points on the curve
are added. The following three lemmas discuss divisors of functions related to these
lines, give their defining polynomials, and fix notation for later use.

Lemma 1.93. Let P1, P2 ∈ E. Let lP1,P2
be the homogeneous polynomial defining

the line through P1 and P2, being the tangent to the curve in P1 if P1 = P2. The
function LP1,P2

= lP1,P2
(X, Y, Z)/Z has the divisor

div(LP1,P2
) = (P1) + (P2) + (−(P1 + P2))− 3(O).
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Proof. See [Mil04, Proposition 2].

Next we give affine polynomials for the lines occurring in the previous lemma. Com-
pare these to the formulas of the addition law described in Lemma 1.40.

Lemma 1.94. Let P1 = (x1, y1), P2 = (x2, y2), Q = (xQ, yQ) ∈ E. For P1 6= −P2

define

λ =

{
(y2 − y1)/(x2 − x1) if P1 6= P2,

(3x2
1 + a)/(2y1) if P1 = P2.

Then the dehomogenization (lP1,P2
)∗ of lP1,P2

evaluated at Q is given by

(lP1,P2
)∗(Q) = λ(xQ − x1) + (y1 − yQ).

If P1 = −P2, then (lP1,P2
)∗(Q) = xQ − x1.

Proof. This follows from the formulas for the elliptic-curve group law (Lemma 1.40)
and their geometric interpretation (Remark 1.41).

Lemma 1.95. Let P1, P2 ∈ E. The function gP1,P2
:= LP1,P2

/LP1+P2,−(P1+P2) has
the divisor

div(gP1,P2
) = (P1) + (P2)− (P1 + P2)− (O).

Proof. The result follows easily from Lemma 1.93.

The function from the previous lemma can be used to compute Miller functions
recursively as shown in the next lemma.

Lemma 1.96 (Miller’s formula). The Miller functions fm,P can be chosen such that
f1,P = 1 and such that for m1, m2 ∈ Z, it holds

fm1+m2,P = fm1,Pfm2,Pg[m1]P,[m2]P , (1.11)

fm1m2,P = fm2

m1,P
fm2,[m1]P = fm1

m2,P
fm1,[m2]P . (1.12)

Proof. See Lemma 2 in [Mil04] and Lemma IX.17 in [Gal05].

Remark 1.97. We state some special cases of the formulas from the previous lemma.
Let m ∈ Z, then

(a) fm+1,P = fm,P g[m]P,P ,

(b) f2m,P = f 2
m,P g[m]P,[m]P ,

(c) f−m,P = (fm,P g[m]P,−[m]P)−1.

Note that f0,P = 1 for all P ∈ E and gP1,P2
= 1 if P1 or P2 equals the point at infinity

O. These formulas show that any function fm,P can be computed recursively as a
product of line functions. The functions are defined over the field of definition of P .
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Miller’s algorithm uses these formulas along a scalar multiplication to compute [r]P .
Its general form works for the Weil pairing, as well as the Tate pairing. We state the
algorithm in the case of the Tate pairing to be able to include several simplifications,
some of which benefit from the final exponentiation. For example, the evaluation of
fr,P at the divisor DQ can be replaced by the evaluation at the point Q.

Lemma 1.98. Let P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r], Q /∈ E(Fq), then the reduced

Tate pairing can be computed as er(P,Q) = fr,P (Q)(qk−1)/r.

Proof. This is [BLS04a, Theorem 1].

Algorithm 1.1 can be used to compute fr,P (Q) for P ∈ E(Fq)[r] and Q ∈ E(Fqk)[r]
up to irrelevant factors lying in a proper subfield of Fqk . Since k > 1, these factors
are mapped to 1 by the final exponentiation.

Input: P ∈ E(Fq)[r], Q ∈ E(Fqk)[r], r = (rl, . . . , r0)2.
Output: fr,P (Q) as representative of the class fr,P (Q)(F∗

qk)
r.

1: R← P , f ← 1
2: for (i← l − 1; i ≥ 0; i−−) do

3: f ← f 2 · gR,R(Q)
4: R← [2]R
5: if (ri = 1) then

6: f ← f · gR,P (Q)
7: R← R + P
8: end if

9: end for

10: return f

Algorithm 1.1: Miller’s algorithm for elliptic curves

Remark 1.99. Note that the functions gR,R and gR,P in steps 3 and 6 of Algo-
rithm 1.1 are fractions and that the inversions in each step of the loop can be
postponed until the end of the loop by keeping track of numerator and denominator
separately.

To complete the pairing computation, the final exponentiation has to be applied
to the result of Miller’s algorithm. For this, one uses fast exponentiation methods
in the finite field Fqk (see [Doc05a] and [Doc05b]). It can be accelerated by using
actions of the q-power map on F∗

qk [GS08]. For recent improvement on the final

exponentiation, see [SBC+08].

In practice, the Tate pairing is computed as

er : G1 ×G2 → G3 = µr ⊆ F∗
qk ,
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with

G1 = E[r] ∩ ker(φq − [1]) = E(Fq)[r],

G2 = E[r] ∩ ker(φq − [q]) ⊆ E(Fqk)[r].

For the second pairing argument, one must assure that it has a non-trivial component
in the second eigenspace of the Frobenius, since choosing both points from the first
results in a trivial pairing value.

If the embedding degree is even, there are further improvements of Miller’s algorithm
by exploiting twists of E to represent the points in G2.

Proposition 1.100. Let δ = 2 if j(E) /∈ {0, 1728}, δ = 4 if j(E) = 1728, and
δ = 6 if j(E) = 0. If δ | k, there exists a unique twist E ′ of E of degree δ with
r | #E ′(Fqk/δ).

Proof. This is a consequence of the discussion in Section IV.C of [HSV06]. See in
particular the last paragraph of that section.

Lemma 1.101. Let E ′ be the twist from Proposition 1.100, and let σξ : E ′ → E be
the corresponding isomorphism given by ξ ∈ Fqk/δ as in Remark 1.51. The restriction
of σξ to E ′(Fqk/δ)[r] is a group isomorphism

σξ : E ′(Fqk/δ)[r]→ G2

of cyclic groups of order r. If Q ∈ G2, then its x-coordinate lies in a proper subfield
of Fqk .

Proof. Since σξ is a group homomorphism E ′ → E, it maps points of order r to
points of order dividing r. Since it is nontrivial on E ′(Fqk/δ)[r] and r is prime, the
image of E ′(Fqk/δ)[r] is a cyclic group of order r contained in E(Fqk)[r]. It is shown
in [HSV06, Section V] that σξ(E

′(Fqk/δ)[r]) is stable under φq and therefore must
be G2 since it is not contained in G1, and these are the only eigenspaces of φq.
Therefore, σξ is a group isomorphism E ′(Fqk/δ)[r] → G2. The statement about the
x-coordinates follows from the form of σξ given in Remark 1.51. Note that δ 6= 3.

The previous lemma shows that we can define a pairing G1 × E ′(Fqk/δ)[r]→ G3 by
simply mapping points from E ′(Fqk/δ)[r] to G2 via σξ and then computing the Tate
pairing.

Definition 1.102. Define G′
2 := E ′(Fqk/δ)[r]. The pairing

e′r : G1 ×G′
2 → G3, (P,Q′) 7→ er(P, σξ(Q

′))

is called the twisted Tate pairing.
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If k is even, there is always the possibility to use a quadratic twist, i. e. a twist of
degree 2. In this case, the x-coordinates of all points in G2 and G′

2 lie in a proper
subfield of Fqk . The denominators of the functions gR,R or gR,P in Miller’s algorithm
are polynomials defining vertical lines, and thus are of the form x−x[2]R or x−xR+P .
Since the points R and P are defined over Fq, the values gR,R(Q) and gR,P (Q) lie in
a proper subfield of Fqk . Therefore, the final exponentiation maps them to 1.

Proposition 1.103. Let k be even. Then the denominators of the functions gR,R
and gR,P in Steps 3 and 6 of Miller’s algorithm can be discarded without changing
the value of the reduced Tate pairing.

Proof. See Theorem 3 in [BLS04a].

We conclude this section by giving a brief overview of other variants of the Tate
pairing which can be computed with a shorter loop in Miller’s algorithm.

Remark 1.104 (ate pairing). Heß, Smart, and Vercauteren introduce the ate pairing
in [HSV06]. The map

at−1 : G2 ×G1 → G3,

(Q,P ) 7→ ft−1,Q(P )(qk−1)/r

defines a non-degenerate bilinear pairing [HSV06, Theorem 1], called the ate pairing.
Note that for the ate pairing the first argument is defined over Fqk and thus curve
arithmetic is more costly than for the Tate pairing. But the loop length in Miller’s
algorithm, which is given by the bit length of t− 1, may be much shorter.

Remark 1.105 (Twisted ate pairing or Eta pairing). The Eta pairing has first been
introduced by Barreto, Galbraith, Ó hÉigeartaigh, and Scott in [BGOS07] on Jaco-
bians of supersingular curves in small characteristic. Heß, Smart, and Vercauteren
generalize the idea to ordinary curves in large characteristic and call the resulting
pairing the twisted ate pairing [HSV06]. Let d | k such that the curve E has a twist
of degree d. Define e := k/d. As for the ate pairing, we set λe := (t − 1)e mod r.
The map

ηλe : G1 ×G2 → G3,

(P,Q) 7→ fλe,P (Q)(qk−1)/r

defines a bilinear, non-degenerate pairing [HSV06, Lemma 11] called the twisted ate
pairing. It has the advantage of a shorter loop while curve arithmetic can be done
over Fq. But the loop length is in general larger than for the ate pairing.

There are so-called optimized and generalized versions of the ate and twisted ate
pairing that can be computed with even shorter loop length. The parameters t− 1
and (t−1)e can be replaced by any of their powers modulo r. Naturally one chooses
the power with the smallest bit length [ZZH08]. They can also be replaced with
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other integers S ≡ q (mod r) to obtain a shorter loop length [MKHO07]. Another
approach is given in [LLP08].

Vercauteren introduces optimal pairings discussing a lower bound on the length of
the loop in Miller’s algorithm and giving pairing functions which are optimal in that
sense [Ver08]. All the previous pairing functions are subsumed under the framework
of pairing lattices that Heß proposes in [Heß08].

1.3 Constructing pairing-friendly curves

Let Fq be a finite field of characteristic p. Let C be a hyperelliptic curve of genus
g defined over Fq, and let JC be its Jacobian variety. We denote by n the order of
JC(Fq). We recall Definition 1.80 of the embedding degree: For a prime divisor r
of n, r 6= p, the embedding degree of C with respect to r is defined as the minimal
integer k with r | (qk − 1).

Definition 1.106. Let C/Fq be a hyperelliptic curve of genus g and r the largest
prime divisor of n = #JC(Fq). The parameter

ρ := g log(q)/ log(r) ≥ 1

is called the ρ-value of C.

A pairing-based cryptosystem is only secure if the prime r is large enough such that
the discrete logarithm problems (DLP) in the subgroups of JC(Fqk) of order r are
infeasible, and such that the DLP in the multiplicative group F∗

qk is infeasible. For

a fixed size of r, the size of qk depends on the embedding degree k and the ρ-value.
The goal is to choose a curve with ρ as small as possible and an embedding degree
that is small, but large enough to guarantee the DLP in Fqk to be infeasible.

The embedding degree k has several interpretations, as was already indicated in
Remark 1.81. The following lemma adds another very simple, but important obser-
vation.

Lemma 1.107. Assume that k ∈ N with r ∤ k. The embedding degree of C/Fq with
respect to the prime r is k if and only if r | Φk(q), where Φk is the kth cyclotomic
polynomial.

Proof. The number k is the embedding degree with respect to r if and only if q has
order k in Fr, i. e. q is a primitive kth root of unity in Fr (see Remark 1.81). This
is equivalent to q being a root of Φk over Fr [LN97, Definition 2.44].

In light of Theorem 1.77, we reformulate the conditions for a curve to have embedding
degree k in the following lemma.
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Lemma 1.108. Let C/Fq be a hyperelliptic curve, and let JC be its Jacobian. Let r
be a prime number and k ∈ N with r ∤ k. Then k is the embedding degree of C with
respect to r if and only if the following conditions hold:

χq(1) ≡ 0 (mod r), (1.13)

Φk(q) ≡ 0 (mod r), (1.14)

where χq is the characteristic polynomial of the Frobenius endomorphism as in The-
orem 1.77, and Φk is the kth cyclotomic polynomial.

Proof. This is an easy consequence of Lemma 1.107 and the definition of the em-
bedding degree.

One approach to finding q and r that satisfy equation (1.14) is to parametrize them
as polynomials q(l) and r(l) over Z such that the condition is fulfilled in Z[l]. The fol-
lowing lemma by Galbraith, McKee, and Valença provides a way of finding suitable
polynomials.

Lemma 1.109. Let q(l) ∈ Q[l] be a quadratic polynomial and ζk a primitive kth
root of unity in C. Then

Φk(q(l)) = n1(l)n2(l)

for irreducible polynomials n1(l), n2(l) ∈ Q[l] of degree ϕ(k) if and only if the equa-
tion

q(z) = ζk

has a solution in Q(ζk). Otherwise, Φk(q(l)) is irreducible of degree ϕ(k).

Proof. This is [GMV07, Lemma 5.1].

It is unlikely for a randomly chosen curve to have a small embedding degree and
a good ρ-value (see the discussion in [DF05a, Section 6.4.2]). For elliptic curves,
this is shown by Balasubramanian and Koblitz [BK98]. The probability that an
elliptic curve over a prime field Fp with a prime number of Fp-rational points has
an embedding degree less than (log2 p)

2 is very small [BK98, Theorem 2]. Luca,
Mireles, and Shparlinski extend this result and make similar conclusions in more
general cases [LMS04]. This means that pairing-friendly curves are rare and need
to be constructed.

A successful approach is to fix a number k and to first find the following parameters:
a prime power q and a potential group order n having a large prime divisor r such
that the conditions (1.13) and (1.14) are satisfied. Then one uses the complex mul-
tiplication (CM) method to construct a hyperelliptic curve over Fq with n rational
points on its Jacobian. The following subsection briefly explains the CM method
for elliptic curves.
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1.3.1 The CM method for elliptic curves

The CM method for elliptic curves has been introduced by Atkin and Morain [AM93]
for elliptic curve primality proving. We recall Definition 1.48: An elliptic curve E
has complex multiplication (CM) if its endomorphism ring End(E) is isomorphic to
an order in a quadratic imaginary field K. Note that an elliptic curve E over C
has either End(E) ∼= Z or End(E) ∼= R for an order R in a quadratic imaginary
number field. Thus a curve over C has complex multiplication if its endomorphism
ring End(E) is strictly larger than Z.
To describe the CM method, we need to introduce lattices. A lattice in C is a
discrete additive subgroup Λ ⊆ C that contains an R-basis of C. We start with an
elliptic curve E/C. From Corollary VI.5.1.1 in [Sil86], we know that there exists
a lattice Λ for which there is a group isomorphism C/Λ ∼= E(C). Without loss of
generality we may assume that there exists a τ ∈ C with positive imaginary part
(i. e. it lies in the upper half plane) and Λ = Z + Zτ [FL05c, Corollary 5.36]. This
means that to every elliptic curve over C, we can associate a number τ ∈ C with
Im(τ) > 0 and a lattice Λ = Z + Zτ . Two elliptic curves E and E ′ over C with
corresponding lattices Λ and Λ′ are isogenous if and only if there exists an α ∈ C∗

with αΛ ⊆ Λ′. They are isogenous and isomorphic if and only if there exists an
α ∈ C∗ with αΛ = Λ′ [Sil86, Theorem VI.4.1 and Corollary VI.4.1.1]. This gives a
new interpretation of the endomorphism ring of E as

End(E) ∼= {α ∈ C | αΛ ⊆ Λ}.
If E has complex multiplication, then End(E) is in fact isomorphic to an order R in
Q(τ) [FL05c, Theorem 5.47]. Vice versa, one may start with an imaginary quadratic
field K, an order R in K, and an ideal Λ of R. The ideal Λ is a lattice in C and
there exists an elliptic curve E/C with C/Λ ∼= E(C) and End(E) ∼= R [FL05c,
Proposition 5.46].
We fix the order R to be the maximal order, i. e. the ring of integers OK in K.
Every ideal in OK is a lattice and thus leads to an elliptic curve. It follows from
[Sil86, Corollary VI.4.1.1] that ideals lying in the same ideal class lead to isomorphic
elliptic curves. Furthermore, it can be shown that there is a bijection between the
ideal class group and the set of isomorphism classes of elliptic curves over C with
endomorphism ring OK [Sil86, Proposition C.11.1]. Thus the class number hK of K
is equal to the number of isomorphism classes of such curves. For the definition of
the class group and class number, see [IR90, §12.2] or [Lor96, Chapter V].

Theorem 1.110. Let E/C be an elliptic curve with End(E) ∼= OK , the ring of
integers in an imaginary quadratic field K. The j-invariant j(E) is an algebraic
integer over Q. There are only finitely many isomorphism classes of elliptic curves
with endomorphism ring isomorphic to OK. The corresponding j-invariants are
exactly the roots of the minimal polynomial of j(E) over Q.

Proof. These results are given in [FL05c, Theorem 5.47 and Corollary 5.48] and
[Sil86, Corollary C.11.1.1].
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Definition 1.111. The minimal polynomial of j(E) from Theorem 1.110 is called
the Hilbert class polynomial of K, denoted by HK .

Note thatHK(x) ∈ Z[x] since j(E) is an algebraic integer and that its degree is equal
to the class number hK . For methods to compute the class number and the Hilbert
class polynomial for a given quadratic field, see [Coh93, Section 5.3 and Section 7.6]
or [FL05b, Section 18.1.3]. The computation of the Hilbert class polynomial can
only be done efficiently if the discriminant of K is small enough. For the current
state of the art of class polynomial computation see Sutherland’s homepage1.

Example 1.112. The class number of K = Q(
√
−3) is hK = 1, and its Hilbert

class polynomial is HK(x) = x. Thus all elliptic curves over C with endomorphism
ring isomorphic to OK are isomorphic and have j-invariant 0. One example is the
curve E : y2 = x3 + 1. Compare this with Example 1.37.

The CM method constructs an ordinary elliptic curve Ē/Fp for a prime p by reducing
a curve E/C modulo a prime ideal lying over pOK . Deuring’s lifting Theorem states
that any ordinary elliptic curve over Fp can be obtained by reduction of a curve over
a number field [Lan87, Theorem 14 in Chapter 13]. To obtain an ordinary curve,
the prime p needs to split in the field K.

Theorem 1.113. Let E/C be an elliptic curve with CM by OK for an imaginary
quadratic field K. Let p ∤ ∆(E) be a prime which splits completely in OK, i. e. there
exist prime ideals p1 6= p2 with pOK = p1p2. Then the reduction Ē of E modulo p1

is an ordinary curve defined over Fp, and End(E) ∼= End(Ē).

Proof. See Theorem 12 in Chapter 13 of [Lan87].

Since the endomorphism ring is not changed by the reduction, we are able to choose
an endomorphism ring for Ē that has an element π of norm p and trace t = π + π̄
such that p+1−t is the desired number of Fp-rational points on Ē, see Theorem 1.52.
This means that the element π corresponds to the Frobenius endomorphism on the
curve Ē. The j-invariant of such a curve can be found by reducing the Hilbert class
polynomial modulo p as is shown in the following theorem.

Theorem 1.114. Let K = Q(
√
D) be an imaginary quadratic field, i. e. D < 0, and

let HK be its Hilbert class polynomial. Let p be a prime. The prime p is a norm in
K, i. e. there exists π = u+ v

√
D ∈ OK with p = ππ̄ = u2 −Dv2, if and only if the

reduction of HK modulo p has only simple roots all of which lie in Fp.

Proof. This is part of [AM93, Theorem 3.2].

Since the j-invariant of an elliptic curve only determines the curve up to isomor-
phism, the curve with the desired group order may be a twist of the curve we have
constructed. The twist with the correct group order can be found easily.

1http://www-math.mit.edu/∼drew/
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Summarizing, we get the following method: Suppose, we have a quadratic imaginary
number field K = Q(

√
D) with Hilbert class polynomial HK and a prime p that

satisfies p = ππ̄ in OK and n = p + 1− t, t = π + π̄. Let HK,p be the reduction of
HK modulo p. Then HK,p has only simple roots in Fp. Let j0 be one of its roots.
We can construct an elliptic curve Ē over Fp with j-invariant j0 by Proposition 1.38,
and one of the twists of Ē has n points. The equation p = ππ̄ is often called the CM
norm equation. The element π can be written as 1

2
(t+v

√
D) and the norm equation

becomes

p =
1

4
(t2 −Dv2) or t2 − 4p = Dv2. (1.15)

Hilbert class polynomials over C can be precomputed. Their computation is not
considered part of the CM algorithm [FL05b, Remark 18.1].

1.3.2 Elliptic curves with small embedding degree

Supersingular elliptic curves have embedding degree at most 6 [MOV93]. Therefore
they are natural candidates for the use in pairing-based cryptographic protocols.
But since higher security demands need higher embedding degrees, ordinary elliptic
curves are the more flexible choice.
Let E/Fq be an elliptic curve and r a prime dividing #E(Fq). The conditions from
Lemma 1.108 translate into the following:

q + 1− t ≡ 0 (mod r), (1.16)

Φk(q) ≡ 0 (mod r), (1.17)

where t is the trace of the Frobenius endomorphism, in particular |t| ≤ 2
√
q.

Example 1.115 (MNT curves). Miyaji, Nakabayashi, and Takano [MNT01] intro-
duce the first parametrized families that yield ordinary elliptic curves with embed-
ding degree k ∈ {3, 4, 6}. The curves have ρ-value 1. The families are given by
parametrizations for p and t as polynomials in Z[l] with n(l) = p(l) + 1− t(l) and

n(l) | Φk(p(l)).

To find an MNT curve, one chooses polynomials as in the table below for the em-
bedding degree of choice.

k p(l) t(l)

3 12l2 − 1 −1± 6l
4 l2 + l + 1 −l or l + 1
6 4l2 + 1 1± 2l

Curves can be constructed using the CM method by first solving the corresponding
norm equation for a given CM discriminant (see Section 1.3.1). Any solution which
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leads to n and p prime gives a curve E/Fp with n = #E(Fp) and the chosen embed-
ding degree. The idea to parametrize the prime p and the group order n leads to
other families, e. g. the family of curves described in Chapter 2, which were found
by exploiting the following simple observation.

Remark 1.116. Equation (1.16) implies that q ≡ t − 1 (mod r), and thus for
any polynomial f ∈ Z[x] it holds that f(q) ≡ f(t − 1) (mod r). In particular,
Equation (1.17) can be replaced by Φk(t− 1) ≡ 0 (mod r).

Example 1.117 (Freeman curves). The family found by Freeman [Fre06] consists
of curves with embedding degree k = 10 over a prime field and ρ-value 1. It is given
via the parametrization

n(l) = 25l4 + 25l3 + 15l2 + 5l + 1,

p(l) = 25l4 + 25l3 + 25l2 + 10l + 3,

which has been found by using the embedding degree condition of the form in Re-
mark 1.116 and one of the quadratic families in [GMV07]. To get a curve in that
family for a group order n and a prime p given by the above polynomials, one needs
to carry out the CM construction just as for MNT curves.

The families in the previous two examples and the family we turn to in Chapter 2
yield the only known construction methods for elliptic curves of prime order (ρ-
value equal to 1) and small embedding degree. There are construction methods for
all other embedding degrees, but the resulting curves have composite group order,
i. e. a ρ-value larger than 1.
A survey on pairing-friendly elliptic curves is given by Freeman, Scott, and Teske
[FST06]. The paper reflects the current state-of-the-art. For every embedding degree
up to k = 50, they list the best known construction with respect to the ρ-value.
They also provide suggestions for curves with certain properties, for example having
large degree twists, which leads to more efficient implementations at the cost of less
flexibility in choosing curves.



Chapter 2

BN curves

In this chapter, we study pairing-friendly elliptic curves defined over a prime field
Fp such that the group of Fp-rational points on the curve has prime order n, and the
curve has embedding degree k = 12 with respect to n. The results in this chapter are
based on joint work with Barreto [BN06]. Others started calling curves belonging
to that family BN curves; we follow this notation here.
In Section 2.1, we show how the family is given by a polynomial parametrization
for the primes p and n. We deduce the parametrization and show how curves are
obtained from it. Also, heuristic evidence is given that a curve E with a prescribed
size of the primes p and n can be found quickly. Furthermore, we discuss the choice
of a generator for E(Fp). Section 2.2 addresses properties of the proposed family of
curves. We describe the automorphisms on a BN curve, prove the existence of a twist
of degree 6, and propose a representation of extensions of Fp corresponding to the
chosen twist. Furthermore, we discuss efficient endomorphisms as well as possibilities
to compress points on the curve and its twist. In Section 2.3, we discuss pairing
computation on BN curves, give the line functions involved in Miller’s algorithm
for different pairings, and show how to compress pairing values in a way that is
consistent with the point compression described in Section 2.2. Section 2.4 is devoted
to gathering the ingredients for generating all the required parameters needed to
implement pairings on BN curves. Finally, we provide examples of BN curves for
different security levels in Section 2.5.

2.1 Construction

The main observation that leads to the construction of BN curves is Lemma 2.1,
which is the special case k = 12 of Lemma 6.1 in the paper of Galbraith, McKee,
and Valença [GMV07] (see also Lemma 1.109).

Lemma 2.1. Let Φ12 be the 12th cyclotomic polynomial. Then

Φ12(6l
2) = n(l)n(−l), (2.1)
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where n(l) = 36l4 + 36l3 + 18l2 + 6l + 1.

Proof. See Lemma 6.1 in [GMV07] and the examples for k = 12.

Galbraith, McKee, and Valença give a criterion to determine which quadratic poly-
nomials q(l) lead to the splitting of Φk(q(l)). Their intention was to construct
pairing-friendly genus-2 curves. For such curves the quadratic polynomial q must
be able to take the value of a prime power when evaluated at an integer. This can
not be satisfied for the polynomial q(l) = 6l2.
We apply their results to elliptic curves and use the simple observation from Re-
mark 1.116 that n = p+1− t implies p ≡ t− 1 (mod n) when E is an elliptic curve
defined over Fp, n = #E(Fp) is the number of Fp-rational points on E, and t is the
trace of the Frobenius endomorphism over Fp. It follows that Φk(p) ≡ Φk(t − 1)
(mod n) for any k ∈ N. This leads to the parameters of a family of elliptic curves
as described in the following theorem.

Theorem 2.2. Let u ∈ Z be an integer such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1, (2.2)

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 (2.3)

are prime numbers. Then there exists an ordinary elliptic curve E defined over Fp
with #E(Fp) = n. The embedding degree of E with respect to n is k = 12, and the
curve can be given by the equation

E : y2 = x3 + b, b ∈ Fp. (2.4)

The trace of the Frobenius endomorphism over Fp is given by t = t(u) = 6u2 + 1.

Proof. From the parametrizations for p and n, we obtain t− 1 = p−n = 6u2. From
Lemma 2.1 we see that n divides Φ12(t− 1) and thus also Φ12(p), which means that
p and n satisfy the embedding degree condition (1.17) for k = 12. Therefore, a
potential curve over Fp with n rational points has embedding degree 12.
The number t satisfies |t| ≤ 2

√
p because

t2 − 4p = −3(6u2 + 4u+ 1)2 (2.5)

is negative. Since t is not divisible by p, a theorem by Waterhouse [Wat69, Theorem
4.1] (see Lemma 1.56) shows that there exists an ordinary elliptic curve E defined
over Fp such that the trace of the Frobenius endomorphism is equal to t, i. e. n =
#E(Fp).
We may construct a curve E with the above properties that has complex multipli-
cation by the ring of integers OK of the quadratic CM field K = Q(

√
t2 − 4p) =

Q(
√
−3) (see Section 1.3.1). Example 1.112 shows that K has class number 1 and its

Hilbert class polynomial is HK(x) = x. The j-invariant of this curve is thus j = 0.
The relations between the j-invariant and the coefficients a, b show that a = 0 (see
Proposition 1.38). This proves the theorem.
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A curve E : y2 = x3 + b over a field of characteristic larger than 3 is nonsingular if
and only if b 6= 0 (Example 1.37). For a fixed prime p > 3, all curves E : y2 = x3 + b
for b ∈ F∗

p are twists of each other. We know from Proposition 1.50 that in the case
j = 0 there are six different twists. In order to construct a curve as in Theorem 2.2,
we only need to run through different values for b, i. e. run through different twists,
and check for the right group order. Assuming that we choose b at random from F∗

p,
we expect to do six checks on average to find the twist with the correct number of
points.

Corollary 2.3. Under the assumptions of Theorem 2.2, a curve with the correct
group order can be found after on average six tries of random choices for the param-
eter b ∈ F∗

p.

Thus once we have the primes p and n as in Theorem 2.2, it is fairly easy to actually
find a curve with the given property. What remains to be examined, is the question
how easy it is to find suitable pairs of primes (p, n).

Definition 2.4. A pair (p, n) of prime numbers is called a BN prime pair if there
exists an integer u ∈ Z with p = p(u) and n = n(u), where p(u) and n(u) are given
by the polynomials in (2.2) and (2.3).

2.1.1 Distribution of BN prime pairs

A conjecture by Bateman and Horn [BH62] allows us to estimate the number of BN
prime pairs which are produced when letting the parameter u run through a given
range. We adapt the conjecture to our purposes as follows:

Conjecture 2.5. For large N ∈ N, we heuristically expect the number of positive
integers u with 1 ≤ u ≤ N for which (2.2) and (2.3) provide a BN prime pair
(p, n) = (p(u), n(u)) to be

Q(N) =
C

16

∫ N

2

1

(log u)2
du. (2.6)

The constant C is given as

C =
∏

q

[(
1− 1

q

)−2(
1− w(q)

q

)]
, (2.7)

where the product is taken over all primes q, and where w(q) denotes the number
of solutions of p(x)n(x) ≡ 0 (mod q).

Assuming that Conjecture 2.5 is true, we are now able to estimate the probability
pI to find a BN prime pair when the parameter u is taken uniformly at random
from a certain interval I = [u1, u2] ⊂ N. Define Q(I) = Q(u2) − Q(u1 − 1), then
pI = Q(I)/(u2 − u1 + 1).
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u1 u2 − u1 + 1 R(I) ⌊Q(I)⌋ rI · 102 bits

1 72621324 250565 277429 0.34503 ≤ 109
448869734239 4008033 5794 6142 0.14456 160

114911668072285 9977856 9952 10501 0.09974 192
29417389567148395 13774482 10011 10567 0.07268 224

7530851732698370160 17949966 10097 10481 0.05625 256
1927898043575355590045 22521445 9961 10343 0.04423 288

493541899155296768986804 27819263 10127 10311 0.03640 320
126346726183755979948643811 34034872 10109 10394 0.02970 352

32344761903041530875525863096 40428318 10048 10349 0.02485 384
8280259047178631904144923719775 47727580 9975 10388 0.02090 416

2119746316077729767461112635400325 55123647 9927 10327 0.01801 448
542655056915898820470044848710404692 63634474 9933 10368 0.01561 480

138919694570470098040331481257823718878 71157457 10048 10176 0.01412 512

Table 2.1: The number R(I) of all BN prime pairs (p(u), n(u)) where u ∈ I = [u1, u2],
the estimate Q(I) forR(I) from Conjecture 2.5, and the ratio rI = R(I)/(u2−u1+1).
The last column gives the bit size of the primes p and n.

We have computed all BN prime pairs arising when u lies in the intervals shown
in Table 2.1. We denote the number of actually existing pairs in I by R(I). To
compare this number with the conjectured number of pairs, we approximated the
constant C from Conjecture 2.5 by computing the product over the first primes
up to 81824487889, and obtained C ≈ 17.65105. The integral has been computed
numerically. The values for Q(I) given in the table are rounded down. Instead of
pI we give the ratio rI = R(I)/(u2 − u1 + 1) of the actual number of prime pairs to
the number of all possible values for u, i. e. the length of I.

From the heuristic results of Table 2.1, we may conclude that it is not too difficult
to find a BN prime pair of a certain bit size. One just chooses a set of numbers
from which values for the parameter u are taken randomly, until both p(u) and n(u)
are prime. The set can be chosen to guarantee that p and n have a desired bit size.
Also a sequential search quickly finds BN prime pairs. This approach is taken in
Algorithm 2.1 below.

2.1.2 Choosing a generator point

Along with the curve, we need a generator of the group of Fp-rational points to carry
out cryptographic protocols. Since the group has prime order, we may take any Fp-
rational point P 6= O on the curve. To favor efficient implementation, one might
be interested in the coefficients of this generator point to be as simple as possible,
e. g. one of them being equal to 1. The choice of the generator should be included
into the curve construction algorithm. During construction, it is anyway required
to choose a point on the curve for checking the curve order. The following remark
discusses the choice of a point coordinate on a curve of the form E : y2 = x3 + b
without taking into account the choice of the correct twist.
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Remark 2.6. Let p ∈ N be a prime.
(a) Let x0 ∈ Fp. Then b ∈ F∗

p can be chosen such that x3
0 + b is a square in Fp.

In this case, let y0 ∈ Fp be a square root of x3
0 + b. Then P = (x0, y0) is an affine

point on the curve E : y2 = x3 + b; in particular, it is not equal to O. As half of the
elements in F∗

p are squares, there is a chance of 1/2 to obtain a square x3
0 + b when

randomly choosing b from F∗
p.

(b) Let y0 ∈ Fp. We may similarly choose b ∈ F∗
p, such that y2

0 − b is a cube in
Fp. Let x0 be one of its cube roots. Then as above, P = (x0, y0) is a point on
E : y2 = x3 + b. The chance of finding a cube y2

0 − b is at least 1/3 because at least
one third of the elements of Fp are cubes, depending on whether p ≡ 1 (mod 3) or
not.

When choosing the generator point in advance, it must be noted that neither of the
coordinates can be equal to 0, as the following lemma shows.

Lemma 2.7. Let E : y2 = x3 +b be a BN curve defined over Fp. Then b is neither a
square nor a cube in Fp. In particular, it is not a 6th power. If P = (x0, y0) ∈ E(Fp),
then x0 6= 0 and y0 6= 0.

Proof. Assume that b is a cube. Then there exists a cube root xb ∈ Fp of b and
the point P = (−xb, 0) is a point of order 2 in E(Fp), which is a contradiction since
n = #E(Fp) is an odd prime. Next assume that b is a square. Then there exists a
square root yb ∈ Fp of b and the point P̃ = (0, yb) is in E(Fp). We compute [2]P̃
using the formulas in Lemma 1.40 to see that [2]P̃ = −P̃ , i. e. P̃ is a point of order
3, again a contradiction since 3 ∤ n. Now if P = (x0, y0) ∈ E(Fp), the above proof
also shows that x0 6= 0 and y0 6= 0.

Computer experiments show that heuristically the condition x0y0 6= 0 is the only
restriction when choosing the coordinates for a generator point. We have the follow-
ing conjecture about the expected number of choices for the curve parameter b ∈ F∗

p

that is needed until a suitable curve with a given generator is found.

Conjecture 2.8. Let (p, n) be a BN prime pair, and let x0 ∈ F∗
p (y0 ∈ F∗

p, respec-
tively). Then on average we expect 12 (18, respectively) random choices for b ∈ F∗

p

until the curve E : y2 = x3 + b has order n and a generator with x-coordinate x0

(y-coordinate y0, respectively).

Algorithm 2.1 is an algorithm for constructing BN curves. It gives a curve which has
a generator with x-coordinate equal to 1. For an implementation of pairings on BN
curves, more parameters are required such as a representation for the finite field ex-
tension Fp12 and points on the curve E(Fp12) for the second pairing argument. These
issues and the construction of parameters to exploit the properties and techniques
explained in Sections 2.2 and 2.3 are addressed in Section 2.4.



52 2.2. Properties

Input: The approximate bit length m of the curve order.
Output: Parameters p, n, b, y0 such that the curve y2 = x3 + b has order n over Fp,

the point P = (1, y0) is a generator of the curve, and n has at least m bits.
1: Let p̃ = 36l4 + 36l3 + 24l2 + 6l + 1, ñ = p̃− 6l2 ∈ Z[l].
2: Compute the smallest u ≈ 2m/4 such that ⌈log2 ñ(−u)⌉ = m.
3: loop

4: Compute t← 6u2 + 1,
5: compute p← p̃(−u) and n← p+ 1− t.
6: if p and n are prime then

7: exit loop

8: end if

9: Compute p← p̃(u), and n← p+ 1− t.
10: if p and n are prime then

11: exit loop

12: end if

13: Increase u← u+ 1.
14: end loop

15: repeat

16: repeat

17: Choose b ∈ F∗
p at random

18: until b+ 1 is a quadratic residue mod p.
19: Compute y0 such that y2

0 = b+ 1 mod p,
20: and set P ← (1, y0).
21: until nP = O.
22: return p, n, b, y0.

Algorithm 2.1: Constructing a BN curve

2.2 Properties

In this section, let (p, n) ∈ Z2 be a BN prime pair, and let E/Fp be a BN curve, i. e.
E : y2 = x3 + b, b ∈ F∗

p, n = #E(Fp), and E has embedding degree k = 12 with
respect to n. Recall that the j-invariant of E is j(E) = 0. We briefly recapitulate
all parameters obtained so far as polynomials in u (see Theorem 2.2). The definition
of v is given implicitly in (2.5) by t2 − 4p = −3v2:

p = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = 36u4 + 36u3 + 18u2 + 6u+ 1,

t = 6u2 + 1,

v = 6u2 + 4u+ 1.

Next we collect properties of the curve E in view of efficient pairing computation,
before we describe pairing computation on E in the next section. First we consider
endomorphisms on a BN curve. The endomorphism ring End(E) of a BN curve is
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by construction isomorphic to the maximal order OK in the quadratic CM field K =
Q(
√
−3). It is OK = Z[−1+

√
−3

2
] [IR90, Proposition 13.1.1]. We have End0(E) :=

Q⊗ End(E) = Q(
√
−3). Let

φp : E → E, (x, y) 7→ (xp, yp)

be the p-power Frobenius endomorphism. Its characteristic polynomial is χp =
T 2 − tT + p ∈ Z[T ]. Thus φp can be identified with the element π = 1

2
(t +
√
−3v)

of norm p in OK . We have K = Q(π) and Z[π] ⊂ OK .
The group Aut(E) of automorphisms of E is the subset of End(E) containing the
invertible endomorphisms, i. e. the units of End(E). The group Aut(E) will be
discussed in the following section.

2.2.1 Automorphisms

In this short subsection, we describe all automorphisms of a BN curve in terms of
the parameter u. In a slightly more general setting, we first summarize what is
known about automorphisms of curves with j-invariant 0.

Lemma 2.9. Let E be an elliptic curve over a finite field Fq of characteristic p, and
let j(E) = 0. We fix ζ6 ∈ Fq, a primitive 6th root of unity, and set ζ3 = ζ2

6 . Then
the automorphism group Aut(E) is a cyclic group of order 6. It is generated by

σ6 : E → E, (x, y) 7→ (ζ2
6x, ζ

3
6y) = (ζ3x,−y).

If q ≡ 1 (mod 6), then all automorphisms are defined over Fq, i. e. AutFq(E) =
Aut(E).

Proof. The lemma follows from Theorem III.10.1, Corollary III.10.2 in [Sil86], and
the fact that ζ6 ∈ Fq if q ≡ 1 (mod 6).

Now let E be a BN curve as at the beginning of this section. Since a primitive 6th
root of unity in Fp can be computed in terms of a polynomial in u similar to the
primes p and n, the automorphisms are defined over Fp, and can be described in
terms of u as well.

Lemma 2.10. Let u ∈ Z be such that p = p(u) given by (2.2) is prime. Then the
primitive 6th roots of unity in Fp are given by

ζ6 = 18u3 + 18u2 + 9u+ 2 mod p, (2.8)

ζ5
6 = −18u3 − 18u2 − 9u− 1 mod p. (2.9)

Proof. We set ζ(l) = 18l3 +18l2 +9l+2. Evaluating the 6th cyclotomic polynomial
Φ6(x) = x2 − x+ 1 at ζ(l), we see that it splits in Z[l] as

Φ6(ζ(l)) = 3(3l2 + 3l + 1)(36l4 + 36l3 + 24l + 6l + 1).
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Therefore, p̃(l) = 36l4 + 36l3 + 24l2 + 6l + 1 is a divisor. It follows that ζ(l) is a
6th root of unity in Z[l]/(p̃(l)). Evaluating at u, we see that Φ6(ζ6) ≡ 0 (mod p),
and thus ζ6 is a primitive 6th root of unity in Fp. The second primitive root can be
computed from ζ(l)5 = −ζ(l) + 1 mod p̃(l).

Remark 2.11. Note that the two preceding lemmas describe the automorphism
group for any curve E defined over a field Fq of characteristic p where p is a prime
of the form (2.2) and the j-invariant of E is j(E) = 0. They hold especially for
the sextic twist of the BN curve E : y2 = x3 + b. We study such twists in the next
subsection.

2.2.2 Twists and point representation

The property we address in this subsection is the existence of a twist of degree 6,
which helps to represent the second pairing argument more efficiently. This point is
usually taken from the p-eigenspace of the Frobenius endomorphism on the n-torsion
subgroup. It is a point defined over the field Fp12 (see Subsection 1.2.3).

Lemma 2.12. Let E/Fp be a BN curve. The curve E has a twist E ′/Fp2 of degree
d = 6 with the following properties: The order #E ′(Fp2) is divisible by n; the twist
can be represented by the equation

E ′ : y2 = x3 + b/ξ, (2.10)

where ξ ∈ Fp2 \
(
(Fp2)

2 ∪ (Fp2)
3
)
; the corresponding isomorphism ψ ∈ Hom(E ′, E)

is given by
ψ : E ′ → E, (x′, y′) 7→ (ξ1/3x′, ξ1/2y′). (2.11)

Furthermore, a point Q′ ∈ E ′(Fp2) of order n is mapped via ψ into the p-eigenspace
of the Frobenius endomorphism φp, i. e. φp(ψ(Q′)) = [p]ψ(Q′).

Proof. The lemma follows from Proposition 1.100 and Lemma 1.101. For the curve
equation and the isomorphism, see also Proposition 1.50 and Remark 1.51. The
fact, that ξ is neither a square nor a cube follows from the minimality of the degree
d = 6.

Remark 2.13. We compute the group order of the twist E ′ explicitly: First de-
termine n2 = #E(Fp2). We know that p = ππ with π = 1

2
(t + v

√
−3) ∈ Q(

√
−3),

where v = 6u2 + 4u+ 1 (see (2.5)). The group order n2 is

n2 = p2 + 1− (π2 + π2),

which is equal to (p + 1 + t) · n. We set t2 = π2 + π2 = 1
2
(t2 − 3v2), compute

t22 − 4p2 = −3t2v2, and let v2 = tv. Application of Proposition 1.57 yields that one
of the two possible group orders for the twist is

p2 + 1− 1

2
(3v2 + t2) = (p− 1 + t) · n.



2. BN curves 55

Theorem 9 in [HSV06] implies that only one of the two twists over Fp2 of degree 6
can have order divisible by n (see also Proposition 1.57). Hence the order of E ′(Fp2)
is (p− 1 + t)n.

We fix the following notation for the rest of this chapter. As in Subsection 1.2.3 we
define

G1 := ker(φp − [1]) = E(Fp), G2 := E[n] ∩ ker(φp − [p]) ⊆ E(Fp12)[n]. (2.12)

Pairings on BN curves are usually defined on G1×G2 or G2×G1 (see Section 1.2.3).
Lemma 2.12 shows that we can represent the group G2 by the Fp2-rational points of
order n on the twist E ′. Elliptic curve operations that need to be done in G2 may
as well be done on the twist. Only for pairing computation we apply the map ψ to
move into G2 (see Definition 1.102 for the concept of a twisted pairing). Points on
the twist can be represented with only one sixth of the space which is required for
an arbitrary point on E(Fp12) (see also [HSV06, Section V.]).
We define G′

2 to be the group of Fp2-rational n-torsion points on the twist E ′,

G′
2 := E ′(Fp2)[n]. (2.13)

A twisted pairing on a BN curve is then defined onG1×G′
2 orG′

2×G1. The restriction
ψ|G′

2
of the isomorphism ψ to G′

2, which we also call ψ, is a group isomorphism

ψ : G′
2 → G2.

The three groups G1, G2, and G′
2 are all cyclic groups of prime order n. Note that

G′
2 is cyclic because the whole n-torsion is only defined over Fp12 and not over Fp2

(see Theorem 1.59).

2.2.3 Field extensions

Since the twist E ′ from the previous section is defined over Fp2, it appears natural
to construct the finite field Fp12 as an extension of Fp2.

Lemma 2.14. Let q be a prime power, q ≡ 1 (mod 6), and ξ ∈ Fq \
(
(Fq)

2∪ (Fq)
3
)
.

Then the polynomials x2 − ξ, x3 − ξ, and x6 − ξ ∈ Fq[x] are irreducible over Fq.

Proof. The polynomial x2−ξ is irreducible since otherwise, a square root of ξ would
exist. Similarly, x3 − ξ is irreducible. For the same reasons, x6 − ξ can not have a
linear factor. From q ≡ 1 (mod 6), we know that Fq contains all 6th roots of unity.
Let ζ6 ∈ Fq be a primitive 6th root of unity. Let ω be a root of x6− ξ lying in some
extension of Fq. The elements ζ i6ω, 0 ≤ i ≤ 5, are exactly the roots of x6−ξ, and we
may write x6 − ξ =

∏5
i=0(x − ζ i6ω). Assume x6 − ξ has a quadratic factor over Fq.

Then its constant term is the product of two of the above roots, say ζ i6ω and ζj6ω.
Since ζ6 ∈ Fq, it follows from ζ i+j6 ω2 ∈ Fq that ω2 ∈ Fq. This is a contradiction,
since (ω2)3 = ξ implies that ξ is a cube in Fq. A similar argument shows that x6− ξ
does not have a factor of degree 3. Altogether, this shows that the polynomial is
irreducible.
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Let E be a BN curve, and let E ′ be its sextic twist by ξ ∈ Fp2 as in Lemma 2.12.
Let ω ∈ Fp12 be a root of the irreducible polynomial x6− ξ, i. e. ω6 = ξ. This means
that we can construct Fp4 = Fp2(ω

3), Fp6 = Fp2(ω
2), and Fp12 = Fp2(ω). The curve

isomorphism ψ may now be written as

ψ : E ′ → E, (x′, y′) 7→ (ω2x′, ω3y′).

Remark 2.15. We see, that the x-coordinates of points in the image of ψ (i. e. in
G2) all lie in Fp6 , and their y-coordinates all lie in Fp4.

The p2-power Frobenius automorphism of the field Fp12 applied to ω gives ωp
2

=

−ζ3ω for a primitive 3rd root of unity ζ3, and hence we have (ω3)p
2

= −ω3 and
(ω2)p

2

= ζ2
3ω

2. These identities will be useful later.
Furthermore, we fix notation for constructing the field Fp2 . Let µ ∈ Fp \ (Fp)

2, then
x2 − µ is irreducible over Fp. Let ν ∈ Fp2 be a root of x2 − µ, i. e. ν2 = µ, νp = −ν.
Then we may write Fp2 = Fp(ν).

2.2.4 Efficient endomorphisms

Gallant, Lambert, and Vanstone show in [GLV01] how endomorphisms on an elliptic
curve can be exploited to speed up elliptic-curve scalar multiplication. An efficient
endomorphism is an endomorphism of the curve which can be computed with very
little effort, e. g. with just one field multiplication, and thus provides very fast com-
putation of certain scalar multiples of elliptic-curve points. An endomorphism ϕ
that is non-trivial on a cyclic prime-order subgroup of E(Fp) is a group automor-
phism on this subgroup. Thus for a point P ∈ E(Fp), there exists a suitable s ∈ Z
with ϕ(P ) = [s]P .
Recently, Galbraith and Scott applied the method of Gallant, Lambert, and Van-
stone for exponentiation in groups arising in pairing-based cryptography [GS08], e. g.
for BN curves. In particular, this method may be applied to the group G1 = E(Fp)
and the group G′

2 on the twist E ′(Fp2). For details, we refer to [GS08]. In this
subsection, we will state efficient endomorphisms on BN curves and show which
multiples can be computed easily. As usual, we give the relevant parameters as
polynomials in u.
A prominent example of an efficient endomorphism is of course the p-power Frobe-
nius endomorphism φp. It is trivial on G1, but on its second eigenspace G2, the
eigenvalue is p. For every point Q ∈ G2, it holds that φp(Q) = [p]Q. Let ρ12 := t−1,
and note that ρ12 is a primitive 12th root of unity modulo n because it is a root of
Φ12(x). Since ρ12 = t − 1 ≡ p (mod n), this means that the Frobenius provides a
quick way of computing [ρi12]Q for all i ∈ {0, 1, . . . , 11}. The following lemma gives
parametrizations for all 12th roots of unity modulo n.

Lemma 2.16. Let n be a prime given by (2.3), and let ρ12 = 6u2. Then the 12th
roots of unity in Fn are given by the powers of ρ12. They can be described in terms
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of the parameter u as follows:

ρ12 = 6u2,

ρ2
12 = −36u3 − 18u2 − 6u− 1 mod n,

ρ3
12 = −36u3 − 24u2 − 12u− 3 mod n,

ρ4
12 = −36u3 − 18u2 − 6u− 2 mod n,

ρ5
12 = −36u3 − 30u2 − 12u− 3 mod n,

ρ6
12 = −1 mod n,

ρ7
12 = −6u2 mod n,

ρ8
12 = 36u3 + 18u2 + 6u+ 1 mod n,

ρ9
12 = 36u3 + 24u2 + 12u+ 3 mod n,

ρ10
12 = 36u3 + 18u2 + 6u+ 2 mod n,

ρ11
12 = 36u3 + 30u2 + 12u+ 3 mod n.

Proof. The powers can be computed as polynomials in u modulo the polynomial
n(u).

Lemma 2.17. Let E be a BN curve, Q = (xQ, yQ) ∈ G2, and let φp ∈ End(E) be
the p-power Frobenius endomorphism. Then for all i ≥ 0 we have

φip(Q) = (xp
i

Q , y
pi

Q ) = [ρi12]Q. (2.14)

Proof. See Lemma 1.60 for the eigenspaces of φp.

Another source for efficient endomorphisms is the automorphism group Aut(E). We
have seen in Subsection 2.2.1 that for BN curves the automorphisms are defined over
Fp, thus they commute with the Frobenius φp. The restriction of each automorphism
to E(Fp) therefore gives a group automorphism of E(Fp).

Lemma 2.18. Let E be a BN curve, and σ6 ∈ Aut(E) be the automorphism of
order 6 from Lemma 2.9. Then the restriction σ6|G1

is a group automorphism of
G1 = E(Fp), and it holds

σ6|G1
: G1 → G1,

P = (xP , yP ) 7→ (ζ3xP ,−yP ) = [ρ6]P,

where ζ3 is the 3rd root of unity in Fp from Lemma 2.9, and ρ6 ∈ Z is a primitive
6th root of unity modulo n, i. e. ρ6 = −36u3 − 18u2 − 6u − 1 mod n or ρ6 =
36u3 + 18u2 + 6u+ 2 mod n.

Proof. Since σ6 is defined over Fp, it maps into E(Fp). The latter group is cyclic of
prime order n, and σ6 is nontrivial, which means that σ6|G1

is a group automorphism
and the image of a point P must be a multiple [ρ]P of P . Now σ6 has order 6. It
follows

P = σ6
6(P ) = [ρ6]P
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for all P ∈ E(Fp), and so ρ6 ≡ 1 (mod n), i. e. ρ is a 6th root of unity modulo n.
Since σ6 has order 6, so has ρ. Lemma 2.16 gives the parametrizations for the two
primitive 6th roots of unity in Fn.

Remark 2.19. The automorphisms commute with the multiplication-by-n map [n];
thus the restriction σ6|G2

is a group automorphism of G2. Therefore, the previous
lemma holds for the group G2 as well. The automorphisms act as scalar multi-
plications by 6th roots of unity. Combining this with Lemma 2.17 shows that the
automorphisms coincide onG2 with the even powers of the Frobenius endomorphism.

We now turn to efficiently computable endomorphisms on the twist E ′ of Lemma
2.12. The automorphism group can be used on the subgroup G′

2 of points of order
n in E ′(Fp2) just as for the curve E itself (see Lemma 2.18 and Remark 2.11). In
general, given an endomorphism ϕ ∈ End(E), we obtain an endomorphism ϕψ ∈
End(E ′) on the twist by applying the map

End(E)→ End(E ′), ϕ 7→ ϕψ := ψ−1ϕψ, (2.15)

depicted in the following diagram:

E ′ ϕψ //

ψ

��

E ′

E
ϕ // E

ψ−1

OO

The isomorphism ψ : E ′ → E is defined in (2.11) in Lemma 2.12. Applying the
above map to the group Aut(E) gives Aut(E ′). The image of the generator σ6 is
σ′

6 ∈ Aut(E ′), where σ′
6(x

′, y′) = (ζ3x
′,−y′) uses the same cube root of unity ζ3 as

σ6. We have
σ′

6 = σψ6 = ψ−1σ6ψ. (2.16)

Thus the automorphisms do not provide any new efficient endomorphisms on the
twist E ′. Next we will take powers of the Frobenius and apply (2.15). As on G2 (see
Remark 2.19), the even powers of φp lead to automorphisms again.

Lemma 2.20. Let E be a BN curve, and let E ′ and ψ be as in Lemma 2.12. Let
φp ∈ End(E) be the p-power Frobenius endomorphism. Denote by φp2 := φ2

p the
square of φp. Then

{(φip2)ψ | 0 ≤ i ≤ 5} = Aut(E ′).

Proof. Since (ω3)p
2

= −ω3 and (ω2)p
2

= ζ3ω
2 for a primitive 3rd root of unity ζ3,

we obtain

φψp2(x
′, y′) = ψ−1φp2ψ(x′, y′) = (ω−2(ω2x′)p

2

, ω−3(ω3y′)p
2

) = (ζ3x
′,−y′),

which means that φψp2 is a generator of the automorphism group Aut(E ′). The lemma

follows from (φip)
ψ = ψ−1φipψ = (ψ−1φpψ)i = (φψp )

i.
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In contrast to its square, the p-power Frobenius itself gives a new endomorphism
η = φψp = ψ−1φpψ. It satisfies the 12th cyclotomic polynomial η4 − η2 + 1 = 0 (see
also [GS08]).

Lemma 2.21. Let E be a BN curve, and let E ′ and ψ be as in Lemma 2.12. Let
φp ∈ End(E) be the p-power Frobenius endomorphism. Let η = φψp = ψ−1φpψ ∈
End(E ′) and let Q′ ∈ G′

2 be a point of order n on the twist E ′. Then for all i ≥ 0,
we have

ηi(Q′) = [ρi12]Q
′.

Proof. This follows directly from Lemma 2.17.

2.2.5 Point compression

It is possible to compress points on an elliptic curve, e. g. to save bandwidth when
storing or transmitting such points. The usual technique is to keep only the x-
coordinate of the point and a single bit to distinguish between the at most two
possible y-coordinates. See [DL05a, Section 13.2.5, p. 288] for details. If the y-
coordinate needs to be determined, a square root has to be computed.
We aim at compressing n-torsion points on the sextic twist, i. e. points Q′ = (x′, y′) ∈
G′

2. Instead of compressing to x′, we discard x′ and keep y′ as the compressed rep-
resentation of Q′. To be able to decompress, we need to keep two bits to distinguish
between the at most three possible points with the given y-coordinate. Keeping
only the y-coordinate means that we identify the three points (x′, y′), (ζ3x

′, y′), and
(ζ2

3x
′, y′), which all share the same y-coordinate, while their x-coordinates differ by

the primitive 3rd roots of unity ζ3 and ζ2
3 . We may describe such a set of points in

terms of the automorphism group G′ := Aut(E ′) of E ′.
The group G′ acts on the group G′

2. We consider H′ = 〈(σ′
6)

2〉, the subgroup of order
3 of the automorphism group G′ and its action on G′

2. Lemma 2.9 shows that for a
point Q′ = (x′, y′) 6= O, the orbit H′Q′ = H′(x′, y′) consists exactly of all points in
G′

2 that share the same y-coordinate. The orbit containing the point O is just the
set {O}. For the same reasons as for the original curve E, there are no points with
a coordinate being 0 in the prime order group G′

2 (see Lemma 2.7). Therefore, for
a point Q′ = (x′, y′) 6= O, the orbit

H′Q′ = H′(x′, y′) = {(x′, y′), (ζ3x′, y′), (ζ2
3x

′, y′)}

has cardinality 3. We denote by OrbH′(G′
2) the set of orbits of H′ on G′

2.
The following Lemma summarizes that we can represent orbits under the action of
H′ by one element in Fp2, namely by the y-coordinate of the points contained in the
orbit. We define

G′
2,y = {y′ ∈ Fp2 | ∃ x′ ∈ Fp2 such that (x′, y′) ∈ G′

2}

to be the set of possible y-coordinates of points in G′
2.
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Lemma 2.22. Let E be a BN curve, and let E ′ be its twist of degree 6. Then with
notation as above, the map

G′
2,y → OrbH′(G′

2) \ {{O}},
y′ 7→ H′(x′, y′)

is bijective.

Proof. The map is injective since different y-coordinates are mapped to different
orbits. It is surjective, since each orbit different from {O} contains a point with
some y-coordinate from G′

2,y.

Of course, we may also consider the action of the whole group G′ on G′
2. For a

nonzero point, the orbit becomes

G′(x′, y′) = {(x′, y′), (ζ3x′,−y′), (ζ2
3x

′, y′), (x′,−y′), (ζ3x′, y′), (ζ2
3x

′,−y′)}.

Such an orbit can be represented by one bit less since we may forget about the sign
of y′ and just identify all points that have y-coordinate equal to y′ or −y′. We denote
by OrbG′(G′

2) the set of orbits of G′ on G′
2. Let y′ = y′0 + y′1ν ∈ Fp2 with y′0, y

′
1 ∈ Fp.

Define ỹ′ := y′ if the integer in [0, p− 1] representing y′0 is even, and ỹ′ := −y′ if it
is odd. Then if ỹ′ = ỹ′0 + ỹ′1ν, the least significant bit of ỹ′0 is always 0 and can be
omitted. Let

G′
2,ỹ = {ỹ′ | ∃ x′ ∈ Fp2 , such that (x′, y′) ∈ G′

2}
be the set of all elements ỹ′ for all y-coordinates of points in G′

2. It can be easily
seen, that the following lemma is true.

Lemma 2.23. Let E be a BN curve and E ′ its twist of degree 6. Then the map

G′
2,ỹ → OrbG′(G′

2) \ {{O}},
ỹ′ 7→ G′(x′, y′)

is well-defined and bijective.

The orbit structure is carried over to G2 when mapped via ψ, which is stated ex-
plicitly in the following remark.

Remark 2.24. It follows from (2.16) that ψσ′
6 = σ6ψ. If we denote by G := Aut(E)

the automorphism group of E and by H := 〈σ2
6〉 its subgroup of order 3, we get the

following identities. For Q′ ∈ G′
2,

ψ(G′Q′) = Gψ(Q′) and ψ(H′Q′) = Hψ(Q′),

i. e. an orbit of points in G′
2 is mapped to the corresponding orbit of points in G2,

and thus ψ(OrbG′(G′
2)) = OrbG(G2), ψ(OrbH′(G′

2)) = OrbH(G2).
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Remark 2.25. From Remark 2.19 we see that the orbits in G2 under G and H
consist of even p-power multiples of one point. The orbits of a point Q ∈ G2 are

GQ = {Q, [p2]Q, [p4]Q, [p6]Q, [p8]Q, [p10]Q}

and
HQ = {Q, [p4]Q, [p8]Q},

respectively.

We have seen that we can compress points by identifying points in the orbits of the
automorphism group. We only need to keep part of the y-coordinate of one of the
points and a few additional bits to distinguish between at most six possible points
in the orbit. We will see in the next section how this can be used together with the
compression of pairing values.
If a point needs to be reconstructed, i. e. decompressed, the x-coordinate correspond-
ing to a point in G1, G2, or G′

2 with a given y-coordinate is needed. We may obtain
it by simply computing a cube root of y2 − b or y′2 − b/ξ. We now briefly discuss
how to efficiently compute cube roots in fields occurring for BN curves.
Each prime number of form (2.2), i. e. p(u) = 36u4+36u3+24u2+6u+1, is congruent
to 6u2 + 6u + 1 (mod 9) and hence p(u) ≡ 1 (mod 9) if u ≡ 0 (mod 3) or u ≡ 2
(mod 3), and p(u) ≡ 4 (mod 9) if u ≡ 1 (mod 3).

Lemma 2.26. Let q be a prime power such that q ≡ 4 (mod 9), i. e. 2q + 1 ≡ 0
(mod 9). Let a ∈ F∗

q be a cube. Then a cube root r ∈ F∗
q of a is given by r = a(2q+1)/9.

Proof. Since a is a cube, a(q−1)/3 = 1. It is r3 = a(2q+1)/3 = aa(2q−2)/3 = a.

Computing cube roots modulo p ≡ 4 (mod 9) only takes one exponentiation. For
recovering the x-coordinate of points in E ′(Fp2) given only their y-coordinate, one
needs to compute a cube root in F∗

p2, and for p ≡ 4 (mod 9) we have p2 ≡ 7 (mod 9).

Lemma 2.27. Let q be a prime power such that q ≡ 7 (mod 9). Let a ∈ F∗
q be a

cube. Then a cube root r ∈ F∗
q is given by r = a(q+2)/9.

Proof. Since a is a cube, a(q−1)/3 = 1. It is r3 = a(q+2)/3 = aa(q−1)/3 = a.

Again, the computation of a cube root only takes one exponentiation. When apply-
ing both lemmas, one must check that the result is correct, i. e. that r3 = a, if it is
not known, whether u is a cube.

2.3 Pairing computation

In this section, we discuss different pairings on BN curves and elaborate on how they
can be computed. First of all, we recall the notation fixed in the previous sections.
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Throughout the section let (p, n) be a BN prime pair, and let E : y2 = x3 + b be
a BN curve over Fp. Let E ′ : y2 = x3 + b/ξ be the twist of degree 6 as in Lemma
2.12, which is defined over Fp2, and ξ ∈ Fp2 is neither a square nor a cube. We take
Fp2 = Fp(ν), where ν is a root of the irreducible polynomial x2 − µ ∈ Fp[x]. The
embedding degree of E with respect to n is k = 12, and thus pairings map into
Fp12 . This field is represented as Fp12 = Fp2(ω), where ω is a root of the irreducible
polynomial x6−ξ ∈ Fp2[x]. The intermediate fields Fp4 and Fp6 can then be given as
Fp6 = Fp2(ω

2) and Fp4 = Fp2(ω
3), see Section 2.2.3. We define ς := ω3 and τ := ω2,

i. e. Fp6 = Fp2(τ), Fp4 = Fp2(ς), and Fp12 = Fp4(τ) = Fp6(ς).
We now assemble the groups that are involved in the pairing computation. The
first of those is the group E(Fp), which is the 1-eigenspace of the p-power Frobenius
endomorphism φp ∈ End(E),

G1 = E(Fp) = ker(φp − [1]). (2.17)

The second group is the p-eigenspace of the Frobenius on E[n], which consists of
points defined over Fp12,

G2 = E[n] ∩ ker(φp − [p]) ⊆ E(Fp12)[n]. (2.18)

We have seen that we can represent the points in G2 by points in the group

G′
2 = E ′(Fp2)[n], (2.19)

and then, if needed, map to G2 via

ψ : G′
2 → G2, (x′, y′) 7→ (ω2x′, ω3y′) = (τx′, ςy′).

This map is needed when a pairing is actually computed. Other operations, like for
example the elliptic curve arithmetic during Miller’s algorithm for the ate pairing,
should be done in G′

2. When curve arithmetic in G2 is required in a protocol, it can
be replaced by arithmetic in G′

2. The following remark shows that computing the
map ψ from G′

2 to G2 is almost for free.

Remark 2.28. In the chosen setting of finite fields, the computation of ψ(Q′) =
ψ(x′, y′) does not require any finite field arithmetic. An element α ∈ Fp12 can be
written as

α = α0 + α1ω + α2ω
2 + α3ω

3 + α4ω
4 + α5ω

5,

with coefficients αi ∈ Fp2. It is uniquely determined by (α0, α1, α2, α3, α4, α5), its
coefficient vector. The element ω2x′ has just one coefficient different from 0, i. e.
it is given by the vector (0, 0, x′, 0, 0, 0). The second coordinate, ω3y′, is given by
(0, 0, 0, y′, 0, 0). In particular, no field multiplications are needed at all.

Since ψ : G′
2 → G2 is a group isomorphism, every point in G2 is of the form (τx′, ςy′).

Note that both coordinates lie in proper subfields of Fp12 (see Remark 2.15). This
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makes the evaluation of line functions easier, as we are able to do computations in
subfields of Fp12 .
Finally, the third group that occurs is the group µn ⊆ F∗

p12 of nth roots of unity,
into which the pairing maps:

G3 = µn ⊆ F∗
p12 . (2.20)

All the groups G1, G2, G
′
2, and G3 are cyclic groups of order n. If needed, one

can use point compression techniques on the groups G1, G2, and G′
2 as proposed

in Subsection 2.2.5. To speed up elliptic-curve scalar multiplication, the methods
discussed in Subsection 2.2.4 may be applied.
We now turn towards pairing computation. An essential part of Miller’s algorithm
(see Algorithm 1.1) is the evaluation of the line functions lU,V for two points U =
(xU , yU) and V = (xV , yV ) lying in either of the groups G1, G2, or G′

2. If U 6= −V ,
the function lU,V is given by

lU,V (x, y) = λ(x− xU ) + (yU − y),
where λ is the slope of the line through U and V , being tangent to the curve, if
U = V (see Lemma 1.94).
The pairing functions that we consider in the sequel are either maps

G1 ×G2 → G3 or G2 ×G1 → G3.

Line function computation and evaluation are different in both cases, since U, V ∈ G1

in the first case and U, V ∈ G2 in the second case. Thus point coordinates lie in
different fields. The point Q, at which the line functions are evaluated, lies in the
other group, and also has different fields of definition in the different cases. We
address each case in one of the following two subsections.
The final exponentiation has to be carried out after the Miller function computation
in either case. For BN curves, the exponent is (p12−1)/n. It can be split up, and the
exponentiation can be carried out by some applications of the finite field Frobenius
automorphism and a remaining part, done in a multi-exponentiation. For details,
we refer to the paper of Devegili, Scott, and Dahab [DSD07]. Recently, Scott et. al.
[SBC+08] have been able to further improve the final exponentiation.

2.3.1 Tate and twisted ate pairings

For the Tate and the twisted ate pairing (see Section 1.2), we compute a function

e : G1 ×G′
2 → G3, (P,Q′) 7→ fm,P (ψ(Q′))

p12−1

n .

Here m = n if the Tate pairing is computed and m = ρ2
12 mod n if e is the twisted

ate pairing. The best choice for this setting of groups is the generalized twisted ate
pairing proposed by Zhao, Zhang, and Huang in [ZZH08]. Depending on the sign of
the parameter u, we can always choose m ∈ {ρ2

12 mod n, ρ10
12 mod n}, i. e.

m ∈ {−36u3 − 18u2 − 6u− 1, 36u3 + 18u2 + 6u+ 2},
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such that the bitsize of m is 3/4 that of n.
We now give the line functions that occur in Miller’s algorithm for points in affine
representation. Remember that an element α of Fp12 can be represented as

α = α0 + α1ω + α2ω
2 + α3ω

3 + α4ω
4 + α5ω

5

= α0 + α1ω + α2τ + α3ς + α4ως + α5ςτ.

We state the evaluated line functions in this representation.

Lemma 2.29. Let U, V ∈ G1, U = (xU , yU), V = (xV , yV ), i. e. xU , yU , xV , yV ∈ Fp,
and Q′ = (xQ′, yQ′) ∈ G′

2, i. e. xQ′ , yQ′ ∈ Fp2. Then the line function lU,V (ψ(Q′))
can be computed as follows.

(a) If U 6= ±V , then λ = (yV − yU)/(xV − xU). If U = V , then λ = (3x2
U)/(2yU).

In both cases,

lU,V (ψ(Q′)) = (yU − λxU) + λxQ′τ − yQ′ς.

(b) If U = −V , then
lU,−U(ψ(Q′)) = −xU + xQ′τ.

Proof. This follows easily from Lemma 1.94.

Note that due to the representation of G2 as the image of G′
2, the computation of line

functions involves only the computation of λ ∈ Fp and the multiplications λxU ∈ Fp
and λxQ′ , where only xQ′ ∈ Fp2.
To avoid inversions, one usually represents U, V in projective coordinates. The
formulas in this case can be easily deduced from the above and are given in [DSD07].

2.3.2 ate and optimal pairings

The ate pairing on a BN curve is computed as

e : G′
2 ×G1 → G3, (Q′, P ) 7→ ft−1,ψ(Q′)(P )

p12−1

n .

In contrast to pairings from the previous subsection, the curve arithmetic in Miller’s
algorithm must now be done in G′

2. Line function coefficients are computed from
the coordinates of Q′ ∈ G′

2, while they are evaluated at a point P ∈ G1 defined over
the base field.

Lemma 2.30. Let U, V ∈ G2 and define U ′ and V ′ by U = ψ(U ′) = (τxU ′ , ςyU ′)
and V = ψ(V ′) = (τxV ′ , ςyV ′). If U 6= −V , the slope λ of the line passing through
U and V (being tangent to the curve E if U = V ) is given by

λ = ωλ′,

where λ′ is the slope of the line through U ′ and V ′ (being tangent to the curve if
U ′ = V ′).
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Proof. Let U 6= V , then

λ =
yV − yU
xV − xU

=
ς(yV ′ − yU ′)

τ(xV ′ − xU ′)
= ω

yV ′ − yU ′

xV ′ − xU ′

= ωλ′.

Now, let U = V , then

λ =
3x2

U

2yU
=
τ 2(3x2

U ′)

ς(2yU ′)
= ω

3x2
U ′

2yU ′

= ωλ′.

Once more, computations with points in G2 can be replaced by corresponding com-
putations with points in G′

2. We proceed by giving the line functions.

Lemma 2.31. Let U ′, V ′ ∈ G′
2, U

′ = (xU ′ , yU ′), V ′ = (xV ′, yV ′), i. e. xU ′ , yU ′,
xV ′ , yV ′ ∈ Fp2, and P = (xP , yP ) ∈ G1, i. e. xP , yP ∈ Fp. Then the line function
lψ(U ′),ψ(V ′)(P ) evaluated at P can be computed as follows:

(a) If U ′ 6= ±V ′, let λ′ = (yV ′−yU ′)/(xV ′−xU ′). If U ′ = V ′, let λ′ = (3x2
U ′)/(2yU ′).

In both cases,

lψ(U ′),ψ(V ′)(P ) = −yP + λ′xPω + (yU ′ − λ′xU ′)ς.

(b) If U ′ = −V ′, then
lψ(U ′),−ψ(U ′)(P ) = xP − xU ′τ.

Proof. Case (b) is trivial. For case (a), compute λ(xP − xψ(U ′)) + (yψ(U ′) − yP ) =
λ′ω(xP − xU ′τ) + (yU ′ς − yP ).

Compared to Lemma 2.29, more computations in Fp2 must be made. We have the
computation of λ′ and the multiplications λ′xP , where only λ′ ∈ Fp2 and λ′xU ′ ∈ Fp2.
These formulas have been proposed in [DSD07] already.
The shortest loop length for a pairing based on the ate pairing can be achieved by
using so called optimal pairings as introduced by Vercauteren in [Ver08]. The loop
length for the Miller function is m = 6u + 2 in this case. But note that then the

function (P,Q′)→ (fm,ψ(Q′)(P ))
p12−1

n is not bilinear, and that it needs to be adjusted
by some line-function factors.

2.3.3 Pairing compression

In [SB04], Scott and Barreto suggest to compress pairing values by computing a
finite field trace. Implicit exponentiation of compressed values can be done as in the
XTR public key system [LV00]. Following the ideas in [LV00] and [SB04], we can
compress pairing values to 1/3 of their length by computing their Fp4-trace. Pairing
values are then represented by one Fp4-element, and can be implicitly exponentiated.
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Compression in such a way is consistent with point compression in G′
2. All points

with the same y-coordinate, i. e. all points that lie in the same orbit under the
subgroup H′ of the automorphism group Aut(E ′) (see Subsection 2.2.5) are mapped
to the same value.

Proposition 2.32. Let e1 : G1 × G′
2 → G3 and e2 : G′

2 × G1 → G3 be bilinear
pairings. Let P ∈ G1 and Q′ = (x′, y′) ∈ G′

2. Then for all points R′ ∈ G′
2 with

y-coordinate equal to y′, it holds:

trFp4
(e1(P,Q

′)) = trFp4
(e1(P,R

′)) and trFp4
(e2(Q

′, P )) = trFp4
(e2(R

′, P )),

where trFp4
: Fp12 → Fp4, α 7→ α + αp

4

+ αp
8

is the Fp4-trace.

Proof. It follows from Lemma 2.22 that the set of all points with the same y-
coordinate y′ is exactly the orbit H′Q′. Remark 2.24 then shows that this orbit
is bijectively mapped to the orbit Hψ(Q′) in G2. By Remark 2.25, we see that this
orbit is exactly {Q, [p4]Q, [p8]Q}, where Q = ψ(Q′). Let e0 = e1(P,Q

′). Then the

pairing values of the other two points with y-coordinate y′ are ep
4

0 and ep
8

0 , respec-
tively. Thus the traces of all three values are equal to trFp4

(e0). The same holds for

the pairing e2(Q
′, P ) with groups interchanged.

Similarly, if we compress points in G′
2 to one bit less, i. e. if we identify all points

with their y-coordinates being equal up to sign, we can do the corresponding sixfold
compression of pairing values by computing the Fp2-trace.

Proposition 2.33. Let e1 : G1 × G′
2 → G3 and e2 : G′

2 × G1 → G3 be bilinear
pairings. Let P ∈ G1 and Q′ = (x′, y′) ∈ G′

2. Then for all points R′ ∈ G′
2 that have

a y-coordinate equal to y′ or −y′, it holds:

trFp2
(e1(P,Q

′)) = trFp2
(e1(P,R

′)) and trFp2
(e2(Q

′, P )) = trFp2
(e2(R

′, P )),

where trFp2
: Fp12 → Fp2, α 7→ α + αp

2

+ αp
4

+ αp
6

+ αp
8

+ αp
10

is the Fp2-trace.

Proof. The proposition follows in the same way as Proposition 2.32 from Lemma
2.23 and Remarks 2.24 and 2.25.

The approach to compress pairing values by computing traces is not suitable for
implicit multiplication of compressed values. This problem can be solved by a com-
pression technique that exploits the fact that pairing values lie in algebraic tori,
certain subgroups of F∗

p12. We discuss this approach in Chapter 3.

2.4 Construction revisited

In this section, we return to the construction of BN curves. In contrast to Section 2.1,
we summarize in one place, how to get all the parameters needed for implementing
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pairings on BN curves, including generator points, field extensions, the primitive
roots of unity needed for the use of efficient endomorphisms, and the automorphism
groups. We use the following polynomial parametrizations:

p = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = 36u4 + 36u3 + 18u2 + 6u+ 1,

t = 6u2 + 1.

2.4.1 Prime pairs and primitive roots

Algorithm 2.2 is a randomized algorithm to find a BN prime pair. Note that the set
I in Step 1 might not contain any u leading to a BN prime pair, in which case the
loop would not terminate. We therefore assume, that the algorithm is only applied
for large enough values of m, such that I is not empty and large enough to provide
a prime pair. Our heuristic results in Subsection 2.1.1 imply that this is always the
case for m > 32. The notation u ∈R I in Step 3 indicates that u is chosen at random
from the set I.

Input: A desired bitsize m for the group order n.
Output: A parameter u ∈ Z such that p and n are prime and have m bits, and the

corresponding BN prime pair (p, n).
1: Find the largest set I ⊂ Z, such that p and n have m bits for all u ∈ I.
2: repeat

3: Select u ∈R I,
4: compute p← 36u4 + 36u3 + 24u2 + 6u+ 1,
5: compute t← 6u2 + 1 and n← p+ 1− t.
6: until p and n are prime.
7: return u, (p, n).

Algorithm 2.2: Finding a BN prime pair

Let µ ∈ Fp be a non-square. To construct Fp2 use Fp2 = Fp(ν), where ν2 = µ. From
the parameter u, we can compute the 6th roots of unity in Fp as

ζ6 = 18u3 + 18u2 + 9u+ 2 mod p,

ζ2
6 = 18u3 + 18u2 + 9u+ 1 mod p,

ζ3
6 = −1 mod p,

ζ4
6 = −18u3 − 18u2 − 9u− 2 mod p,

ζ5
6 = −18u3 − 18u2 − 9u− 1 mod p,



68 2.4. Construction revisited

and the 12th roots of unity in Fn as

ρ12 = 6u2,

ρ2
12 = −36u3 − 18u2 − 6u− 1 mod n,

ρ3
12 = −36u3 − 24u2 − 12u− 3 mod n,

ρ4
12 = −36u3 − 18u2 − 6u− 2 mod n,

ρ5
12 = −36u3 − 30u2 − 12u− 3 mod n,

ρ6
12 = −1 mod n,

ρ7
12 = −6u2 mod n,

ρ8
12 = 36u3 + 18u2 + 6u+ 1 mod n,

ρ9
12 = 36u3 + 24u2 + 12u+ 3 mod n,

ρ10
12 = 36u3 + 18u2 + 6u+ 2 mod n,

ρ11
12 = 36u3 + 30u2 + 12u+ 3 mod n.

Note that ρ12 = t− 1. Define ζ3 := ζ2
6 , a primitive 3rd root of unity modulo p, and

define ρ6 := ρ2
12, a primitive 6th root of unity modulo n.

2.4.2 Curve, twist, and automorphisms

On input of a BN prime pair (p, n), Algorithm 2.3 constructs a BN curve over Fp
with n = #E(Fp) and a degree 6 twist E ′ of E over Fp2 such that n divides #E ′(Fp2).
It further gives generators P and Q′ for the groups G1 = E(Fp) and G′

2 = E ′(Fp2)[n].
As discussed in Subsection 2.1.2, the random choice of P in Step 4 may be replaced
by the choice with a certain given x-coordinate or y-coordinate.

The 3rd root of unity ζ3 from the previous subsection defines a generator σ6 of the
automorphism group Aut(E) by

σ6 : E → E, (x, y) 7→ (ζ3x,−y)

and a generator σ′
6 of Aut(E ′) by

σ′
6 : E ′ → E ′, (x′, y′) 7→ (ζ3x

′,−y′).

Then it holds σ6(P ) = [ρ6]P or σ6(P ) = [ρ5
6]P . Which one is correct, can be checked

easily. Similarly, we can test whether σ′
6(Q

′) = [ρ6]Q
′ or σ6(Q

′) = [ρ5
6]Q

′.

2.4.3 Finite fields and twist isomorphism

Finally, we can construct the finite fields Fp4, Fp6, and Fp12 as extensions of Fp2 using
the element ξ ∈ Fp2 \

(
(Fp2)

2 ∪ (Fp2)
3
)

that defines the twist E ′ (see Lemma 2.14
and Algorithm 2.3). As indicated in Subsection 2.2.3, we can choose ω ∈ Fp12 with
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Input: A BN prime pair (p, n) and Fp2 = Fp(ν).
Output: A parameter b ∈ Fp, such that n = #E(Fp) for E : y2 = x3 + b, a

parameter ξ ∈ Fp2, such that n | #E ′(Fp2) for E ′ : y2 = x3 + b/ξ, and generators
P for E(Fp) and Q′ for E ′(Fp2)[n].

1: repeat

2: Select b ∈R Fp \ ((Fp)
2 ∪ (Fp)

3),
3: define E : y2 = x3 + b,
4: select P ∈R E(Fp) \ {O}.
5: until [n]P = O.
6: Compute h← p− 1 + t.
7: Select ξ ∈ Fp2 \

(
(Fp2)

2 ∪ (Fp2)
3
)
,

8: define E ′ : y′2 = x′3 + b/ξ.
9: repeat

10: Select R′ ∈R E ′(Fp2),
11: compute Q′ ← [h]R′,
12: until Q′ 6= O.
13: if [n]Q′ 6= O then

14: Set ξ ← ξ5 and go to Step 8.
15: end if

16: return b, ξ, P,Q′.

Algorithm 2.3: Constructing a BN curve and its twist

ω6 = ξ and define τ := ω2 and ς := ω3. Then the fields can be represented as

Fp12 = Fp2(ω),

Fp6 = Fp2(τ),

Fp4 = Fp2(ς).

The isomorphism ψ, mapping from the twist E ′ to E, is given as

ψ : E ′ → E, (x′, y′) 7→ (τx′, ςy′).

2.5 Examples

All of the following curves have an equation E : y2 = x3 + 3 over Fp with a group
of Fp-rational points of prime order n and the trace of the Frobenius endomorphism
equal to t. A sample generator for any of them is P = (1, 2) ∈ E(Fp). In all
cases, we choose p ≡ 3 (mod 4) and p ≡ 4 (mod 9) to simplify the computation
of square and cube roots, and the bitlengths of p and n are equal. The field Fp2 is
represented as Fp(i), where i2 = −1. The sextic twist for all examples has the form
E ′(Fp2) : y2 = x3 + 3/ξ, where 1/ξ = −8 + 8i. Furthermore, we provide a primitive
6th root of unity ζ6 modulo p, and a 12th root of unity ρ12 modulo n can be simply
obtained as t− 1. A generator for the group E ′(Fp2)[n] is given as Q′ = (xQ′ , yQ′).
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160-bit groupsize

p = 1461501624496790265145448589920785493717258890819

n = 1461501624496790265145447380994971188499300027613

t = 1208925814305217958863207

u = 448873741399

ζ6 = 1627965160026674480212199743920457793

xQ′ = 349428567228908313604752388954091103921210071309i

+821829959935049481490613055449855070122493239244

yQ′ = 871202673805247435072049417049386724746063086907i

+1239146125490754416389195992354273864776961399618

192-bit groupsize

p = 6277101719531269400517043710060892862318604713139674509723

n = 6277101719531269400517043709981664699904401744160036556389

t = 79228162414202968979637953335

u = −114911677977917

ζ6 = 6277101719531242087793785341302515031658554231004900992640

xQ′ = 589078237886627886412000379109769546321621676110465892923i

+4140652997028575876232653427843338644184272370846988816508

yQ′ = 3110626088763032698651814673435170332591939245116527986818i

+376143398667871384477896023247789475555633842832870122551

224-bit groupsize

p = 26959946667149205758383469736921695435015736735261155141423417423923

n = 26959946667149205758383469736921690242718878200571531029749235996909

t = 5192296858534689624111674181427015

u = −29417389580922737

ζ6 = 26959946667149205300152011214972999882214498177079747500155117548380

xQ′ = 12326039968374828214148931530476740752817231601509159806288623840658i

+15544353828709020387416773688955456805153065789047635405204491572503

yQ′ = 13388270255032984859289798216090024487025415080082079889294300059312i

+3178522513471092300347338705055807506872703350697542114351541449187

256-bit groupsize

p = 115792089237314936872688561244471742058375878355761205198700409522629664518163

n = 115792089237314936872688561244471742058035595988840268584488757999429535617037

t = 340282366920936614211651523200128901127

u = −7530851732716300289

ζ6 = 115792089237314936865000713086853723961501417581576165808556977265798185842700

xQ′ = 48637431283323345108849385748911846788633049315049371751120697505649946338369i

+76223408697226418798745643093605482890139812513084077932670547153386654984703

yQ′ = 12614782342200854109607956841026304545095356007536600385153902973429525758572i

+112103232229758856060671276297199689204345964658951607162631544293223609182175



Chapter 3

Compressed pairing computation

In this chapter we discuss a method to compute pairings in compressed form. This
method has been proposed in joint work with Barreto and Schwabe in [NBS08]. For
an elliptic curve E/Fq with embedding degree k with respect to some prime divisor
r of #E(Fq), pairing values are rth roots of unity. Thus they lie in algebraic tori,
certain subgroups of F∗

qk . Torus elements α are characterized by having relative

norm 1, i. e. NF
qk
/F̃(α) = 1, for certain subfields F̃ ⊆ Fqk . These conditions allow to

represent a torus element with less coefficients than a general element of Fqk needs.

Techniques based on algebraic tori are already used in the public-key systems LUC
proposed by Smith and Lennon [SL93], the system by Gong and Harn [GH99,
GHW01], and XTR by Lenstra and Verheul [LV00]. Rubin and Silverberg [RS03]
describe a framework for torus-based cryptography.
The compression of pairing values is addressed by Scott and Barreto [SB04]. They
use finite field traces of pairing values to represent them by elements in a smaller
field. This approach is useful for implicit exponentiation, and they propose to do
part of the final exponentiation in compressed form. But implicit multiplication of
general compressed values can not be done easily. We have discussed trace-based
compression techniques for BN curves in Subsection 2.3.3 of Chapter 2.

Granger, Page, and Stam [GPS06] propose to use torus-based compression tech-
niques for pairing-based cryptography. They have shown how a pairing value in a
field extension Fq6 can be compressed to an element in Fq3 plus one bit. We note
that the technique of compression that we use here has already been explained in
[GPS06] for supersingular curves in characteristic 3. Granger, Page, and Stam men-
tion that the technique works also for curves over large characteristic fields, but they
do not give the details. We show how to use the compression in this case. As a new
contribution, we include the compression to inside the Miller loop, and show how to
work with compressed representation.
In Section 3.1, we define algebraic tori and discuss basic properties. We introduce
compressed pairing computation on elliptic curves with an even embedding degree
in Section 3.2. The method is discussed in more detail for curves that have a twist
of degree 6 and embedding degree divisible by 6 in Section 3.3. In this case, we give

71
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explicit formulas for compressed pairing computation.

3.1 Preliminaries on tori

Let Fq be a finite field and Fql ⊇ Fq a field extension. Then the norm of an element
α ∈ Fql with respect to Fq is defined as the product of all conjugates of α over Fq,
namely

NF
ql
/Fq(α) = ααq · · ·αql−1

= α1+q+···+ql−1

= α(ql−1)/(q−1).

Definition 3.1. For a positive integer l, the torus of degree l over Fq is defined as

Tl(Fq) =
⋂

Fq⊆F̃(F
ql

ker(NF
ql
/F̃). (3.1)

If Fq ⊆ F̃ ( Fql, then F̃ = Fqd, where d | l, d 6= l; so the relative norm is given as

NF
ql
/F
qd

(α) = α(ql−1)/(qd−1).

It follows that

Tl(Fq) = {α ∈ Fql | α(ql−1)/(qd−1) = 1, d | l, d 6= l}.

Since the norm map is multiplicative, the set Tl(Fq) is a subgroup of F∗
ql.

Lemma 3.2. The set Tl(Fq) is the unique subgroup of the cyclic group F∗
ql

of order

Φl(q), where Φl is the lth cyclotomic polynomial.

Proof. This is [RS03, Lemma 7].

From the definition of cyclotomic polynomials [LN97, Definition 2.44 and Theorem
2.45], we know that for p ∤ l

X l − 1 =
∏

d|l
Φd(X) = Φl(X)

∏

d|l,d6=l
Φd(X).

Define
Ψl(X) :=

∏

d|l,d6=l
Φd(X) = (X l − 1)/Φl(X).

Lemma 3.3. Let α ∈ F∗
ql. Then αΨl(q) ∈ Tl(Fq).

Proof. Let β = αΨl(q). Then βΦl(q) = αq
l−1 = 1, thus β has order dividing Φl(q).

Since F∗
ql

and Tl(Fq) are finite cyclic groups, and Tl(Fq) is the unique subgroup of

order Φl(q), β lies in Tl(Fq).

Lemma 3.4. For each divisor d | l of l, it holds Tl(Fq) ⊆ Tl/d(Fqd).
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Proof. Let β ∈ Tl(Fq). Then NF
ql
/Fqe (β) = 1 for all e | l, e 6= l. In particular, the

norm is 1 for all such e with d | e, hence β ∈ Tl/d(Fqd).

Combining the above two lemmas shows that the element α raised to the power
Ψl(q) is an element of each torus Tl/d(Fqd) for all divisors d | l, d 6= l.

Remark 3.5. Let E be an elliptic curve defined over Fq and r a prime with r |
#E(Fq). Let k be the embedding degree of E with respect to r. By Lemma 1.107,
we have that r | Φk(q). Hence, the exponent of the final exponentiation can be split
up as

qk − 1

r
= Ψk(q)

Φk(q)

r
.

Therefore, a pairing value computed from the reduced Tate pairing or any other
pairing variant that includes the final exponentiation (see Section 1.2.3) lies in the
torus Tk(Fq). By the preceding lemmas, it also lies in each torus Tk/d(Fqd) for d | k,
d 6= k.

3.2 Even embedding degree

Let k be even, and let p ≥ 5 be a prime. In this section, let q = pk/2 and thus
Fq = Fpk/2 so that Fq2 = Fpk. Choose ξ ∈ Fq to be a nonsquare. Then the polynomial
x2 − ξ ∈ Fq[x] is irreducible, and we represent Fq2 = Fq(σ), where σ is a root of
x2 − ξ. We exploit properties of the torus T2(Fq) in this section. We have

T2(Fq) = {α ∈ Fq2 | αq+1 = 1} = {a0 + a1σ ∈ Fq2 | a2
0 − a2

1ξ = 1}.

If a1 = 0, then a0 ∈ {1,−1}. Therefore, 1 and −1 are the only elements from Fq
that lie in T2(Fq).

Proposition 3.6. Each element 1 6= α ∈ T2(Fq) has a unique representation as

α =
a− σ
a+ σ

for some element a ∈ Fq. Vice versa, every fraction of this form is an element of
T2(Fq). If α = a0 + a1σ with a1 6= 0, a can be computed as a = −(1 + a0)/a1. The
map

θ : T2(Fq)→ P1(Fq), α 7→ (Xα : Yα) :=






(−(1 + a0)/a1 : 1) if a1 6= 0,

(0 : 1) if a1 = 0, a0 = −1,

(1 : 0) if a1 = 0, a0 = 1

is a bijection.

Proof. This follows from [RS03, Section 5.2].
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Remark 3.7. The map θ from the previous proposition can be given as θ(α) =
(−(1 + a0) : a1) for α = a0 + a1σ 6= −1. The definition in Proposition 3.6 uses as
representative for a projective point θ(α) the corresponding affine point if α 6= 1, and
uses the point at infinity (1 : 0) for α = 1. This emphasizes that we can represent a
torus element α ∈ T2(Fq) by θ(α) which can be given by one element in Fq and an
additional bit to distinguish the neutral element 1 ∈ T2(Fq). Hence we consider θ as
a compression function.

We wish to multiply elements in T2(Fq) implicitly with their compressed values. The
next lemma shows how to compute the compressed value of the product of two torus
elements from the compressed values of the single elements.

Lemma 3.8. Let α, β ∈ T2(Fq). If Xα = −Xβ, then θ(αβ) = (1 : 0); if Yα = 0,
then θ(αβ) = θ(β); and if Yβ = 0, then θ(αβ) = θ(α). Otherwise,

θ(αβ) = ((XαXβ + ξ)/(Xα +Xβ) : 1), (3.2)

where ξ = σ2.

Proof. If either Yα = 0 or Yβ = 0, i. e. α = 1 or β = 1, the result is the other value.
If Xα = −Xβ , we have that (Xα − σ)/(Xα + σ) = (Xβ + σ)/(Xβ − σ) is the inverse
of (Xβ − σ)/(Xβ + σ), and their product is 1.
For all other cases, the product is

Xα − σ
Xα + σ

· Xβ − σ
Xβ + σ

=
Xαβ − σ
Xαβ + σ

with Xαβ = (XαXβ + ξ)/(Xα +Xβ).

Remark 3.9. Let α ∈ T2(Fq) \ {1,−1}. Then Xα 6= 0, and the compressed value
of α2 is θ(α2) = (Xα/2 + ξ/(2Xα) : 1). It follows from

α−1 =

(
Xα − σ
Xα + σ

)−1

=
Xα + σ

Xα − σ
=
−Xα − σ
−Xα + σ

(3.3)

that θ(α−1) = (−Xα : 1). Hence inversion of compressed torus elements does not
need inversions in a finite field. Instead, it only requires negation of a finite field
element.
The multiplication by −1 is implicitly given as θ(−α) = ξ/Xα because

−Xα − σ
Xα + σ

=
σ2 −Xασ

σ2 +Xασ
=
ξ −Xασ

ξ +Xασ
=
ξ/Xα − σ
ξ/Xα + σ

.

We define a multiplication “⋆” on P1(Fq) by (Xα : Yα) ⋆ (Xβ : Yβ) := θ(αβ). Then
(P1(Fq), ⋆) is a multiplicative group, which is isomorphic to the group T2(Fq) with
usual multiplication inherited from F∗

q2.
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Granger, Page, and Stam [GPS06] suggest to use the above described compression
on pairing values after the final exponentiation, and carry out any arithmetic that
has to be done with pairing values in the compressed representation. We propose
to use part of the final exponentiation to do the compression. Computing the torus
representation of the (q − 1)th power of an element in F∗

q2 can be done in one field
inversion in Fq.

Lemma 3.10. Let α = a0 +a1σ ∈ F∗
q2. Then αq−1 is an element of the torus T2(Fq)

and

θ(αq−1) =

{
(a0/a1 : 1) if a1 6= 0 (α /∈ Fq),

(1 : 0) if a1 = 0 (α ∈ Fq).

Proof. First let α ∈ Fq, i. e. a1 = 0. Then αq−1 = 1 and θ(αq−1) = (1 : 0). Suppose
now that α /∈ Fq and hence a1 6= 0. Applying the q-power Frobenius automorphism
on Fq2 to σ gives σq = −σ. We raise α to the power of q − 1 and obtain

αq−1 = (a0 + a1σ)q−1 =
(a0 + a1σ)q

a0 + a1σ
=
a0 − a1σ

a0 + a1σ
.

Since a1 6= 0, we can proceed further by dividing in numerator and denominator by
a1, which gives

(a0 + a1σ)q−1 =
a0/a1 − σ
a0/a1 + σ

. (3.4)

Proposition 3.6 shows that αq−1 ∈ T2(Fq) and that θ(αq−1) = (a0/a1 : 1).

Let E be an elliptic curve over Fp, and let k be the embedding degree of E with
respect to a prime r. The group of rth roots of unity µr is contained in F∗

q2 = F∗
pk.

Recall from Section 1.2.1 that the final exponentiation is the map

F∗
q2/(F

∗
q2)

r → µr ⊆ F∗
q2 , α(F∗

q2)
r 7→ α(q2−1)/r.

We may write the exponent as

q2 − 1

r
= (q − 1)

q + 1

r
.

Suppose that we carry out the final exponentiation in two steps. First we compute
αq−1, and in a second step raise the result to the power (q + 1)/r. After the first
step, the result lies in T2(Fq) by Lemma 3.10. Its compressed representation can
be computed with just one field inversion. One can do the compression to a torus
representation inside the Miller loop with this first step. This means that the re-
maining part of the exponentiation has to be done with the implicit torus arithmetic
described in Lemma 3.8.
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Definition 3.11. Let er be the reduced Tate pairing on E as in Section 1.2.3. We
call the map

τr,T2
: E(Fp)[r]× E(Fpk)[r] → P1(Fpk/2),

(P,Q) 7→ θ(er(P,Q)) = θ(fr,P (Q)(qk−1)/r)

the T2-compressed Tate pairing.

Corollary 3.12. Let P ∈ E(Fp)[r] and Q ∈ E(Fpk)[r] with Q /∈ 〈P 〉. Let f =
fr,P (Q) = f0 + f1σ be the value of the Miller function represented as an element of
Fpk = Fq2 over Fq. The T2-compressed Tate pairing can be computed as

τr,T2
(P,Q) = (f0/f1 : 1)(pk/2+1)/r,

where the exponentiation is done with respect to the multiplication ⋆ in P1(Fpk/2).

Proof. This is a simple consequence of Lemma 3.10 and the discussion before Defi-
nition 3.11. Note that f /∈ Fq since Q /∈ 〈P 〉 and thus θ(f q−1) = (f0/f1 : 1).

3.3 Curves with a sextic twist

In this section, let p be a prime with p ≡ 1 (mod 3), and let E be an elliptic curve
over Fp with j-invariant j(E) = 0, i. e. E : y2 = x3 + b, b ∈ Fp. Let r be a prime
divisor of n = #E(Fp), and let k be the embedding degree of E with respect to r.
We assume in this section that k is divisible by 6, i. e. k = 6m for m ∈ N. We set
q := pk/6 = pm. Then Fq = Fpm and Fq6 = Fpk.
It follows from Proposition 1.100 that there exists a twist E ′ of degree 6 over Fq
with r | #E ′(Fq). We can choose ξ ∈ F∗

q such that the twist with the correct order
is given by E ′ : y2 = x3 + ξ−1b. Note that in this case, ξ is neither a square nor a
cube in Fq. An Fq6-isomorphism is given by

ψ : E ′ → E, (x′, y′) 7→ (ξ1/3x′, ξ1/2y′). (3.5)

The field extensions of Fq contained in Fq6 can be represented as Fq2 = Fq(ξ
1/2)

and Fq3 = Fq(ξ
1/3), respectively. We aim at computing the twisted Tate pairing as

introduced in Definition 1.102 in a compressed form, and recall its definition:

e′r : G1 ×G′
2 → G3, (P,Q′) 7→ er(P, ψ(Q′)),

where G1 = E(Fp)[r] and G′
2 := E ′(Fq)[r]. Miller functions are products of the line

functions discussed in Lemma 1.93. We evaluate all functions at affine points, and
thus a line function is equal to the defining polynomial lU,V of the corresponding
line through the points U and V . In Miller’s algorithm (see Section 1.2.3), the line
function is evaluated at a point Q ∈ E(Fq6)[r], i. e. one computes lU,V (Q).
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When computing the twisted Tate pairing, the points U and V are in E(Fp) and Q =
ψ(Q′) for a point Q′ ∈ E ′(Fq). Let U = (xU , yU), V = (xV , yV ), and Q′ = (xQ′, yQ′).
Hence Q = (xQ, yQ) = (τxQ′ , σyQ′), where σ = ξ1/2 ∈ Fq2 and τ = ξ1/3 ∈ Fq3. Notice
that σq = −σ since X2 − ξ = (X − σ)(X + σ) and that Fq6 = Fq3(σ). Similarly,
since

X3 − ξ = (X − τ)(X − ζτ)(X − ζ2τ)

for a primitive 3rd root of unity ζ , which lies in Fp since p ≡ 1 (mod 3), we have
τ q = ζτ . For U 6= −V , the line function is

lU,V (Q) = λ(xQ − xU) + (yU − yQ),

where λ is the slope of the line through U and V , i.e. λ = (yV − yU)/(xV − xU ) if
U 6= ±V and λ = (3x2

U)/(2yU) if U = V , respectively. In the case U = −V , the
value of the line function is lU,−U(Q) = xQ − xU , which is contained in Fq3. Such
factors can be omitted in Miller’s algorithm since they are mapped to 1 by the final
exponentiation (see discussion before Proposition 1.103).

Lemma 3.13. For U 6= −V and Q = ψ(Q′) with Q′ ∈ E ′(Fq) of order r, we have

θ(lU,V (Q)q
3−1) = ((λxU − yU − λxQ′τ)/yQ′ : 1) ∈ P1(Fq3),

where θ is the function described in Proposition 3.6 (see also Remark 3.7).

Proof. We evaluate the line function at Q and obtain

lU,V (Q) = λ(τxQ′ − xU ) + (yU − σyQ′)

= (yU − λxU + λxQ′τ)− yQ′σ.

The coordinate yQ′ is not zero since the point Q′ has order r and r > 2.

Remark 3.14. Although (λxU − yU − λxQ′τ)/yQ′ is an element of Fq3, it could be
computed with just 4 multiplications in Fq as y−1

Q′ · (λ · xU − yU)− (y−1
Q′ · λ · xQ′)τ .

Note that λ as well as the coordinates of all involved points are elements of Fq.
The inversion y−1

Q′ can be done as a precomputation because Q′ is fixed in the Miller
loop. But we use a more efficient way, merging the computation with the subsequent
multiplication.

Lemma 3.13 can be used to compute the compressed values of line functions arising
in the Miller loop. For computing the T2-compressed Tate pairing, we can thus do
the first step of the final exponentiation—raising to the (q3− 1)th power—with the
line functions and then compute the Miller loop with respect to the multiplication
⋆ in P1(Fq3). Of course, this can only be done since Miller functions are computed
as products of line functions.
In Miller’s algorithm, we need to carry out squarings and multiplications. Squarings
are done with general elements in P1(Fq3). Multiplications always have a factor
coming from a line function as in Lemma 3.13.
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Lemma 3.15. Let α ∈ T2(Fq3) with θ(α) = (Xα : 1) and β = lU,V (Q)q
3−1 as in

Lemma 3.13. Define ρ := λxU − yU − λxQ′τ ∈ Fq3. Then it holds

θ(αβ) =

(
Xαρ+ ξyQ′

XαyQ′ + ρ
: 1

)
.

Proof. This is an easy application of Lemma 3.8.

There is no need to invert yQ′ to compute θ(lU,V (Q)q
3−1). Instead, we directly

compute the product representative θ(αβ) as in the previous lemma.
For the assumptions in this section, the exponent of the final exponentiation is
(q6 − 1)/r, which we rewrite as

q6 − 1

r
= (q3 − 1)(q + 1)

q2 − q + 1

r
.

It is Ψ6(q) = (q3−1)(q+1). Instead of only computing lU,V (Q)q
3−1, we can compute

lU,V (Q)Ψ6(q), and obtain an element in T6(Fq) by Lemma 3.3. It is

T6(Fq) = {α ∈ Fq6 | αq
3+1 = 1 and αq

4+q2+1 = 1}.

Note that by the transitivity of the norm, the condition NFq6/Fq
(α) = 1 follows from

NFq6/Fq3
(α) = αq

3+1 = 1.

This equality also implies

NFq6/Fq2
(α) = αq

4+q2+1 = αq
2−q+1 = 1.

It is clear that −1 /∈ T6(Fq). By exploiting the norm conditions, it can be shown that
1 is the only element in T6(Fq) that lies in a proper subfield of Fq6 . Furthermore,
it is clear that T6(Fq) ⊆ T2(Fq3) (see Lemma 3.4). We next describe a compression
technique that has also been demonstrated similarly by Granger, Page, and Stam
[GPS06, Section 3.4].

Proposition 3.16. Let α ∈ T6(Fq) ⊆ T2(Fq3). Let θ(α) = (Xα : Yα) ∈ P1(Fq3), and
if Yα = 1, let Xα = b0 + b1τ + b2τ

2 with b0, b1, b2 ∈ Fq. Define

M6 := {(a0, a1) ∈ A2(Fq) | a1 6= 0} ∪ {(1, 0)}.

The map

θ6 : T6(Fq)→ M6, α 7→
{

(b0, b1) if α 6= 1,

(1, 0) if α = 1

is a bijection.
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Proof. Let first α be such that Yα = 1, i. e. α = (Xα − σ)/(Xα + σ). We have
NFq6/Fq2

(α) = 1, i. e.
(
Xα − σ
Xα + σ

)q2−q+1

= 1,

which is equivalent to (Xα−σ)q
2−q+1 = (Xα+σ)q

2−q+1. We use the fact that τ q = ζ2τ
for ζ a primitive third root of unity which lies in Fq since q ≡ 1 (mod 3). An explicit
computation of (Xα ± σ)q

2−q+1 and simplification of the equation (Xα − σ)q
2−q+1 =

(Xα + σ)q
2−q+1 yields the relation −3b1b2ξ + ξ + 3b20 = 0. If b1 6= 0, this equation

can be used to recover b2 from b0 and b1 as

b2 =
3b20 + ξ

3b1ξ
. (3.6)

If b1 = 0, we have ξ = −3b20. Since p ≡ 1 (mod 3), −3 is a square modulo p and
thus ξ is a square which is not true. Therefore, b1 can not be 0. We may thus use
(1, 0) to represent 1 ∈ T6(Fq).

Summarizing, we see that since T6(Fq) ⊆ T2(Fq3), α ∈ T6(Fq) \ {1} is uniquely
determined by Xα, and Xα is uniquely determined by (b0, b1) ∈M6, which completes
the proof.

Corollary 3.17. Let α ∈ F∗
q6. Then αΨ6(q) can be uniquely represented by a pair

(a0, a1) ∈ A2(Fq).

Proof. This is clear with Lemma 3.3 and Proposition 3.16.

Multiplication formulas on M6 (see Proposition 3.16) corresponding to the usual
multiplication in T6(Fq) can be derived from the arithmetic on T2(Fq3) (Lemma 3.8).

Lemma 3.18. Let α, β ∈ T6(Fq) \ {1} with θ6(α) = (a0, a1), θ6(β) = (b0, b1), and
(a0, a1) 6= (−b0,−b1). Then θ6(αβ) = (c0, c1), where c0 and c1 are given by the
following formulas:

r0 = a2
0 + 1

3
ξ, r1 = b20 + 1

3
ξ,

s0 = ξ(a1b1(a0b0 + ξ) + a2
1r1 + b21r0), s1 = a1b1ξ(a0b1 + a1b0) + r0r1,

s2 = a2
1b

2
1ξ + a0a1r1 + b0b1r0, t0 = a1b1ξ(a0 + b0),

t1 = a1b1ξ(a1 + b1), t2 = b1r0 + a1r1,

u = t30 + t31ξ + t32ξ
2 − 3ξt0t1t2, u0 = t20 − t1t2ξ,

u1 = t22ξ − t0t1, u2 = t21 − t0t2,
v0 = s0u0 + s1u2ξ + s2u1ξ, v1 = s0u1 + s1u0 + s2u2ξ,

c0 =
v0

u
, c1 =

v1

u
.
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Furthermore, θ6(α
2) = (d0, d1) with d0 and d1 given as follows:

r0 = a5
0 + ξ(a3

0 − 2a2
0a

3
1) + ξ2(1

3
a0 − a3

1), r1 = a5
0 + ξ(2a3

0 − 2a2
0a

3
1) + ξ2(a0 − 2a3

1),

s0 = a0(a0r0 + a6
1ξ

2 + 1
27
ξ3)− 1

3
a3

1ξ
3, s1 = a1(a0r1 + a6

1ξ
2 + 4

27
ξ3),

s = 2(a0r0 + a6
1ξ

2 + 1
27
ξ3), d0 =

s0

s
, d1 =

s1

s
.

Proof. The formulas can be derived from Lemma 3.8. We show how to verify them
in Appendix A.1.

We split up the final exponentiation into two parts again. The exponent of the first
part is Ψ6(q) and that of the remaining second part is (q2− q+ 1)/r. After the first
part, the result lies in T6(Fq).

Definition 3.19. Let er be the reduced Tate pairing on E. The map

τr,T6
: E(Fp)[r]× E(Fpk)[r] → M6,

(P,Q) 7→ θ6(er(P,Q)) = θ6(fr,P (Q)(qk−1)/r)

is called the T6-compressed Tate pairing.

Corollary 3.20. Let P ∈ E(Fp)[r] and Q ∈ E(Fpk)[r] with Q /∈ 〈P 〉. Let (f1, f2) =
θ6(fr,P (Q)Ψ6(pm)). The T6-compressed Tate pairing can be computed as

τr,T6
(P,Q) = (f1, f2)

(p2m−pm+1)/r,

where the exponentiation is done with respect to the multiplication in M6 given by
the formulas in Lemma 3.18.

As for the T2-compressed pairing, we can exponentiate the line functions to the
first part of the final exponentiation, and perform the Miller loop completely in
compressed representation. The compressed representation of line function values
can be computed directly from the coordinates of the points involved.

Proposition 3.21. Let ζ ∈ Fp be a primitive third root of unity such that τ q = ζτ .
Let β = lU,V (Q)Ψ6(q) with U 6= −V and Q = ψ(Q′). If β 6= 1, then θ6(β) = (c0, c1) ∈
A2(Fq) with

c0 =

( −ζ2

1− ζ y
−1
Q′

)
(yU − λxU ), c1 =

(
ζ

1− ζ y
−1
Q′

)
λxQ′. (3.7)

Proof. Let α = lU,V (Q)q
3−1. By assumption, we have αq+1 = lU,V (Q)Ψ6(q) 6= 1. Let

θ(α) = (Xα : 1), i. e. α = lU,V (Q)q
3−1 = Xα−σ

Xα+σ
. It is

β = αq+1 =

(
Xα − σ
Xα + σ

)q+1

.
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We determine Xβ from

β =

(
Xα − σ
Xα + σ

)q
· Xα − σ
Xα + σ

=
Xq
α + σ

Xq
α − σ

· Xα − σ
Xα + σ

=
−Xq

α − σ
−Xq

α + σ
· Xα − σ
Xα + σ

.

Since β 6= 1, it is Xq
α 6= Xα. By applying (3.2), we get Xβ = (−Xq+1

α + ξ)/(−Xq
α +

Xα). Lemma 3.13 shows that Xα = (λxU − yU − λxQ′τ)/yQ′. We thus obtain

−Xq
α =

yU − λxU + λxQ′ζτ

yQ′

.

Multiplying with Xα yields

−Xq+1
α = − 1

y2
Q′

(
(yU − λxU)2 + (1 + ζ)λxQ′(yU − λxU)τ + λ2x2

Q′ζτ 2
)
.

For the denominator of Xβ, we obtain

−Xq
α +Xα =

λxQ′(ζ − 1)τ

yQ′

and determine Xβ as

Xβ =
(1 + ζ)λxQ′(yU − λxU )ξ + λ2x2

Q′ζξτ + ((yU − λxU )2 − ξy2
Q′)τ 2

λ(1− ζ)xQ′yQ′ξ

=
1 + ζ

1− ζ ·
yU − λxU

yQ′

+
ζ

1− ζ ·
λxQ′

yQ′

τ +
(yU − λxU)2 − ξy2

Q′

λ(1− ζ)xQ′yQ′ξ
τ 2.

Recall that τ 3 = ξ. Taking ci the coefficient at τ i in the above expression we have
the property c2 = (3c20 + ξ)/(3c1ξ), and thus c2 can be computed from c0 and c1.

Remark 3.22. The input Q is not changed in the course of Miller’s algorithm.
Hence, y−1

Q′ can be precomputed before the loop. Note also that −ζ2/(1 − ζ)y−1
Q′

and ζ/(1− ζ)y−1
Q′ can be determined in a precomputation and that we do not need

inversions to compute the values of the exponentiated line functions inside the Miller
loop.

Multiplication in A2(Fq) corresponding to the multiplication in T6(Fq) needs inver-
sions as can be seen from the formulas in Lemma 3.18. One can replace inversion of
an element a in Fpm by an inversion in Fp and at most ⌊lgm⌋+ 1 multiplications in
Fpm by

1

a
=
ap+p

2+···+pm−1

NFpm/Fp(a)
.

The term in the numerator can be computed by addition-chain methods. For details
see Section 11.3.4 in [Doc05b].
But it is possible to completely avoid inversions in Miller’s algorithm by storing the
denominator in a separate coordinate, or in other words, by moving to projective
representation. We embed A2(Fq) into P2(Fq) as usual with the map ϕ−1

3 : A2(Fq)→
P2(Fq), (c0, c1) 7→ (c0 : c1 : 1) (for notation see Subsection 1.1.1).
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Definition 3.23. We define the compression function

θ̃6 : T6(Fq)→ P2(Fq), α 7→ ϕ−1
3 (θ(α)).

The compressed line functions computed in Proposition 3.21 can be given as elements
of P2(Fq).

Lemma 3.24. Let assumptions be as in Proposition 3.21. Let µ, ν ∈ Fp be the
numerator and denominator of the slope λ, i. e. µ = yV −yU , ν = xV −xU if U 6= ±V
and µ = 3x2

U , ν = 2yU if U = V , respectively. Then θ̃6(lU,V (Q)Ψ6(q)) = (C0 : C1 : C),
where

C0 =

( −ζ2

1− ζ

)
(νyU − µxU), C1 =

(
ζ

1− ζ

)
µxQ′, C = νyQ′. (3.8)

Proof. The representation follows by multiplying with all denominators.

When m > 1, we are able to compress further. The denominator C which has to be
stored in a third coordinate can be replaced by a denominator which is an element
in Fp, namely the norm NFpm/Fp(C) of the previous denominator in Fq. We only

need to multiply the other two coordinates by Cp+p2+···+pm−1

.

The methods described make it possible to completely avoid inversions during pairing
computation. Taking into account that inversion of torus elements can be done
by negating the representative, we also do not need finite field inversions for the
final exponentiation. Normally, an inversion is needed to efficiently implement the
exponentiation by using the Frobenius automorphism.

We give an example of the squaring and multiplication formulas in P2(Fq) that
correspond to squaring and multiplication in T6(Fq) for embedding degree k = 12.

Example 3.25. For embedding degree 12, we have q = p2. Let Fp2 = Fp(i) and
i2 = −z for some element z ∈ Fp. Let (A0 : A1 : A) be an element in compressed
form, i.e. A0, A1 ∈ Fp2 and A ∈ Fp. We can compute the square (C0 : C1 : C) as
follows:

R0 = A5
0 + ξ(A3

0A
2 − 2A2

0A
3
1) + ξ2(1

3
A0A

4 − A3
1A

2),

R1 = A5
0 + 2ξ(A3

0A
2 − A2

0A
3
1) + ξ2(A0A

4 − 2A3
1A

2),

S0 = A0(A0R0 + A6
1ξ

2 + 1
27
A6ξ3)− 1

3
A3

1A
4ξ3,

S1 = A1(A0R1 + A6
1ξ

2 + 4
27
A6ξ3),

S = 2A(A0R0 + A6
1ξ

2 + 1
27
A6ξ3).

Write S = s0 + is1 with s0, s1 ∈ Fp. Then the square is given by

C0 = S0(s0 − is1), C1 = S1(s0 − is1), C = s2
0 + zs2

1.
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To multiply two compressed elements (A0 : A1 : A) and (B0 : B1 : B) we can use
the following formulas:

R0 = A2
0 + 1

3
A2ξ, R1 = B2

0 + 1
3
B2ξ,

S0 = ξ(A1B1(A0B0 + ξAB) + A2
1R1 +B2

1R0),

S1 = A1B1ξ(A0B1 + A1B0) +R0R1, S2 = A2
1B

2
1ξ + A0A1R1 +B0B1R0,

T0 = A1B1ξ(A0B +B0A), T1 = A1B1ξ(A1B +B1A), T2 = B1BR0 + A1AR1,

T = T 3
0 + T 3

1 ξ + T 3
2 ξ

2 − 3ξT0T1T2,

U0 = T 2
0 − T1T2ξ, U1 = T 2

2 ξ − T0T1, U2 = T 2
1 − T0T2,

V0 = S0U0 + S1U2ξ + S2U1ξ, V1 = S0U1 + S1U0 + S2U2ξ.

Write T = t0 + it1, where t0, t1 ∈ Fp. Then the product (C0 : C1 : C) of the two
elements is given by

C0 = V0(t0 − it1), C1 = V1(t0 − it1), C = t20 + zt21.

These formulas are homogenized versions of the formulas given in Lemma 3.18 where
the denominators are kept in an additional variable. Correctness of the formulas in
this lemma can be checked with the help of Appendix A.1. The only difference is
that in the end, we compute the Fp-norm of the denominator to keep it as small as
possible. We thus have to multiply the numerators with the denominator’s conjugate
in Fp2.
For an implementation of a pairing algorithm in compressed form without inversions,
one can use (3.8) to compute the evaluated compressed line functions, and then
use the above formulas for squaring and multiplication in Miller’s algorithm. The
remaining part of the exponent for the final exponentiation is (p4 − p2 + 1)/n. The
final pairing value can be computed by use of the Frobenius automorphism and a
square-and-multiply algorithm with the above squaring and multiplication formulas
(see Devegili, Scott, and Dahab [DSD07]). A three-operand pseudo code for these
formulas is given in Appendix A.

3.4 Implementation

In order to evaluate the performance of the compressed pairing computation, we
implemented several pairing algorithms in C. For all these implementations1 we
used the BN curve E : y2 = x3 + 24 over Fp with parameters described in Table 3.1.
This curve has also been used for the performance evaluation of pairing algorithms
by Devegili, Scott, and Dahab in [DSD07]. To ease comparison with [DOSD06] and
[DSD07], we implemented pairing algorithms with Fp12 constructed as a quadratic
extension on top of a cubic extension which is again built on top of a quadratic
extension, as described in [DSD07] and by Devegili, Scott, Ó hÉigeartaigh, and

1The code of the implementation can be found at http://www.cryptojedi.org/crypto/

http://www.cryptojedi.org/crypto/
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p 82434016654300679721217353503190038836571781811386228921167322412819029493183
n 82434016654300679721217353503190038836284668564296686430114510052556401373769
bitsize 256
t 287113247089542491052812360262628119415
k 12
λc (t − 1)8 mod n

Table 3.1: Parameters of the curve used in our implementation

Dahab in [DOSD06]. For ate, generalized Eta, and Tate pairings we thus achieve
similar timings as [DSD07]. We did not use windowing methods since the group
order of the chosen curve is sparse. The final exponentiation for the non-compressed
pairings uses the decomposition of the exponent (p12−1)/n into the factors (p6−1),
(p2 + 1), and (p4 − p2 + 1)/n.
In the Miller loop we entirely avoided field inversions by computing the elliptic curve
operations in Jacobian coordinates (see [DL05a, Section 13.2.1.c]) and by using
the compressed representation and storing denominators separately as described
in Example 3.25. For multiplication and squaring of torus elements, we used the
algorithms stated in Appendix A.2. Timing results are given in Table 3.2.

Core 2 Quad Q6600

Tate 32835888
Compressed Tate 53160480
Generalized Eta 26795205
Compressed generalized Eta 42471414
ate 22861386
Optimal ate 16231797

Table 3.2: Performance measurements for different pairing variants on an Intel Core
2 Quad CPU Q6600 running at 2394 MHz using only one core. Numbers give the
median of 1000 measurements for a complete pairing computation including Miller
loop and final exponentiation in CPU cycles.



Chapter 4

Pairings on Edwards curves

In this chapter, we consider pairings on a twisted Edwards curve

Ea,d : Z2(aX2 + Y 2) = Z4 + dX2Y 2

over a finite field Fq, where a, d are nonzero and distinct elements of Fq. If a =
1, i. e. if we have a plain Edwards curve, we denote E1,d simply by Ed. As in
Subsection 1.1.7 of Chapter 1, we denote by O = (0 : 1 : 1) the neutral element
in Ea,d(Fq) and by O′ = (0 : −1 : 1) its reflection across the x-axis, which is a
point of order 2. The point T = (1/

√
a : 0 : 1) has order 4. Then [2]T = O′ and

−T = [3]T = (−1/
√
a : 0 : 1). Let the two singular points at infinity be denoted by

Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0). Let fEa,d = Z2(aX2 + Y 2) − Z4 − dX2Y 2 be
the polynomial defining the curve Ea,d.

For pairing computation on Weierstraß curves, we need line functions that are eval-
uated in Miller’s algorithm (see Subsection 1.2.3). In the case of twisted Edwards
curves, the analogue procedure leads to functions arising from lines and conics.
This chapter contains results from joint work with Arène, Lange, and Ritzenthaler.
Section 4.1 states properties of lines and conics passing through points on twisted
Edwards curves. In Section 4.2, we give a geometric interpretation of the group law
on twisted Edwards curves. We show how pairings can be computed using functions
coming from the lines and conics described in Section 4.1. Explicit formulas for the
doubling and addition steps in Miller’s algorithm are derived in Section 4.3. The
formulas are significantly faster than any reported so far for Edwards curves. Let the
curve be defined over Fp, and let k be its embedding degree. Then an addition step
needs 1M+(k+14)m+1ma, a doubling step costs 1M+1S+(k+6)m+5s+2ma,
where one multiplication in Fpk is denoted by 1M and one squaring in the same field
by 1S. Multiplication and squaring in the smaller field Fp are denoted by 1m and
1s, respectively. Furthermore, we use 1ma for a multiplication with the constant
a. The above costs are for both points in projective Edwards coordinates. Using
mixed addition, i. e. the second point in affine coordinates, an addition step costs
only 1M + (k + 12)m + 1ma.
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4.1 Lines and conics

Let F be an arbitrary field of characteristic different from 2 and F an algebraic
closure of F. The points O,O′, T ,Ω1,Ω2 are all points in the projective plane P2(F).
We begin with projective lines in P2(F). A general line is of the form

L : cXX + cY Y + cZZ = 0, (4.1)

where (cX : cY : cZ) ∈ P2(F) (see Example 1.7). A line is uniquely determined by
two different points. We first consider lines that pass through one of the points at
infinity and an affine point P . Note that the line through Ω1 and Ω2 is the line at
infinity L∞ : Z = 0.

Lemma 4.1. Let P = (X0 : Y0 : Z0) ∈ P2(F) be an affine point, i. e. Z0 6= 0, and
let L1,P be the projective line passing through P and Ω1. Then L1,P is a horizontal
line of the form

L1,P : Z0Y − Y0Z = 0.

Let L2,P be the line through P and Ω2. Then L2,P is a vertical line

L2,P : Z0X −X0Z = 0.

Proof. We use the general equation of a line (4.1). From Ω1 ∈ L1,P , we see that
cX = 0, and from P ∈ L1,P , it follows that cZZ0 = −cY Y0. Assume cY = 0, then
cZ = 0, which yields a contradiction. Therefore, we may write L1,P in the desired
form. The equation for L2,P follows analogously.

In the following, we describe a special conic which passes through both points at
infinity, Ω1 and Ω2, the point O′, and two arbitrary affine points P1 and P2 on Ea,d.
A general conic can be written as

C : cX2X2 + cY 2Y 2 + cZ2Z2 + cXYXY + cXZXZ + cY ZY Z = 0, (4.2)

where (cX2 : cY 2 : cZ2 : cXY : cXZ : cY Z) ∈ P5(F) (see Example 1.7). Let fC =
cX2X2 + cY 2Y 2 + cZ2Z2 + cXYXY + cXZXZ+ cY ZY Z be the polynomial of C. First
we only assume that the points at infinity and O′ are on C.

Lemma 4.2. If a conic C passes through the points Ω1,Ω2, and O′, then it has an
equation of the form

C : cZ2(Z2 + Y Z) + cXYXY + cXZXZ = 0, (4.3)

where (cZ2 : cXY : cXZ) ∈ P2(F).

Proof. We evaluate fC at the three points Ω1,Ω2, and O′. The fact that Ω1 lies
on the conic implies cX2 = 0. Similarly, cY 2 = 0 since Ω2 lies on C. Further, the
condition O′ ∈ C shows that cY Z = cZ2 .
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We have a closer look at conics C as described in the above lemma. The following
lemma shows that if there is an affine singular point on C, the conic is the product
of a vertical and a horizontal line.

Lemma 4.3. Let C be a conic passing through Ω1,Ω2, and O′, i. e. C is given by
(4.3). Let P = (X1 : Y1 : Z1) be a singular point on C. Then C splits as the product
of two lines that intersect in P , and one of the following cases occurs:

(a) The conic is given by C : X(Z1Y − Y1Z) = 0 and X1 = 0, i. e. P lies on the
line X = 0. In particular, we have cZ2 = 0, cXY = Z1, and cXZ = −Y1.

(b) The conic is given by C : (Z1X −X1Z)(Y +Z) = 0 and Y1 = −Z1, i. e. P lies
on the line Y +Z = 0. In particular, we have cZ2 = −X1 and cXY = Z1 = cXZ .

(c) The conic is given by C : (Y1X −X1(Y +Z))Z = 0 and Z1 = 0, i. e. P lies on
the line Z = 0 at infinity. In particular, we have cZ2 = −X1, cXY = 0, and
cXZ = Y1.

Proof. An irreducible conic is always nonsingular (see [Ful69, Theorem 2, p. 117]).
Thus we know that fC splits into two linear factors as

fC = (a1X + b1Y + c1Z)(a2X + b2Y + c2Z).

From Bézout’s Theorem (Theorem 1.21), we know that two lines have exactly one
intersection point or are identical. Because there is no line passing through Ω1,Ω2,
and O′, there must be exactly one intersection point of the lines a1X+b1Y +c1Z = 0
and a2X + b2Y + c2Z = 0, which then must be equal to P since all other points are
nonsingular.
We expand the product and obtain fC = a1a2X

2+b1b2Y
2+c1c2Z

2+(a1b2+a2b1)XY+
(a1c2 + a2c1)XZ + (b1c2 + b2c1)Y Z. Then (4.3) implies that a1 or a2 is equal to 0.
Without loss of generality, we assume a2 = 0. Then fC becomes b1b2Y

2 + c1c2Z
2 +

a1b2XY + a1c2XZ + (b1c2 + b2c1)Y Z.
Since the Y 2-term must vanish, either b1 or b2 is 0. If b1 = 0, we have fC =
c1c2Z

2 + a1b2XY + a1c2XZ + c1b2Y Z and c1c2 = c1b2. If c1 = 0, then a1 must be
different from 0 and we arrive at case (a). For c1 6= 0, it follows c2 = b2 6= 0 and
case (b) is valid.
Finally, if b2 = 0, then c2 6= 0, and the conic is C : c1Z

2 + a1XZ + b1Y Z. It follows
that b1 = c1, which yields case (c).

We are now able to describe the conic that passes through Ω1,Ω2, and O′ as well
as through two affine points P1 and P2. If the latter points are equal, we consider
intersection multiplicities of C with Ea,d, which usually means that C and Ea,d have
the same tangent at P1 = P2.

Proposition 4.4. Let Ea,d be a twisted Edwards curve over F, and let P1 = (X1 :
Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two affine, not necessarily distinct points on
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Ea,d. Let C be the conic passing through Ω1, Ω2, O′, P1, and P2, i. e. C is given by
an equation of the form (4.3). If some of the above points are equal, we count them
as one point with multiplicity and consider C and Ea,d to intersect with at least that
multiplicity at the corresponding point. Then the coefficients in (4.3) are given as
follows:

(a) If P1 6= P2, P1 6= O′, and P2 6= O′,

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 +X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′,
cZ2 = −X1, cXY = Z1, cXZ = Z1.

(c) If P1 = P2,

cZ2 = X1Z1(Y1 − Z1),

cXY = Z3
1 − dX2

1Y1,

cXZ = Z1(aX
2
1 − Y1Z1).

Proof. We start by proving the case P1 6= P2 and P1, P2 6∈ {O,O′}, which, together
with the assumption of P1, P2 being affine, means that X1, X2, Z1, and Z2 are all
different from 0. Since P1, P2 ∈ C, we obtain the two equations

cZ2Z1(Z1 + Y1) + cXYX1Y1 + cXZX1Z1 = 0,

cZ2Z2(Z2 + Y2) + cXYX2Y2 + cXZX2Z2 = 0.

We may solve both for cXZ = −cXY Yi/Zi − cZ2(Zi/Xi + Yi/Xi), i ∈ {1, 2}, equate
them, and multiply with denominators to get

cZ2Z1Z2(Z2X1 − Z1X2 + Y2X1 − Y1X2) = cXYX1X2(Y1Z2 − Y2Z1).

Thus we may choose cZ2 = X1X2(Y1Z2 − Y2Z1) and cXY = Z1Z2(Z2X1 − Z1X2 +
Y2X1 − Y1X2), then compute cXZ = X2Y2Z

2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2), and

we obtain the formulas in (a). We still need to prove that the same formulas hold
if P1 = O or P2 = O. Without loss of generality, we assume P2 = O = (0 : 1 : 1).
Evaluating fC at O shows that cZ2 = 0. Since X1 6= 0, the fact that P1 ∈ C then
yields cXY Y1 + cXZZ1 = 0. Thus we may choose cXY = Z1 and cXZ = −Y1. The
formulas in (a) for P2 = O give cZ2 = 0, cXY = 2X1Z1, and cXZ = −2X1Y1. Again
X1 6= 0 implies that this describes the same conic and we see that the formulas are
the same in that case. It can be checked by explicit calculations that the coefficients
can not all be equal to 0 at the same time. Assuming so implies that P1 = P2, which
we excluded in (a). This completes the proof of part (a).
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We first prove (c) for P1 = P2 6∈ {O,O′}, i. e. we have that X1 6= 0. By assumption,
Z1 6= 0. The conic C needs to intersect the curve Ea,d with multiplicity 2 at P1.
Since P1 is an affine point, we may consider the dehomogenizations

(fC)∗ = fC(x, y, 1) = cXY xy + cXZx+ cZ2(y + 1)

of fC and
(fEa,d)∗ = fEa,d(x, y, 1) = ax2 + y2 − 1− dx2y2

of fEa,d as well as the affine notation for P1 = (x1, y1), where x1 = X1/Z1 and
y1 = Y1/Z1. Since P1 does not lie on any of the lines in Lemma 4.3, it is a nonsingular
point on C. Note that case (b) in Lemma 4.3 does not occur because Y1 = −Z1 only
holds for P1 = O′, which we excluded. Thus the intersection multiplicity is larger
than 1 if C and Ea,d have equal tangents in P1 (see Lemma 1.20 (c)). The tangent
lines to C and Ea,d in P1 are

TC,P1
: (cXY y1 + cXZ)(x− x1) + (cXY x1 + cZ2)(y − y1) = 0,

TEa,d,P1
: 2x1(a− dy2

1)(x− x1) + 2y1(1− dx2
1)(y − y1) = 0

(see Definition 1.16). They are equal if (cXY x1 + cZ2)2x1(a − dy2
1) = (cXY y1 +

cXZ)2y1(1−dx2
1). Using P1 ∈ C, we express cXZ by cXZ = −cXY y1−cZ2(y1 +1)/x1.

Note that x1 6= 0. We combine the last two equations, multiply by x1, reorder, apply
the Edwards curve equation, and arrive at

(1 + y1)(1− dx2
1y1)cZ2 = −x1(1− y2

1)cXY .

Since P1 6= O′, we have y1 6= −1 and we can simplify to (1− dx2
1y1)cZ2 = −x1(1−

y1)cXY . From this, we see that we can choose cZ2 = −x1(1−y1) and cXY = 1−dx2
1y1.

We compute cXZ = ax2
1 − y1 with help of the curve equation. We homogenize the

formulas by setting x1 = X1/Z1 and y1 = Y1/Z1, multiply by Z3
1 , and obtain the

formulas claimed in part (c). As for (a), we now prove that the same formulas hold
if P1 = O. To achieve the intersection multiplicity at least 2 at O, we may use the
singular conic C being the product of the line Y = Z tangent to Ea,d in O and the
line X = 0 passing through the point O′. Thus fC = X(Z − Y ) = XZ − XY ,
so cZ2

= 0, cXY = −1, and cXZ = 1. The same values arise when evaluating the
formulas under (c) at P1 = O. Furthermore, the same formulas hold if P1 = O′ since
intersection multiplicity 3 at O′ is achieved by setting fC = X(Y +Z) = XY +XZ.
Again, not all three coefficients can be 0, because this implies a = d. This is a
contradiction and therefore, we have proved (c).
Next we deal with the case P1 6= P2 = O′. The conic C and the curve Ea,d must
intersect in O′ with multiplicity 2. We may use a singular conic that is the product
of the line Y +Z = 0, which is tangent to Ea,d in O′, and the vertical line Z1X−X1Z
through P1. Thus fC = (Z1X −X1Z)(Y + Z) = −X1Z(Z + Y ) + Z1XY + Z1XZ
shows that cZ2 = −X1, cXY = Z1 = cXZ . Therefore, (b) is correct and the proof is
complete.
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Example 4.5. As an example, we consider the Edwards curve E−30 : Z2(X2+Y 2) =
Z4−30X2Y 2 over the field of real numbers R. Of course, all pictures in our examples
show the affine part of the curves. In Figure 4.1(a), the conic C is shown in the
case P1, P2 6= O′. The point P1 has x-coordinate x1 = −0.6 and P2 has x-coordinate
x2 = 0.1. Figure 4.1(b) shows the conic C for the case P1 6= P2 = O′. The point P1

is the same as in 4.1(a).

The case P1 = P2 is shown in Figure 4.2(a) for P1 6= O′ and in Figure 4.2(b) for
P1 = O′. In the latter case, O′ is a triple intersection point of C and E−30.

Example 4.6. In Example 4.5, the parameter d assumes a negative value. For
positive values of d, the curve has a different shape. We consider d = 2, i. e. the curve
E2 : Z2(X2 + Y 2) = Z4 + 2X2Y 2. We show the respective cases in Figures 4.3 and
4.4. In Figures 4.3(a), 4.3(b), and 4.4(a), the point P1 has x-coordinate x1 = −1.1.
In Figure 4.3(a), the point P2 has x-coordinate x2 = 1.2.

Example 4.7. This example covers the case 0 < d < 1. Figure 4.5 shows the conic
C on E1/2 : Z2(X2 + Y 2) = Z4 + 1

2
X2Y 2 through P1 with x-coordinate x1 = −1.5

and P2 with x-coordinate x2 = 0.7 in Figure 4.5(a). Figure 4.5(b) shows the conic
that has a common tangent with E1/2 in P1 with x-coordinate x1 = −2.2.

Remark 4.8. Note that a complete group law can be given for addition on a twisted
Edwards curve Ea,d if a is a square and d is not (see Subsection 1.1.7 in Chapter 1).
In this case, the same addition formulas apply to any pair of input points, but still
computation of the conic C requires case distinctions.

This can be explained as follows: First, we choose the point O′ to always lie on the
conic. It is thus clear that if one of the points P1 or P2 is chosen to be O′, we need
to take that into account by means of the intersection multiplicity.

Second, we have the distinction between the cases P1 6= P2 and P1 = P2. In the first
case, the conic is given by 5 different points (not lying on the same line) which may
be considered as 5 points in general position in the projective plane, and finding
C is independent of the curve Ea,d. Thus the conic coefficients only depend on the
coefficients of P1 and P2. For P1 = P2, there are less than 5 different points and
additional conditions due to intersection multiplicities, e. g. the conic is tangent to
the curve. Therefore, the curve coefficients a and d appear in the formulas.

4.2 Geometric interpretation of the group law

It has been noted in Arène’s master’s thesis [Arè08] that the conic C described in
Proposition 4.4 gives a nice geometric interpretation of the group law on an Edwards
curve, similar to the chord-and-tangent method of elliptic curves in Weierstraß form.
We therefore give the corresponding functions for the conic and the lines from Lemma
4.1 in the respective cases that occur in point addition.



4. Pairings on Edwards curves 91

b

b

b

b

P1

P2

C

E−30

O

O′

(a) P1 6= P2, P1, P2 6= O′
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(b) P1 6= P2 = O′

Figure 4.1: The conic C for P1 6= P2 on E−30 : x2 + y2 = 1− 30x2y2 over R.
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(a) P1 = P2 6= O′
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(b) P1 = P2 = O′

Figure 4.2: The conic C for P1 = P2 on E−30 : x2 + y2 = 1− 30x2y2 over R.
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(b) P1 6= P2 = O′

Figure 4.3: The conic C for P1 6= P2 on E2 : x2 + y2 = 1 + 2x2y2 over R.
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(b) P1 = P2 = O′

Figure 4.4: The conic C for P1 = P2 on E2 : x2 + y2 = 1 + 2x2y2 over R.
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(a) P1 6= P2, P1, P2 6= O′
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(b) P1 = P2 6= O′

Figure 4.5: The conic C on E1/2 : x2 + y2 = 1 + 1
2
x2y2 over R.

Let P1 and P2 be two affine F-rational points on a twisted Edwards curve Ea,d, and
let P3 := (X3 : Y3 : Z3) = P1 + P2 be their sum. Let

l1,P3
= Z3Y − Y3Z, l2,O = X

be the polynomials of the horizontal line L1,P3
and the vertical line L2,O, respectively

(see Lemma 4.1). Let

fC = cZ2(Z2 + Y Z) + cXYXY + cXZXZ

be the polynomial of the conic C from Proposition 4.4. Define homogeneous func-
tions

l1 =
l1,P3

Z
=
Z3Y − Y3Z

Z
, l2 =

l2,O
Z

=
X

Z
,

and

φC =
fC
Z2

=
cZ2(Z2 + Y Z) + cXYXY + cXZXZ

Z2
.

The following lemma shows that the twisted Edwards group law indeed has a geomet-
ric interpretation involving the above functions. It gives us an important ingredient
to compute Miller functions (see Lemma 1.96).

Lemma 4.9. Let F be a field with char(F) 6= 2. Let a, d ∈ F\{0}, a 6= d, and let Ea,d
be a twisted Edwards curve over F. Let P1, P2 ∈ Ea,d(F), and define P3 := P1 + P2.
Then we have

div

(
φC
l1l2

)
= (P1) + (P2)− (P3)− (O).
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Proof. First, consider the function φC on Ea,d. By Bézout’s Theorem (see Theo-
rem 1.21), the intersection of C and Ea,d should have eight points counting multi-
plicities. We note that the two points at infinity Ω1 and Ω2 are singular points of mul-
tiplicity 2 (Lemma 1.66). The polynomial fC has zeros at P1, P2, and O′ and zeros
at Ω1 and Ω2, which are counted with multiplicity 2. In total, this sums up to seven
points, which means that there is an eighth point Q in the intersection. The positive
part of the divisor div(φC) of φC is thus (P1) + (P2) + (O′) + (Q) + 2(Ω1) + 2(Ω2).
The Z2-term in the denominator leads to φC having double poles at Ω1 and Ω2 and
the negative part of div(φC) being −4(Ω1)− 4(Ω2). Thus the divisor of φC is

div(φC) = (P1) + (P2) + (O′) + (Q)− 2(Ω1)− 2(Ω2).

Let lQ =
l1,Q
Z

be the function given by the horizontal line L1,Q through Q, and let l2
be the function of the vertical line through O. Then

div(lQ) = (Q) + (−Q)− 2(Ω2),

div(l2) = (O) + (O′)− 2(Ω1).

By combining the above divisors we get

div

(
φC
lQl2

)
= (P1) + (P2)− (−Q)− (O).

We now see that we have an equivalence of divisors

((P1)− (O)) + ((P2)− (O)) ∼ (−Q)− (O),

showing that −Q is indeed equal to the sum P1 +P2 = P3 (see Theorem 1.91). Thus
the line lQ is equal to l1, and the lemma follows.

Remark 4.10. From the proof of the previous lemma, we see that P1+P2 is obtained
as the reflection across the y-axis of the eighth intersection point of Ea,d and the
conic C passing through Ω1,Ω2,O′, P1, and P2.

Example 4.11. We return to the curve and points from Example 4.5. We denote
by P3 = P1 +P2 or P3 = [2]P1 the sum of P1 and P2 or the double of P1, respectively.
Figures 4.6 and 4.7 show the specific cases as in Example 4.5.

Example 4.12. This example shows the geometric interpretation of the Edwards
group law with the curve and points from Example 4.6 in Figures 4.8 and 4.9. The
sum of P1 and P2 and the double of P1 are again denoted by P3.

Example 4.13. This example shows the group law on the curve E1/2 with the points
from Example 4.7. Addition of two different points is depicted in Figure 4.10(a),
and doubling of a point is visualized in Figure 4.10(b).
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(b) P1 6= P2 = O′, P3 = P1 + P2

Figure 4.6: Geometric interpretation of the Edwards group law for P1 6= P2 on
E−30 : x2 + y2 = 1− 30x2y2 over R.
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(b) P1 = P2 = O′, P3 = 2O′ = O

Figure 4.7: Geometric interpretation of the Edwards group law for P1 = P2 on
E−30 : x2 + y2 = 1− 30x2y2 over R.
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(b) P1 6= P2 = O′, P3 = P1 + P2

Figure 4.8: Geometric interpretation of the Edwards group law for P1 6= P2 on
E2 : x2 + y2 = 1 + 2x2y2 over R.
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(b) P1 = P2 = O′, P3 = 2O′ = O

Figure 4.9: Geometric interpretation of the Edwards group law for P1 = P2 on
E2 : x2 + y2 = 1 + 2x2y2 over R.
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(b) P1 = P2 6= O′, P3 = 2P1

Figure 4.10: Geometric interpretation of the group law on E1/2 : x2 + y2 = 1+ 1
2
x2y2

over R.

We now turn to Miller’s formula (see Lemma 1.96). Recall that for i ∈ Z and
P ∈ Ea,d, a Miller function is a function fi,P ∈ F(Ea,d) with divisor

div(fi,P ) = i(P )− ([i]P )− (i− 1)(O).

We have the following equality of divisors relating the Miller function fi+j,P with
fi,P and fj,P for i, j ∈ Z:

div(fi+j,P ) = div(fi,Pfj,P ) + ([i]P ) + ([j]P )− ([i+ j]P )− (O) (4.4)

(see Lemma 1.95 and Lemma 1.96). The previous equality leads to an analog of
Miller’s formula for twisted Edwards curves.

Lemma 4.14. Let F be a field with char(F) 6= 2. Let a, d ∈ F \ {0}, a 6= d, and
let Ea,d be a twisted Edwards curve over F. Let P ∈ Ea,d. Let φC and l1, l2 be the
functions corresponding to the conic C and the lines L1 and L2 occurring in the
addition [i]P + [j]P = [i+ j]P for i, j ∈ Z. Then the following formula holds:

fi+j,P = fi,Pfj,P
φC
l1l2

. (4.5)

Proof. The lemma follows easily from (4.4) and Lemma 4.9 by setting P1 = [i]P and
P2 = [j]P .

This formula may now be used in Miller’s algorithm (as in Section 1.2.3) to compute
pairings on twisted Edwards curves.
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4.3 Explicit formulas for Miller functions

In this section we show how to use the geometric interpretation of the group law
derived in Section 4.2 to compute pairings. Let Ea,d be a twisted Edwards curve
defined over a prime field Fp. Let k be the embedding degree of Ea,d with respect
to a large prime divisor of #Ea,d(Fp). We assume that k is even. For pairings
based on the Tate pairing, we assume that the second input point Q is chosen as
the image of a point on a quadratic twist as described in Section 1.2.3. Note that
on twisted Edwards curves Ea,d, twists affect the x-coordinate. Let Fpk have basis
{1, α} over Fpk/2 with α2 = δ ∈ Fpk/2 and let Q′ = (x0, y0) ∈ Eaδ,dδ(Fpk/2) be an
Fpk/2-rational point on the curve twisted with α. We can use Q = (x0α, y0) as the
image of Q′ under the twisting isomorphism. This ensures that the second argument
of the pairing is on Ea,d(Fpk) and is not defined over a smaller field.

According to Lemma 4.14 we define gR,P := φC
l1l2

with the functions occurring in the
addition of R and P . So the update in the Miller loop computes gR,P , evaluates it at
Q = (x0α, y0), and updates f as f ← f · gR,P (Q) (addition) or as f ← f 2 · gR,R(Q)
(doubling). Given the shape of φC and the point Q = (x0α, y0), we see that we need
to compute

φC
l1l2

(x0α, y0) =
cZ2(1 + y0) + cXY x0αy0 + cXZx0α

(Z3y0 − Y3)x0α
=
cZ2

(1+y0)
x0δ

α + cXY y0 + cXZ

Z3y0 − Y3
,

where (X3 : Y3 : Z3) are the coordinates of the point R + P or R +R.

Put η = (1+y0)
x0δ

. Note that η ∈ Fpk/2 and that it is fixed for the whole computation,
so it can be precomputed. The denominator Z3y0 − Y3 is defined over Fpk/2; since
it enters the function multiplicatively, the final exponentiation removes all contri-
butions from it. We can thus avoid its computation completely, and only have to
evaluate

cZ2ηα + cXY y0 + cXZ .

The coefficients cZ2, cXY , and cXZ are defined over Fp. Given these coefficients, the
evaluation at Q can be computed in km (the multiplications by η and y0 each need
k
2
m).

In the next sections, we give explicit formulas to efficiently compute cZ2, cXY , and
cXZ for addition and doubling. For applications in cryptography we restrict our
considerations to points in a group of prime order. Ideally, the number of points
on the curve factors as #Ea,d(Fp) = 4n for a prime n, and the base point P has
order n. This implies in particular that none of the additions or doublings involves
Ω1,Ω2, or O′. The neutral element O is a multiple of P , namely nP , but none of
the operations in the Miller loop will have it as its input. This means that without
loss of generality we can assume that none of the coordinates of the input points is
0. In fact, for this assumption we only need that P has odd order, so that the points
of order 2 or 4 are not multiples of it.
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4.3.1 Addition

Hisil et al. present new addition formulas for twisted Edwards curves in [HWCD08].
To save 1m they extend the representation by a further coordinate T1 = X1Y1/Z1

for points P = (X1 : Y1 : Z1) with Z1 6= 0. In the following section, we show how to
compute this value as part of the doubling step. As suggested in [HWCD08], it is
only computed for the last doubling in a sequence of doublings and is not computed
after an addition. Note that no addition is ever followed by another addition in the
scalar multiplication. Furthermore, we assume that the base point P has odd order,
so in particular, Z1, Z2 6= 0. The sum P3 = (X3 : Y3 : Z3) of two different points
P1 = (X1 : Y1 : Z1 : T1) and P2 = (X2 : Y2 : Z2 : T2) in extended representation is
given by

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (aX1X2 + Y1Y2)(T1Z2 − Z1T2),

Z3 = (aX1X2 + Y1Y2)(X1Y2 − Y1X2).

Proposition 4.4 (a) in Section 4.1 states the coefficients of the conic section for
addition. We use T1, T2 to shorten the formulas.

cZ2 = X1X2(Y1Z2 − Y2Z1) = Z1Z2(T1X2 −X1T2),

cXY = Z1Z2(X1Z2 − Z1X2 +X1Y2 − Y1X2),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2)

= Z1Z2(Z1T2 − T1Z2 + Y1T2 − T1Y2).

Note that all coefficients are divisible by Z1Z2 6= 0, and so we scale the coefficients.
The explicit formulas for computing P3 = P1 + P2 and (cZ2, cXY , cXZ) are given as
follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2; E = D + C;

F = (X1 − Y1) · (X2 + Y2) +B − A; G = B + aA; H = D − C; I = T1 · T2;

cZ2 = (T1 −X1) · (T2 +X2)− I + A; cXY = X1 · Z2 −X2 · Z1 + F ;

cXZ = (Y1 − T1) · (Y2 + T2)− B + I −H ; X3 = E · F ; Y3 = G ·H ; Z3 = F ·G.

With these formulas, P3 and (cZ2, cXY , cXZ) can be computed in 13m+1ma. If T3 is
desired as part of the output, it can be computed in 1m as T3 = E ·H . The point P2

is not changed during pairing computation, and can be given in affine coordinates,
i. e. Z2 = 1. Applying mixed addition, the above costs reduce to 11m + 1ma. Note
that there is no extra speed up from choosing a = −1 as in [HWCD08] since all
subexpressions are used also in the computation of the coefficients cZ2, cXY , cXZ . A
mixed addition step in Miller’s algorithm for the Tate pairing thus costs 1M + (k+
11)m + 1ma.
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4.3.2 Doubling

Proposition 4.4 (c) in Section 4.1 states the coefficients of the conic section in the
case of doubling. To speed up the computation, we multiply each coefficient by
2Y1/Z1 (remember that fC is unique up to scaling). Note also that Y1, Z1 6= 0
because all points have odd order. The multiplication by Y1/Z1 reduces the overall
degree of the equations since we can use the curve equation to simplify the formula
for cXY ; the factor 2 is useful in obtaining an s−m trade-off in the explicit formulas
below. We obtain:

cZ2 = X1(2Y
2
1 − 2Y1Z1),

cXY = 2(Y1Z
3
1 − dX2

1Y
2
1 )/Z1 = 2(Y1Z

3
1 − Z2

1 (aX2
1 + Y 2

1 ) + Z4
1 )/Z1

= Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX
2
1 − 2Y1Z1).

Of course, we also need to compute P3 = [2]P1. We use the explicit formulas from
[BBJ+08] for the doubling, and reuse subexpressions in computing the coefficients
of the conic.

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ;D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A+B); G = E − (B + C); H = aA; I = H +B;

J = C − I; K = J + C; cXZ = Y1 · (2H −G); cXY = Z1 · (2J +G);

cZ2 = F · (Y1 − Z1); X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K.
These formulas compute P3 = (X3 : Y3 : Z3) and (cZ2 , cXY , cXZ) in 6m + 5s + 1ma.
If the doubling is followed by an addition, the additional coordinate T3 = X3Y3/Z3

needs to be computed. This is done by additionally computing T3 = F · (B −H) in
1m.
If the input is given in extended form as P1 = (X1 : Y1 : Z1 : T1), we can use T1 in
the computation of the conic as

cZ2 = X1(2Y
2
1 − 2Y1Z1) = 2Z1Y1(T1 −X1),

cXY = Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX
2
1 − 2Y1Z1) = 2Z1(aX1T1 − Y 2

1 ),

and then scale the coefficients by 1/Z1. The computation of P3 = (X3 : Y3 : Z3 : T3)
and (cZ2 , cXY , cXZ) is then done in 6m + 5s + 2ma as

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ;D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A+B); G = E − (B + C); H = aA; I = H +B; J = C − I;
K = J + C; cZ2 = 2Y1 · (T1 −X1); cXY = 2J +G; cXZ = 2(aX1 · T1 − B);

X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K; T3 = F · (B −H).

For computing the Tate pairing this means that a doubling step costs 1M+1S+(k+
6)m+5s+1ma in twisted Edwards coordinates and 1M+1S+(k+6)m+5s+2ma

in extended coordinates.
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4.3.3 Miller loop

Miller’s algorithm loops over the bits in the representation of n. We follow Hisil et
al. [HWCD08] and denote the system of projective Edwards coordinates (X1 : Y1 :
Z1) by E and the extended system (X1 : Y1 : Z1 : T1) by Ee.
If the whole computation is carried out in Ee each addition step in the Tate pairing
needs 1M+(k+14)m+1ma if both points are projective and 1M+(k+12)m+1ma

if the addition is mixed. A doubling step costs 1M + 1S + (k + 6)m + 5s + 2ma.

We can save 1ma per doubling by using the following idea which is already mentioned
by Cohen et. al. [CMO98]. If we are faced with s consecutive doublings between
additions, we execute the first s − 1 doublings as 2E → E , do the last doubling as
2E → Ee and then perform the addition as Ee+Ee → E . We account for the extra m

needed in 2E → Ee when stating the cost for addition. This way each addition step
needs 1M+(k+14)m+1ma if both points are projective and 1M+(k+12)m+1ma

if the addition is mixed. A doubling costs 1M + 1S + (k + 6)m + 5s + 1ma.

4.3.4 Comparison

We compare our results with formulas in the literature, in particular, with the
pairing formulas for Edwards curves due to Ionica and Joux [IJ08] and the formulas
for Weierstraß curves by Chatterjee, Sarkar, and Barua [CSB05].

In [HMS09], Hankerson, Menezes, and Scott study pairing computation on BN
curves [BN06]. All BN curves have the form y2 = x3 + b and are thus more special
than curves with a4 = −3. In their presentation they combine the pairing computa-
tion with the extension-field arithmetic and thus the operation for the pure pairing
computation is not stated explicitly but the formulas match those in [CN05].

Das and Sarkar [DS08] were the first to publish pairing formulas for Edwards curves.
We do not include them in our overview in Table 4.1 since their study is specific to
supersingular curves with k = 2.

Ionica and Joux [IJ08] proposed the thus far fastest pairing formulas for Edwards
curves. Note that they actually compute the 4th power of the Tate pairing. This
has almost no negative effect for usage in protocols. So we include their result as
pairings on Edwards curves.

We denote Edwards coordinates by E and Jacobian coordinates by J . The row“this
work” in the table below reports the results of the previous section using 2E → E
for the main doublings, 2E → Ee for the final doubling, and Ee + Ee → E for the
addition. Using only Ee for all operations requires 1ma more per doubling.

Each mADD or ADD entry has an additional 1M+km in the operation count; each
DBL entry has an additional 1M + km + 1S. Since this does not depend on the
chosen representation, we do not report it in this overview. The symbols ma4

and
md denote multiplication by the constants a4 and d, respectively.

This overview shows that our new formulas solidly beat any formulas published for
pairing computation on Edwards curves. We point out that on Edwards curves or
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DBL mADD ADD

J , [IJ08], [CSB05] 1m + 11s + 1ma4
9m + 3s —

J , a4 = −3, [CSB05] 7m + 4s 9m + 3s —

J , a4 = 0, [CN05], [CSB05] 6m + 5s 9m + 3s —

E , [IJ08] 8m + 4s + 1md 14m + 4s + 1md —

E , this work 6m + 5s + 1ma 12m + 1ma 14m + 1ma

Table 4.1: Overview of operation counts for doubling and addition steps

twisted Edwards curves with very small a, the multiplication costs ma vanish.
The comparison with Jacobian coordinates depends on the m− s ratio and the size
of the parameters. Since both a4 and a can be chosen to be small, multiplications
by them are negligible, i.e. we assume 1ma4

= 1ma = 0. The number of operations
on the Edwards curve is no more than on the Weierstrass curve. For doubling,
our formulas are as efficient as the most efficient ones (for BN curves) and cover
more general curves. For addition, we need the same number of operations, but
the formulas have no squarings. So they are slower if squarings are cheaper than
multiplications. Overall, the new formulas are competitive for doubling, if not better,
and slightly worse for mixed addition.
Finally, the penalty for computing full additions instead of mixed additions is sig-
nificantly worse for Jacobian coordinates where an addition (without computation
of the line function) costs 12m + 4s which is more than the full computation in
Edwards coordinates. Therefore, Edwards curves are the clear winner if for some
reason the input point is not in affine coordinates.



Chapter 5

Constructing curves of genus 2

with p-rank 1

In this chapter, we discuss the complex multiplication method for hyperelliptic
curves of genus 2 and p-rank 1. For this purpose, we introduce general facts about
abelian varieties and complex multiplication (CM) in Section 5.1. Section 5.2 and
Section 5.4 provide results of joint work with Hitt O’Connor, McGuire, and Streng
[HMNS08]. We present an algorithm for constructing hyperelliptic curves of genus
2 with p-rank 1 that are defined over Fp2. The algorithm allows the construction
of curves with a prime number of Fp2-rational points on its Jacobian variety of
a cryptographic relevant size. We give examples of curves constructed with the
proposed algorithm. In Section 5.3 we discuss existing construction algorithms for
genus-2 curves with prescribed embedding degree. Finally, in Section 5.4 we propose
an algorithm to construct p-rank-1 curves of genus 2 with a prescribed embedding
degree.

5.1 Abelian varieties with complex multiplication

Let F be a perfect field, and let F be an algebraic closure of F.

Definition 5.1. An abelian variety over F is an absolutely irreducible projective
algebraic group defined over F.

The reader is referred to [FL05a] for a brief introduction to abelian varieties in
view of their application in cryptography. Mumford [Mum74] and Lang [Lan83]
give an elaborate introduction, and Shimura [Shi97] treats the theory of complex
multiplication on abelian varieties. In Chapter 1, we have already seen examples of
abelian varieties, namely Jacobian varieties of hyperelliptic curves. In particular, an
elliptic curve is an abelian variety.
Let A be an abelian variety over F. For any field extension F ⊆ F̃ ⊆ F, the set of
F̃-rational points on A is denoted by A(F̃), where A = A(F).

103
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Definition 5.2. An abelian variety A over F is called simple over F if for all abelian
varieties B ⊆ A defined over F either B = 0 or B = A. It is called absolutely simple
if it is simple over F.

Let A and B be two abelian varieties over F. A morphism A → B is called a
homomorphism if it is a group homomorphism. A homomorphism ϕ is an isogeny if
it is surjective and the kernel of ϕ is finite. The abelian varieties A and B are called
isogenous if there exists an isogeny between them.

Any abelian variety A is isogenous to a product of powers of simple abelian varieties
(see [Mum74, Corollary 1, p. 174] and [FL05a, Section 4.3.4], i. e. there exist a
number l ∈ N, simple abelian varieties Ai, 1 ≤ i ≤ l, each two of which are not
isogenous to each other, and ni ∈ N0 such that A is isogenous to An1

1 × · · · × Anll .
The Ai and the ni are uniquely determined.

An endomorphism of A is a homomorphism A → A of A to itself. We denote the
set of all endomorphisms of A defined over F by EndF(A). The set EndF(A) with
addition given by the group law on A and composition as multiplicative structure
is a ring, the endomorphism ring of A. The subring of endomorphisms defined over
F̃ for F ⊆ F̃ ⊆ F is denoted by EndF̃(A). We define the endomorphism algebra of A
over F̃ by End0

F̃
(A) := Q ⊗ EndF̃(A). If A is simple over F̃, EndF̃(A) has no zero

divisors and End0
F̃
(A) is a division algebra [FL05a, Proposition 4.70].

Let A be isogenous to An1

1 × · · · × Anll as above, and define Di := End0
F
(Ai). Then

End0
F(A) ∼= Mn1

(D1)⊕ · · · ⊕Mnl(Dl),

where Mni(Di) is the matrix ring of (ni × ni)-matrices over Di. The structure of
End0

F(A) for a simple abelian variety A is classified in [Mum74, Section 21]. As
already seen for elliptic curves and Jacobians of hyperelliptic curves, the multi-
plication-by-m map [m] defined as usual is an endomorphism on A for any m ∈ Z.

Let g := dim(A) be the dimension of A as a projective variety. For the definition of
the dimension of a variety, see [FL05a, Definition 4.17], [Ful69, Chapter 6, Section
5], and [Har77, Section II.3]. Every endomorphism ϕ of A has a characteristic
polynomial fϕ,A ∈ Z[T ], monic, of degree 2g such that fϕ,A(ϕ) = 0. The constant
term of fϕ,A is called the norm of ϕ, and the negative of the coefficient of T 2g−1 is
called the trace of ϕ [Mum74, Theorem 4 in Section 18].

For the remainder of this section, we fix F to be a finite field Fq with q elements of
characteristic p. Let A be an abelian variety defined over Fq. The set of p-torsion
points on A is the kernel of the map [p], denoted by A[p]. It is an Fp-vector space.

Definition 5.3. The dimension rp(A) := dimFp(A[p]) of A[p] as an Fp-vector space
is called the p-rank of A.

It holds

0 ≤ rp(A) ≤ g
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(see [Mum74, Proposition on p. 64]). If rp(A) = g, then A is called ordinary .
The abelian variety A is called supersingular if it is isogenous to a product of su-
persingular elliptic curves. In this case, rp(A) = 0. If g ≤ 2, the converse is
also true, i. e. an abelian variety of dimension 1 or 2 is supersingular if and only if
rp(A) = 0 [FL05a, Remark 4.75]. The p-rank of A is invariant under isogenies, and
it is rp(A × B) = rp(A) + rp(B). Therefore, if A is isogenous to An1

1 × · · · × Anll ,
then rp(A) =

∑
i nirp(Ai).

The q-power Frobenius automorphism on Fq extends to an endomorphism φq on A,
the Frobenius endomorphism on A. We denote the characteristic polynomial of φq
by fA := fφq ,A. A polynomial f is called a q-Weil polynomial if f = fA for some
abelian variety A over Fq.

Theorem 5.4. Let A and B be abelian varieties over Fq, and let fA and fB be the
characteristic polynomials of their Frobenius endomorphisms. Then the following
statements are equivalent:

(a) A and B are isogenous over Fq.

(b) fA = fB.

(c) #A(F̃) = #B(F̃) for all finite extensions F̃ ⊇ Fq.

Proof. This is Theorem 1(c) in [Tat66].

Let πA be a root of the characteristic polynomial fA of the Frobenius endomorphism.
Define the number field K = Q(πA). In the sequel, we identify φq with the algebraic
integer πA. Weil proved the Riemann hypothesis for abelian varieties, which states
that every root of fA has absolute value

√
q. Or in other words: the image of πA

under every embedding of K into C has absolute value
√
q. An algebraic integer

that satisfies this property is called a q-Weil number . Two q-Weil numbers π1 and
π2 are conjugate if there exists a field isomorphism Q(π1) → Q(π2) that maps π1

to π2. Honda and Tate proved the following relation between q-Weil numbers and
isogeny classes of abelian varieties.

Theorem 5.5. The map A 7→ πA induces a bijection between isogeny classes of
simple abelian varieties over Fq and conjugacy classes of q-Weil numbers.

Proof. This is the main theorem in [Hon68] or Théorème 1(i) in [Tat71].

A q-Weil number thus determines a simple abelian variety that is unique up to
isogeny. The following theorem relates the q-Weil number πA to the endomorphism
algebra of A.

Theorem 5.6. Let A be a simple abelian variety over Fq of dimension g. Let
fA be the characteristic polynomial of the Frobenius endomorphism πA on A. Let
K = Q(πA). Then the following statements hold:



106 5.1. Abelian varieties with complex multiplication

(a) E := End0
Fq(A) is a division algebra with center K.

(b) 2g = [E : K]1/2[K : Q].

(c) Let e := [E : K]1/2. Then fA(T ) = mA(T )e for some irreducible polynomial
mA(T ) ∈ Q[T ].

Proof. See [Tat71, Théorème 1 (ii) (2) and Remarques 2)].

Theorem 2 in [Tat66] states that E is commutative if and only if E = K if and only
if fA has no multiple roots, i. e. it is irreducible. In this case, [E : Q] = [K : Q] = 2g.

Remark 5.7. There is a connection between the number of Fq-rational points on
A and the q-Weil number πA: The set of Fq-rational points is equal to the kernel of
[1] − φq, hence #A(Fq) = # ker([1]− φq). The cardinality of the kernel is equal to
deg([1]− φq) = fA(1) [Mum74, Theorem 4, p. 180]. We thus have

#A(Fq) = fA(1).

Let E = K = Q(πA). If fA(T ) =
∏2g

i=1(T − αi) is the factorization of fA in C[x]
with α1 := πA, then fA(1) =

∏
i(1− αi) = NK/Q(1− πA), the K/Q-norm of 1− πA.

Therefore, in this case
#A(Fq) = NK/Q(1− πA)

(see also Theorem 1.77).

Hence we can compute the number of Fq-rational points on A from a corresponding
q-Weil number. By fixing a number field K of degree 2g, we can choose a q-Weil
number π ∈ K such that the norm NK/Q(1− π) fulfills a given property. In certain
cases, it is possible to construct a simple abelian variety A over Fq of dimension g
with E = K and #A(Fq) = NK/Q(1− π) by using the complex multiplication (CM)
method. This method is briefly explained in Subsection 5.2.2 below. We conclude
this section by giving some basic definitions.

Definition 5.8. A field K is called a CM field if it is a totally imaginary quadratic
extension of a totally real algebraic number field. Let O be an order of K. An
abelian variety A has complex multiplication (CM) by O if EndF(A) ∼= O; it has
CM by K if it has CM by an order O of K.

Example 5.9. An elliptic curve E over a finite field Fq is an abelian variety. If E is
ordinary, it has CM by a quadratic imaginary number field [Sil86, Theorem V.3.1(b)].
An elliptic curve defined over C has complex multiplication if its endomorphism ring
is strictly larger than Z (see [Sil86, Remark II.4.3] and Section 1.3.1).

Definition 5.10. Let K be a CM field of degree 2g. Let Φ := {ϕ1, . . . , ϕg} be
a set of distinct embeddings of K into C such that no two of the ϕi are complex
conjugate to each other. Then the pair (K,Φ) is called a CM type. A CM type
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is called primitive if there is no proper subfield K ′ ⊂ K such that for the set of
restrictions Φ′ := {ϕ1|K ′, . . . , ϕg|K ′}, the pair (K ′,Φ′) is a CM type. The reflex field
of (K,Φ) is defined as

K̂ := Q

({
g∑

i=1

ϕi(α) | α ∈ K
})

,

i. e. K̂ is the number field generated by all elements
∑g

i=1 ϕi(α) for α ∈ K. If the

context is clear, we omit Φ and say that K̂ is the reflex field of K.

Example 5.11. (a) If a CM type (K,Φ) is primitive and K is normal over Q, then

K̂ = K [Shi97, Example 8.4(1)].
(b) Let K be a non-normal quartic CM field. Then the normal closure L of K has
degree 2 over K, and its Galois group over Q is the dihedral group D8 of order 8
[Shi97, Example 8.4(2)(C)]. In that case, the reflex field is non-normal of degree 4,
contained in L, and not conjugate to K.

5.2 A CM construction for genus-2 curves with

p-rank 1

The abelian varieties that we consider in this section are Jacobian varieties of hy-
perelliptic curves of genus 2. Note that the Jacobian variety has dimension equal to
the genus of the curve [Har77, Remark IV.4.10.9]. Hence when the genus is 2, we
also call the abelian variety an abelian surface. We recall from Theorem 1.77 and
Example 1.78 that the characteristic polynomial of the Frobenius endomorphism on
the Jacobian variety of a hyperelliptic curve C/Fq of genus 2 has the form

fJC = T 4 + a1T
3 + a2T

2 + a1qT + q2

for integers a1, a2. If nk := #C(Fqk), k ∈ {1, 2}, then n1 = q + 1 + a1 and n2 =
q2 +1+2a2−a2

1. In the following subsection, we discuss curves that have a Jacobian
with p-rank 1.

5.2.1 Genus-2 curves with p-rank 1

In Definition 1.74, we have defined the p-rank of a hyperelliptic curve as the p-
rank of its Jacobian variety. This coincides with Definition 5.3, and we may use
both definitions synonymously. The following theorem summarizes the results of
Rück [Rüc90] and Maisner and Nart [MN02], and gives conditions on a1, a2 for a
hyperelliptic genus-2 curve C to have p-rank 1.

Theorem 5.12. Let q = pn for a prime p and a positive integer n. Let f =
T 4+a1T

3+a2T
2+qa1T +q2 ∈ Z[T ], and let ∆ = a2

1−4a2+8q, δ = (a2+2q)2−4qa2
1.

Then f is the characteristic polynomial of a simple Jacobian variety of a hyperelliptic
curve of genus 2 with p-rank 1 defined over Fq if and only if
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(a) |a1| < 4
√
q,

(b) 2|a1|
√
q − 2q < a2 < a2

1/4 + 2q,

(c) ∆ is not a square in Z,

(d) νp(a1) = 0,

(e) νp(a2) ≥ n/2,

(f) δ is not a square in the p-adic integers,

where νp denotes the p-adic valuation.

Proof. Assume that the conditions (a) - (f) hold. The first three conditions are
equivalent to f being an irreducible q-Weil polynomial (see [MN02, Lemma 2.1,
Lemma 2.4] and [Rüc90, Lemma 3.1]). Let π be a root of f . By Theorem 5.5
there exists a simple abelian surface A defined over Fq such that π corresponds
to its Frobenius endomorphism. It follows from [MN02, Theorem 2.15] that A is
absolutely simple. Theorem 4.3 of [MN02] then implies that A is isogenous to the
Jacobian of a hyperelliptic curve of genus 2 with characteristic polynomial f . By
[MN02, Theorem 2.9], the curve C has p-rank 1.
Conversely, let f be the characteristic polynomial of a simple Jacobian of a hyperel-
liptic curve of genus 2 with p-rank 1. Then f has the required shape. Note that since
JC is simple, by Theorem 5.6, we have f(T ) = m(T )e for some monic irreducible
polynomial m ∈ Z[T ]. The number e must divide the p-rank of JC [Gon98, Prop.
3.2]. Thus for a simple abelian variety with p-rank 1 the characteristic polynomial
of the Frobenius endomorphism is always irreducible. This implies the first three
conditions by [MN02, Lemma 2.4]. The last three conditions follow from [MN02,
Theorem 2.9] because JC has p-rank 1.

The previous theorem states conditions for fJC which are equivalent to the curve C
having p-rank 1. They connect the q-Weil number πJC and the p-rank of C.
Next we consider the endomorphism algebra to see whether the Jacobian of a curve
over Fq with p-rank 1 can have complex multiplication. For an elliptic curve E/Fq,
Theorem 1.54 shows that, there are two cases for End0(E) := End0

Fq
(E), which

coincide with the two cases for the p-rank of E. Either the curve is ordinary with
p-rank 1, where End0(E) is a CM field of degree 2, or the curve is supersingular
with p-rank 0, where End0(E) is a quaternion algebra.
The following lemma shows that the endomorphism algebra End0

Fq
(JC) for a curve

C with p-rank 1 is a quartic CM field if JC is simple. In contrast to the genus-1
case, not only ordinary curves can have a CM field as their endomorphism algebra.

Lemma 5.13. Let JC be the Jacobian of a hyperelliptic genus-2 curve C defined
over Fq. Assume that JC is simple. If C has p-rank 1, then JC is absolutely simple
and End0

Fq(JC) = End0
Fq

(JC) is a CM field of degree 4.
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Proof. Maisner and Nart [MN02, Corollary 2.17] show that a simple abelian surface
of p-rank 1 is absolutely simple.
By Theorem 5.6, the characteristic polynomial of Frobenius is fJC = me

JC
for some

irreducible monic polynomial mJC ∈ Z[T ]. We have seen in the proof of Theo-
rem 5.12 that e = 1. Furthermore, Theorem 5.6 implies that End0

Fq(JC) is a field of
degree 4. It is a CM field, since ±√q are no roots of fJC .
It remains to show End0

Fq(JC) = End0
Fq

(JC). Let ϕ ∈ End0
Fq

(JC). There exists a

finite field extension F̃ ⊇ Fq such that ϕ ∈ End0
F̃
(JC). Since JC is absolutely simple,

it is simple over F̃, and it has p-rank 1. With the same arguments as above, it follows
from Theorem 5.6 that End0

F̃
(JC) is a field of degree 4 containing End0

Fq(JC). Thus

they are equal and ϕ ∈ End0
Fq(JC).

This lemma indicates that JC has CM by the quartic CM field K = End0
Fq(JC) if

JC is simple. Note that if C has p-rank 1 and JC is not simple, then JC is isogenous
to the product of an ordinary elliptic curve and a supersingular elliptic curve. We
do not consider this case in the following but restrict to curves of p-rank 1 with a
simple Jacobian variety, which then is absolutely simple by Lemma 5.13.

5.2.2 The CM method for genus 2

In Subsection 1.3.1, we have seen how the CM method can be used to construct
elliptic curves with CM over a finite field as the reduction of curves over C with CM
by the same field K. In principle, this method, although in a more complicated way,
can also be applied to construct hyperelliptic curves of genus 2. In this subsection,
we briefly discuss the CM method for genus 2. A more detailed description can be
found in [FL05b] and [FL05c].
We aim at obtaining a genus-2 curve over a finite field Fq of characteristic p with
a given number of Fq-rational points on the Jacobian. This means the curve corre-
sponds to a q-Weil number π that lies in an order O in a given quartic CM field K
(see Section 5.1). We restrict to the case that this order is the maximal order OK .
First we need to find abelian surfaces over C that are suitable candidates for being
reduced.
Any abelian variety of dimension g over C corresponds to a lattice in Cg. For g ∈ N,
a lattice in Cg is a Z-module of full rank, i. e. it contains an R-basis of Cg. Let A
be an abelian variety of dimension g over C. Then A is isomorphic to Cg/Λ for a
lattice Λ ⊆ Cg [FL05c, Section 5.1.3]. The group Cg/Λ is called a complex torus. A
torus is attached to an abelian variety if and only if there exists a Hermitian form
H on Cd, and for E = Im(H ), the restriction of E to Λ× Λ maps into Z [FL05c,
Theorem 5.16].
We define the dual lattice Λ̂ of a lattice Λ by

Λ̂ := {x ∈ Cg | E (x, y) ∈ Z for all y ∈ Λ}.

An abelian variety A is called principally polarized if Λ̂ = Λ.
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Remark 5.14. The Jacobian variety of a projective irreducible nonsingular curve
over C is a principally polarized abelian variety [FL05c, Proposition 5.24].

Vice versa, any principally polarized abelian surface A over C is the Jacobian variety
of a genus-2 curve [FL05c, Section 5.1.6.a]. The candidates we are looking for
are thus principally polarized abelian surfaces A over C with endomorphism ring
isomorphic to OK for a given quartic CM field K.
We obtain such abelian surfaces from ideals in OK (compare the CM method for
elliptic curves in Subsection 1.3.1). Let K be a quartic CM field, and let (K,Φ) =
(K, {ϕ1, ϕ2}) be a CM type. For an ideal a ⊂ OK the set Φ(a) := {(ϕ1(α), ϕ2(α))t |
α ∈ a} is a lattice in C2, and the torus C2/Φ(a) is an abelian surface which has CM
by OK , and vice versa, every abelian surface with this property can be obtained in
this way up to isomorphism [FL05c, Theorem 5.58 and discussion after that]. The
abelian surfaces with principal polarization are obtained by only using special ideals
and assuming that the totally real quadratic subfield K0 of K has class number 1.
For details, see [FL05c, Section 5.1.6.d].
The isomorphism class of an elliptic curve is given by its j-invariant. In the genus-1
CM method, one analytically computes the Hilbert class polynomial the roots of
which are the j-invariants of all isomorphism classes of elliptic curves over C with
CM by the maximal order in a given quadratic CM field (see Subsection 1.3.1).
The isomorphism class of any hyperelliptic curve C of genus 2 is uniquely deter-
mined by three invariants (j1, j2, j3) = (j1(C), j2(C), j3(C)), called the (absolute)
Igusa invariants [Igu60]. From a triple of Igusa invariants, a corresponding curve
can be constructed for example with Mestre’s algorithm (see [Mes91], [Spa94], and
[Wen01]).

Definition 5.15. Let s be the number of isomorphism classes of principally polar-
ized abelian surfaces over C with CM by OK . Let j

(i)
ℓ be the ℓth Igusa invariant of

a curve in the ith isomorphism class for 1 ≤ i ≤ s. The three polynomials

Hℓ(x) =
s∏

i=1

(x− j(i)
ℓ ), ℓ ∈ {1, 2, 3}

are called the Igusa class polynomials of OK .

The Igusa class polynomials have rational coefficients, i. e. Hℓ ∈ Q[x] for ℓ ∈ {1, 2, 3}
[FL05c, Theorem 5.64 (iii)]. The class polynomials over C can be computed from
the list of principally polarized abelian surfaces over C. This method is known
as the complex analytic approach. It is first described by Spallek [Spa94]. Van
Wamelen [vW99] computes the abelian surfaces as lattices in C2 and evaluates Igusa
invariants via Siegel modular forms. Recently, a complete runtime analysis of the
complex analytic method was given by Streng [Str08]. There are also other methods:
Eisenträger and Lauter [EL04] present an algorithm for constructing genus-2 curves
over finite fields that differs from the classical approach. Their method computes
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the class polynomials using a Chinese Remainder Theorem method. Gaudry et. al.
[GHK+05, GHK+06] use a p-adic or 2-adic lifting method. The computation of class
polynomials over C is a precomputation and not considered part of the algorithm
[FL05b, Section 18.2.2]. Class polynomials for many CM fields can be obtained from
Kohel’s database1.
Next we need to reduce the abelian surfaces over C to obtain abelian surfaces over
finite fields. This reduction can be done by reducing the Igusa invariants and the
class polynomials, respectively. The Igusa invariants are algebraic numbers that lie
in a class field over the reflex field K̂ of K [FL05c, Theorem 5.64 (i)].
Suppose we are given a prime p, a CM field K, and a principally polarized abelian
variety A defined over C which has CM by OK . Assume that A is defined over
a number field L ⊆ C. Let p be a prime in OL over p, and assume that p does
not divide the denominator of any of the coefficients of the class polynomials Hi.
Then we can reduce the Hi modulo p and obtain class polynomials over Fp. This
corresponds to reducing the Igusa invariants modulo p [FL05b, Section 18.2.5.b].
The reduced invariants are roots of the reduced class polynomials and thus lie in
an extension Fq ⊇ Fp. We denote the abelian surface corresponding to the reduced
invariants by A.
It is shown in [Shi97, Proposition 12 in 11.1] that the endomorphism ring EndL(A)
can be embedded into EndFq(A). Therefore, if we choose a q-Weil number π ∈ OK ,

we have π ∈ EndFq(A) and thus End0
Fq(A) contains K.

The splitting behavior of p in K determines the p-rank of the reduction A/Fq of A
modulo p. If A = E is an elliptic curve, a criterion of Deuring [Deu41] states that
E is supersingular if p is either ramified or inert in K, and E is ordinary if p splits
completely in K. If A has dimension 2, then there are more cases to consider.
For dimension 2, Goren distinguishes these cases in [Gor97] assuming p is unramified
in K. If an ordinary curve shall be constructed, then p needs to split completely
in K. Gaudry, Houtmann, Kohel, Ritzenthaler, and Weng in [GHK+05] extend
Goren’s results to the ramified case. They show that whenever K is cyclic, then the
reduction of A is either ordinary or supersingular, but if K is non-normal, then it is
possible for A to have p-rank 1. If K is normal, non-cyclic, then A is not absolutely
simple. As simple p-rank-1 varieties are absolutely simple, we restrict to the case
that K is non-normal. The part of the results of [Gor97] and [GHK+05] that applies
to p-rank 1 is as follows:

Lemma 5.16. Let K be a quartic CM field, and let C be a curve of genus 2 over a
number field L ⊇ K with endomorphism ring OK . Let p be a prime number, and let
p be a prime of OL lying over p. The reduction C of C modulo p is a genus-2 curve
with p-rank 1 if and only if (p) decomposes in OK as (p) = p1p2p3 or (p) = p1p2p

2
3.

In this case, JC is absolutely simple.

Proof. This is [GHK+05, Theorem 3.5 (3)].

1http://echidna.maths.usyd.edu.au/echidna/dbs/index.html

http://echidna.maths.usyd.edu.au/echidna/dbs/index.html
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Thus when looking for curves of p-rank 1, we require that (p) splits as p1p2p3 or
p1p2p

2
3.

Summarizing, the genus-2 CM method is as follows: Suppose as input we are given
a quartic CM field K, a prime p, and a q-Weil number π, i. e. ππ̄ = q, where q is a
power of p. Obtain the Igusa class polynomials H1, H2, H3 for K from a database
or in a precomputation with the above mentioned methods. As for the genus-1 CM
method, the discriminant of K needs to be small enough such that the Hi can be
computed.

Reduce the Igusa class polynomials modulo p and compute all possible triples
(j1, j2, j3) ∈ F3

q from the roots of H1 mod p, H2 mod p, and H3 mod p. If s is the
degree of the class polynomials, we obtain at most s3 triples (j1, j2, j3) ∈ F3

q. But
not all of them are triples of invariants. If Mestre’s algorithm is used, it must be
applied to all triples. If a useful triple is chosen, the curve obtained from it may
still be a twist of the curve that yields the correct group order. The correct triples
and twists, if they exist, can be selected by probabilistic checking of the order of
JC , which is NK/Q(1 − π) for the correct curve C (see Section 5.1). Gaudry et. al.
[GHK+05] propose to replace H2(x) and H3(x) by two other polynomials in such
a way that they directly only yield the correct n triples (j1, j2, j3). For details, see
[GHK+05, Section 4].

5.2.3 Algorithms

In this subsection, we present two algorithms to construct hyperelliptic curves of
genus 2 with p-rank 1. Algorithms 5.1 and 5.2 construct a curve C defined over Fp2
such that #JC(Fp2) is a prime of a given bitsize. The algorithms require as input a
quartic CM field K and a desired bitsize for the group order.

Both algorithms apply the prime decomposition (p) = p1p2p3. The following remark
shows that the other case is not useful for constructing curves for cryptography since
the choices for p are very limited:

Remark 5.17. Let p be a prime that decomposes in OK as (p) = p1p2p
2
3. Then p

has ramification index 2 at p3, thus p is a ramified prime. Therefore, p divides the
discriminant of the CM field K. When we fix K in advance, this means that p is an
element of a small finite set of primes.

The two algorithms differ as follows: Algorithm 5.1 chooses a prime p of suitable
size until the splitting behavior in OK , the ring of integers in K, is (p) = p1p2p3

(see Lemma 5.16). From the prime decomposition of p, the corresponding p2-Weil
number π is defined as π = αα−1p, if p1 = (α) is a principal ideal generated by α.
Algorithm 5.2 instead selects candidate elements for α ∈ OK of prime norm p first.
The p2-Weil number is computed from that as π = α2β with β = pα−1α−1. In both
algorithms, it can then be checked whether the group order NK/Q(1− π) is prime.
Finally the curve C is constructed by the CM method (see Subsection 5.2.2).
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Input: A non-Galois CM field K of degree 4 and a positive integer n.
Output: A prime p of n bits, a prime r, and a curve C of genus 2 over Fp2 with

p-rank 1 such that r = #JC(Fp2).
1: Take a random prime p of n bits.
2: If pOK factors as p1p2p3, where p3 has degree 2, continue.

Otherwise, go to Step 1.
3: If p1 is principal and generated by α, let π = αα−1p. Otherwise, go to Step 1.
4: If N(1 − uπ) is prime for some root of unity u ∈ K, then replace π by uπ and

set r = N(1− π). Otherwise, go to Step 1.
5: Compute a curve C corresponding to K, p, and π using the CM method.
6: return p, r, C.

Algorithm 5.1: Generate p-rank-1 curves of genus 2 over Fp2 (I)

Input: A non-Galois CM field K of degree 4 with real quadratic subfield K0 and a
positive integer n.

Output: A prime p of n bits, a prime r, and a curve C of genus 2 over Fp2 with
p-rank 1 such that r = #JC(Fp2).

1: Take a random element α of OK \ OK0
the norm of which has n bits.

2: If p = N(α) is prime in Z, continue. Otherwise, go to Step 1.
3: If β = pα−1α−1 is prime in OK0

and remains prime in OK , then let π = α2β.
Otherwise, go to Step 1.

4: If N(1 − uπ) is prime for some root of unity u ∈ K, then replace π by uπ and
set r = N(1− π). Otherwise, go to Step 1.

5: Compute a curve C corresponding to K, p, and π using the CM method.
6: return p, r, C.

Algorithm 5.2: Generate p-rank-1 curves of genus 2 over Fp2 (II)

Proposition 5.18. For both Algorithms 5.1 and 5.2, the following holds: If the
algorithm terminates, the output is correct, i. e. the constructed curve C of genus 2
has p-rank 1, is defined over Fp2, and has the stated prime number of Fp2-rational
points.

Proof. In both algorithms, we have ππ = p2, so π is a p2-Weil number. Let β =
pα−1α−1. Then p factors in K as a product of three primes ααβ, so the output has
p-rank 1 by Lemma 5.16. By Section 5.1, the curve is defined over Fp2, and has a
prime number N(1− π) of Fp2-rational points on its Jacobian.

Examples of curves such that their Jacobian group orders over Fp2 have crypto-
graphic relevant bitsizes are given in the next subsection. The curves were con-
structed using Algorithm 5.1.
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5.2.4 Examples

The following examples each describe a p-rank-1 curve C defined over a quadratic
field Fp2 such that the Jacobian variety JC(Fp2) has prime order. The CM field is
K = Q(ω) in each case, where ω is a root of X4 + 34X2 + 217 ∈ Q[X]. We give the
prime p, the coefficients a1 and a2 of the characteristic polynomial of the Frobenius
endomorphism and the coefficients ci ∈ Fp2 of the curve equation

C : y2 = c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x+ c0.

The group order of the Jacobian can be computed as #JC(Fp2) = p4 + 1 + a1(p
2 +

1) + a2. The field Fq = Fp2 is given as Fp(σ), where σ has the minimal polynomial
fσ = X2 + 3 ∈ Fp[X] in each case, i. e. σ =

√
−3. Section headings describe the size

of the group JC(Fp2) in bits. The three example bit sizes are suitable for the 80-,
96- and 128-bit security levels.

160-bit groupsize

p = 924575392409

a1 = −3396725192754

a2 = 4585861472127472591045899

c6 = 377266258806 · σ + 915729517707

c5 = 494539789092 · σ + 415576796385

c4 = 904019288751 · σ + 345679289510

c3 = 309144556572 · σ + 430866212243

c2 = 58888332305 · σ + 588111907455

c1 = 115624782924 · σ + 580418244294

c0 = 156203470202 · σ + 110258906818

192-bit groupsize

p = 236691298903769

a1 = 9692493559086

a2 = 53053369677708708650361238059

c6 = 52558588104658 · σ + 99902692259559

c5 = 52389593530844 · σ + 158973424741312

c4 = 218737207208837 · σ + 181252769658898

c3 = 172428310717706 · σ + 8801118005418

c2 = 123239683911263 · σ + 7283283410239

c1 = 153772853838243 · σ + 205198867568386

c0 = 215981952231090 · σ + 34417850754628
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256-bit groupsize

p = 15511800964685067143

a1 = −2183138494024250742

a2 = −390171452893965844512858417075864299559

c6 = 4150612463019545210 · σ + 12947607883594839049

c5 = 1151467134418557330 · σ + 14300579473277935991

c4 = 1530498141898130345 · σ + 14555772239394475007

c3 = 1718208704069543708 · σ + 3224111154139828576

c2 = 13826236770513916637 · σ + 8502326661843998285

c1 = 1128433341144760472 · σ + 6897664900087390978

c0 = 456182377334184445 · σ + 12945866133209209503

5.3 Prescribed embedding degree in genus 2

In genus 2 similar to genus 1 we may take supersingular Jacobians for pairing-
based cryptosystems, because as in genus 1 there also exists an upper bound on the
embedding degree. Galbraith [Gal02] shows that this upper bound is 12 in genus
2. For achieving better security levels, one needs to find Jacobians for which it is
larger. Again, we need to look for non-supersingular curves.

Example 5.19. Freeman, Stevenhagen, and Streng [FSS08] propose an algorithm
to construct ordinary simple abelian varieties which have a prescribed embedding
degree. By applying the CM method, the algorithm can be used to construct hy-
perelliptic curves of genus 2 or 3 with small embedding degree.
Let K be a quartic CM field, k ∈ N the desired embedding degree, and r a prime,
the supposed prime divisor of the group order. A q-Weil number π fulfilling the
conditions

NK/Q(1− π) ≡ 0 (mod r),

Φk(ππ) ≡ 0 (mod r).

can be found as the type norm of an element in the ring O bK of integers of the reflex

field K̂ of K. This element is constructed using the prime decomposition of r in
O bK . From Lemma 1.108 and Remark 5.7, it follows that r divides the group order
and k is the embedding degree of the constructed curve.

Example 5.20. Freeman [Fre08] shows that it is possible to do the algorithm of
Freeman, Stevenhagen, and Streng [FSS08] with the prime r parametrized by a
polynomial r(x) ∈ Z[x]. This results in parametrizations π(x) ∈ K[x] such that
q(x) = π(x)π̄(x) represents primes. Once such a parametrization is found, one looks
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for an integer x0 which leads to π = π(x0) and q = q(x0) fulfilling the conditions
from the previous example. The CM method can be used to actually find examples.
It turns out that, as in the elliptic curve case, ρ-values tend to be smaller than those
obtained by the unparametrized method. Freeman gives examples with ρ-value
around 6.

Example 5.21. Kawazoe and Takahashi [KT08] restrict to hyperelliptic curves of
genus 2 with an equation y2 = x5 + ax. The advantage of using such a curve is
that for certain primes p the group order of the Jacobian over Fp can directly be
determined by a formula which depends on p and a. This means that one can
directly choose parameters such that the conditions for a small embedding degree
are satisfied.
As an example for primes p ≡ 1, 3 (mod 8) of the form p = c2 + 2d2 where c, d ∈ Z
and c ≡ 1 (mod 4), Kawazoe and Takahashi take explicit formulas for the character-
istic polynomial fJC (T ) determined by Furukawa, Kawazoe, and Takahashi [FKT04]
corresponding to a curve of the given form. The formulas can be found by computing
Jacobsthal sums over characters of Fp which is possible for the curves of this form.
Since these formulas depend on c, d, and a only, one may solve the system

fJC (1) ≡ 0 (mod r),

Φk(p) ≡ 0 (mod r),

p = c2 + 2d2, with c ≡ 1 (mod 4)

for a prime r chosen in advance. This gives curve parameters directly without
going through the effort of the CM method. Solutions to the above system are first
computed modulo r and then lifted to the integers until a suitable prime p is found.
Therefore, c and d are roughly of the size of r which leads to p being roughly of the
size of r2. This shows that such Jacobians have a ρ-value of about 4.

5.4 Prescribed embedding degree for p-rank 1

Algorithm 5.3 can be used to construct hyperelliptic curves of genus 2 with p-rank
1 and a prescribed embedding degree. It is modeled after the method by Freeman,
Stevenhagen, and Streng [FSS08].

Proposition 5.22. If Algorithm 5.3 terminates, then the constructed curve has
p-rank 1 and embedding degree k with respect to the prime r.

Proof. The number π is defined in Step 5 by π = α2β, where p factors into primes of
OK as ααβ, just as in Algorithm 5.2. In particular, the facts that the output has p-
rank 1 and a Jacobian of orderN(1−π) are proved as in the proof of Proposition 5.18.
We follow [FSS08] to proof that the embedding degree of the constructed curve is
k. Recall that r splits completely in K, i. e. in OK it decomposes as (r) = rrqq. We
use the notation of the algorithm, where qq = s. Furthermore, p decomposes in OK
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Input: A non-Galois CM field K of degree 4 with real quadratic subfield K0, a
positive integer k, and a prime r ≡ 1 (mod 2k) which splits completely in K.

Output: A prime p and a curve C of genus 2 over Fp2 that has p-rank 1 and
embedding degree k with respect to r.

1: Let r be a prime of K dividing r and let s = rr−1r
−1.

2: Choose a random element x of F∗
r and a primitive 2kth root of unity ζ .

3: Compute α ∈ OK \ OK0
such that

α mod r = x, α mod r = xζ, α mod s = x−1

using the Chinese Remainder Theorem.
4: If p = N(α) is prime in Z and different from r, continue.

Otherwise, go to Step 2.
5: If β = pα−1α−1 is prime in OK0

and remains prime in OK , let π = α2β.
Otherwise, go to Step 2.

6: Compute a curve C corresponding to K, p, and π using the CM method.
7: return p, C.

Algorithm 5.3: Generate p-rank-1 curves of genus 2 over Fp2 with prescribed
embedding degree

as (p) = ααβ, where β is a prime in OK and in OK0
and αα is a prime in OK0

. The
field K0 is normal of degree 2 over Q, and thus it has a non-trivial automorphism
φ. Since αα and β are not in Q, it follows φ(αα) = β.
We find π mod r = (α mod r)2(φ(αα) mod r). In Fr, the right hand side is equal to
(α mod r)2(α mod s)2 = 1, so r | N(1− π). On the other hand,

p2 mod r = (α mod r)2(α mod r)2(φ(αα) mod r)2

= (α mod r)2(α mod r)2(αα mod s)2.

As s = s, we have (α mod s) = (α mod s) = (α mod s), so p2 mod r = (α mod
r)2(α mod r)2(α mod s)4 = ζ2 is a primitive kth root of unity. By Lemma 1.108 and
Remark 5.7, the facts that p2 is a primitive kth root of unity modulo r and that
r | N(1− π) imply that JC has embedding degree k with respect to r.

Freeman, Stevenhagen, and Streng [FSS08] give a heuristic analysis of their method.
They show in [FSS08, Theorem 3.4] that one expects the prime q to yield a ρ-value
of about 8 for genus 2, which means that log(q) = 4 log(r). The same reasoning
holds for our algorithm. The prime p computed as the norm of the element α in
Step 4 is therefore expected to give log(p) = 4 log(r). Since the constructed p-rank-1
curve is defined over Fp2, its ρ-value is ρ = 2 log(p2)/ log(r) ≈ 16.
Since the curves are defined over Fp2, and since pairing values are rth roots of unity,
the embedding field could be smaller than indicated by the embedding degree k when
working with odd k (as pointed out by Hitt [Hit07]). This influences the security
of pairing-based protocols. But loss of security can easily be avoided by choosing



118 5.4. Prescribed embedding degree for p-rank 1

curves with an even embedding degree k or by explicitly checking if the rth roots of
unity are already defined over a smaller extension of Fp.
For cryptographic applications, one requires that the prime r has at least 160 bits,
since r is the order of the subgroup used in protocols. Then p already has 640
bits. This makes field and curve arithmetic very slow, compared to elliptic curve
implementations of the same security level, where it is possible to have r of the same
size as p.
Thus the curves produced by algorithm 5.3 currently have no relevance for practical
applications in cryptography. Still, we may conclude that in principle pairing-based
cryptography seems possible for p-rank 1.



Appendix A

Compressed torus arithmetic

A.1 Verification of formulas

We verify the formulas given in Lemma 3.18: Let α, β ∈ T6(Fq) \ {1} with θ6(α) =
(a0, a1), θ6(β) = (b0, b1), and (a0, a1) 6= (−b0,−b1). We first give the Magma [BCP97]
code of the formulas in the lemma:

R<a0,b0,a1,b1,xi> := PolynomialRing(Rationals(),5);

r0 := a0^2 + 1/3*xi;

r1 := b0^2 + 1/3*xi;

s0 := xi*(a1*b1*(a0*b0 + xi) + a1^2*r1 + b1^2*r0);

s1 := a1*b1*xi*(a0*b1 + a1*b0) + r0*r1;

s2 := a1^2*b1^2*xi + a0*a1*r1 + b0*b1*r0;

t0 := a1*b1*xi*(a0 + b0);

t1 := a1*b1*xi*(a1 + b1);

t2 := b1*r0 + a1*r1;

u := t0^3 + t1^3*xi + t2^3*xi^2 - 3*xi*t0*t1*t2;

u0 := t0^2 - t1*t2*xi;

u1 := t2^2*xi - t0*t1;

u2 := t1^2 - t0*t2;

v0 := s0*u0 + s1*u2*xi + s2*u1*xi;

v1 := s0*u1 + s1*u0 + s2*u2*xi;

The compressed representative is then given as (v0/u, v1/u). The formulas can be
deduced as follows: Recall that

Xα = a0 + a1τ + a2τ
2 with a2 = (3a2

0 + ξ)/(3a1ξ),

Xβ = b0 + b1τ + b2τ
2 with b2 = (3b20 + ξ)/(3b1ξ).

Then αβ is represented by θ6(αβ) = (c0, c1). It holds Xαβ = c0 + c1τ + c2τ
2 and
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αβ = (Xαβ − σ)/(Xαβ + σ). By Lemma 3.8 it is

Xαβ =
XαXβ + ξ

Xα +Xβ
.

We multiply in numerator and denominator with a1b1ξ. The fraction Xαβ can then
be computed as (d0+d1τ+d2τ

2)/(e0+e1τ+e2τ
2). The following code can be used to

determine the coefficients of d0+d1τ+d2τ
2 := a1b1ξ(XαXβ+ξ) and e0+e1τ+e2τ

2 :=
a1b1ξ(Xα +Xβ):

d0 := a0*b0*a1*b1*xi + b0^2*a1^2*xi + 1/3*a1^2*xi^2

+ a0^2*b1^2*xi + 1/3*b1^2*xi^2 + a1*b1*xi^2;

d1 := a0*a1*b1^2*xi + a1^2*b0*b1*xi + a0^2*b0^2

+ 1/3*a0^2*xi + 1/3*b0^2*xi + (1/3*xi)^2;

d2 := a1^2*b1^2*xi + a0*a1*b0^2 + 1/3*a0*a1*xi

+ a0^2*b0*b1 + 1/3*b0*b1*xi;

e0 := (a0 + b0)*a1*b1*xi;

e1 := (a1 + b1)*a1*b1*xi;

e2 := b1*(a0^2 + 1/3*xi) + a1*(b0^2 + 1/3*xi);

We compute 1/(e0 + e1τ + e2τ
2) as

(e0 + e1ζτ + e2ζ
2τ 2)(e0 + e1ζ

2τ + e2ζτ
2)

NFq3/Fq
(e0 + e1τ + e2τ 2)

.

where ζ ∈ Fq is the primitive 3rd root of unity with τ q = ζτ . The numerator
f0 + f1τ + f2τ

2 := (e0 + e1ζτ + e2ζ
2τ 2)(e0 + e1ζ

2τ + e2ζτ
2) and the denominator

g := NFq3/Fq
(e0 + e1τ + e2τ

2) can be computed as follows:

f0 := e0^2 - e1*e2*xi;

f1 := e2^2*xi - e0*e1;

f2 := e1^2 - e0*e2;

g := (e0^3 + e1^3*xi + e2^3*xi^2 - 3*xi*e0*e1*e2);

Finally we calculate the product (h0+h1τ+h2τ
2) := (f0+f1τ+f2τ

2)(d0+d1τ+d2τ
2):

h0 := d0*f0 + d1*f2*xi + d2*f1*xi;

h1 := d0*f1 + d1*f0 + d2*f2*xi;

h2 := d0*f2 + d1*f1 + d2*f0;

The result is then given as Xαβ = (h0 + h1τ + h2τ
2)/g, represented by (h0/g, h1/g),

and it can be checked that h0 = v0, h1 = v1, and g = u, and thus the formulas for
multiplication given in Lemma 3.18 are correct.
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The formulas for squaring can be checked similarly: We first give the Magma code
of the squaring formulas.

R<a0,a1,xi> := PolynomialRing(Rationals(),3);

r0 := a0^5 + xi*(a0^3 - 2*a0^2*a1^3) + xi^2*(1/3*a0 - a1^3);

r1 := a0^5 + xi*(2*a0^3 - 2*a0^2*a1^3) + xi^2*(a0 - 2*a1^3);

s0 := a0*(a0*r0 + a1^6*xi^2 + 1/27*xi^3) - 1/3*a1^3*xi^3;

s1 := a1*(a0*r1 + a1^6*xi^2 + 4/27*xi^3);

s := 2*(a0*r0 + a1^6*xi^2 + 1/27*xi^3);

Then the square is represented as (s0/s, s1/s). To obtain these formulas we conduct
the following steps: Compute

Xα2 =
X2
α + ξ

2Xα

by (d0 + d1τ + d2τ
2)/(e0 + e1τ + e2τ

2), where d0 + d1τ + d2τ
2 := a2

1ξ(X
2
α + ξ) and

e0 + e1τ + e2τ
2 := 2a2

1ξXα.

d0 := 3*a0^2*a1^2*xi + 5/3*a1^2*xi^2;

d1 := 2*a0*a1^3*xi + a0^4 + 2/3*a0^2*xi + (1/3*xi)^2;

d2 := a1^4*xi + 2*a0^3*a1 + 2/3*a0*a1*xi;

e0 := 2*a0*a1^2*xi;

e1 := 2*a1^3*xi;

e2 := 2*a0^2*a1 + 2/3*a1*xi;

We invert e0 + e1τ + e2τ
2 and multiply the inverse with d0 + d1τ + d2τ

2 exactly as
for multiplication.

f0 := e0^2 - e1*e2*xi;

f1 := e2^2*xi - e0*e1;

f2 := e1^2 - e0*e2;

g := (e0^3 + e1^3*xi + e2^3*xi^2 - 3*xi*e0*e1*e2);

h0 := d0*f0 + d1*f2*xi + d2*f1*xi;

h1 := d0*f1 + d1*f0 + d2*f2*xi;

h2 := d0*f2 + d1*f1 + d2*f0;

It can be checked that g = 4sξ2a3
1, h0 = 4s0ξ

2a3
1, and h1 = 4s1ξ

2a3
1. Therefore,

h0/g = s0/s and h1/g = s1/s, which shows that the formulas for squaring are also
correct.
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A.2 Pseudo code

The two algorithms given here show three-operand pseudo code for multiplication
and squaring of elements of T6(Fp2) in compressed representation. They realize the
formulas in Example 3.25.

Input: (A0 : A1 : A) ∈ P2(Fp2), A ∈ Fp
Output: (C0 : C1 : C) representing the square of (A0 : A1 : A)

1: r1 ← A2
0,

2: r2 ← A0r1,
3: S0 ← r1r2,
4: t0 ← A2,
5: r4 ← r2t0,
6: r5 ← A2

1,
7: r5 ← A1r5,
8: r3 ← r1r5,
9: r4 ← r4 − r3,

10: r0 ← r4ξ,
11: r0 ← 2r0,
12: S1 ← S0 + r0,
13: r4 ← r4 − r3,
14: r4 ← r4ξ,
15: S0 ← S0 + r4,
16: t1 ← t20,
17: r4 ← t1A0,

18: r0 ← 1
3
r4,

19: r1 ← r5t0,
20: r0 ← r0 − r1,
21: r1 ← 2r1,
22: r4 ← r4 − r1,
23: r0 ← ξ2r0,
24: r4 ← ξ2r4,
25: S0 ← S0 + r0,
26: S0 ← S0A0,
27: S1 ← S1 + r4,
28: S1 ← S1A0,
29: r2 ← r2

5,
30: r2 ← r2ξ

2,
31: r4 ← t1t0,
32: r4 ← 1

27
ξ3r4,

33: r1 ← r2 + r4,
34: S0 ← S0 + r1,

35: S ← S0A,
36: S0 ← S0A0,
37: S ← 2S,
38: r4 ← 4r4,
39: r1 ← r2 + r4,
40: S1 ← S1 + r1,
41: S1 ← S1A1,
42: r1 ← r5t1,
43: r1 ← 1

3
ξ3r1,

44: S0 ← S0 − r1,
45: Write S = s0 + is1,
46: r1 ← (s0 − is1),
47: C0 ← S0r1,
48: C1 ← S1r1,
49: C ← Sr1 = s2

0 + cs2
1,

50: return (C0 : C1 : C)

Algorithm A.1: Compressed squaring in T6(Fp2) for k = 12.
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Input: (A0 : A1 : A), (B0 : B1 : B) ∈ Fp2 × Fp2 \ {0} × Fp
Output: (C0 : C1 : C) = (A0 : A1 : A) · (B0 : B1 : B)

1: R0 ← A2
0,

2: t1 ← A2,
3: r3 ← 1

3
ξt1,

4: R0 ← R0 + r3,
5: R1 ← B2

0 ,
6: t1 ← B2,
7: r3 ← 1

3
ξt1,

8: R1 ← R1 + r3
9: r3 ← A1B1,

10: r4 ← A0B0,
11: t1 ← AB,
12: r5 ← t1ξ,
13: r4 ← r4 + r5,
14: S0 ← r3r4,
15: S2 ← r2

3

16: S2 ← S2ξ,
17: r4 ← A0B1,
18: r5 ← A1B0,
19: r4 ← r4 + r5,
20: r6 ← r3ξ,
21: S1 ← r6r4,
22: r4 ← R0R1

23: S1 ← S1 + r4,
24: r4 ← A1R1,
25: r5 ← r4A0,
26: S2 ← S2 + r5,
27: T2 ← r4A,
28: r4 ← r4A1,

29: S0 ← S0 + r4,
30: r4 ← B1R0,
31: r5 ← r4B,
32: T2 ← T2 + r5,
33: r5 ← r4B0,
34: S2 ← S2 + r5,
35: r4 ← r4B1,
36: S0 ← S0 + r4,
37: S0 ← S0ξ,
38: T0 ← A0B,
39: r4 ← B0A,
40: T0 ← T0 + r4,
41: T0 ← r6T0,
42: T1 ← A1B,
43: r4 ← B1A,
44: T1 ← T1 + r4,
45: T1 ← T1r6
46: r0 ← T 2

0 ,
47: r1 ← T 2

1 ,
48: r2 ← T 2

2 ,
49: T ← r0T0,
50: r3 ← r1T1,
51: r3 ← r3ξ,
52: T ← T + r3
53: r3 ← r2T2,
54: r3 ← r3ξ

2,
55: T ← T + r3,
56: r3 ← T1T2,

57: r3 ← r3ξ,
58: U0 ← r0 − r3,
59: r3 ← r3T0

60: r3 ← 3r3,
61: T ← T − r3 ,
62: r3 ← T0T1,
63: U1 ← r2ξ,
64: U1 ← U1 − r3 ,
65: r3 ← T0T2,
66: U2 ← r1 − r3,
67: V0 ← S0U0,
68: r0 ← S1U2,
69: r1 ← S2U1,
70: r0 ← r0 + r1,
71: r0 ← r0ξ,
72: V0 ← V0 + r0,
73: V1 ← S0U1,
74: r0 ← S1U0,
75: V1 ← V1 + r0,
76: r0 ← S2U2,
77: r0 ← r0ξ,
78: V1 ← V1r0,
79: Write T = t0 + it1,
80: r1 ← (t0 − it1),
81: C0 ← V0r1,
82: C1 ← V1r1,
83: C ← Sr1 = t20 + ct21,
84: return (C0 : C1 : C)

Algorithm A.2: Compressed multiplication in T6(Fp2) for k = 12.





Bibliography

[AM93] A. O. L. Atkin and Francois Morain. Elliptic curves and primality prov-
ing. Mathematics of Computation, 61:29–68, 1993. 43, 44
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seille, 2008. 90

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. Twisted Edwards curves. In Progress in Cryptology –
AFRICACRYPT 2008, volume 5023 of Lecture Notes in Computer Sci-
ence, pages 389–405. Springer-Verlag, 2008. 26, 27, 100

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma al-
gebra system. I. The user language. Journal of Symbolic Computing,
24(3-4):235–265, 1997. 119

[BF01] Dan Boneh and Matthew Franklin. Identity-based encryption from the
Weil pairing. In Advances in Cryptology – CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 213–229. Springer-Verlag,
2001. 2, 32

[BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from the
Weil pairing. SIAM Journal on Computing, 32(3):586–615, 2003. 2, 32,
35

[BGOS07] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó hÉigeartaigh, and
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Summary

Constructive and Computational Aspects

of Cryptographic Pairings

The security of many public-key cryptosystems relies on the existence of groups
in which the discrete logarithm problem (DLP) is infeasible. Subgroups of the
Jacobian varieties of elliptic and hyperelliptic curves over finite fields are widely used
to realize such cryptosystems. On these groups, it is possible to define pairings.
A cryptographic pairing is a bilinear, non-degenerate map that can be computed
efficiently. It maps a pair of points in the Jacobian variety into the multiplicative
group of a finite field.
Pairings were first used in cryptography to attack the DLP on a supersingular elliptic
curve by reducing it to the DLP in a finite field that is easier to solve. Later
on, they led to a variety of constructive applications. When aiming at practical
implementation of pairings, there are two main problems arising: The first is to find
pairing-friendly curves which allow an efficient pairing computation. The second is
to make computations more efficient and suitable for different applications. This
dissertation addresses aspects of both problems and advances the state of the art in
the associated research areas.
An important condition for a pairing-friendly curve is to have an embedding degree
that is small enough. Curves with this property are rare and need to be constructed.
We give a method to construct pairing-friendly elliptic curves with embedding degree
12. The proposed curves have many nice properties favoring very efficient imple-
mentation, such as a prime order group of rational points over the ground field and
a twist of degree 6.
The Jacobian group order of a pairing-friendly curve must have a large prime divisor
which satisfies the embedding degree condition. It is therefore necessary to first
fix the group order and then construct the curve. As an essential tool for the
construction, one uses the complex multiplication (CM) method. We show how to
use the CM method to construct curves of genus 2 with p-rank 1.
If pairings need to be implemented on devices with restricted memory, it may be
interesting to compute pairings in compressed form. Using the fact that pairing
values are elements of algebraic tori, they can be represented in a more efficient way,
requiring less storage space than general field elements. We show how to do pairing
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computation in a compressed form. On curves with a twist of degree 6 the proposed
variant of Miller’s algorithm can be done without any field inversions.
Recently, it has been shown, that in many cases the elliptic curve group law can
be implemented most efficiently using Edwards curves. It was an open problem to
find advantageous formulas for pairing computation on Edwards curves. We state
a geometric interpretation of the group law on twisted Edwards curves, give the
corresponding functions, and show how to use them to compute pairings on Edwards
curves. We present explicit formulas for the doubling and addition steps in Miller’s
algorithm that are more efficient than all previously proposed formulas for pairings
on Edwards curves and are competitive with formulas for pairing computation on
Weierstraß curves.
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