Selecting Elliptic Curves for Cryptography "Real World" Issues

Michael Naehrig
Cryptography Research Group
Microsoft Research

UW Number Theory Seminar
Seattle, 28 April 2015

Elliptic Curve Cryptography

- 1985: Neal Koblitz and Victor Miller propose to use elliptic curves for designing public-key crypto systems
- For example: key exchange and digital signatures

$$
\begin{gathered}
E: y^{2}=x^{3}+a x+b \\
a, b \in \mathbb{F}_{p}, \operatorname{char}\left(\mathbb{F}_{p}\right)>3
\end{gathered}
$$

Elliptic Curve Cryptography

- Use group of rational points $E\left(\mathbb{F}_{p}\right)$ on E over finite field \mathbb{F}_{p}
- Fundamental operation: $(k, P) \mapsto[k] P$

i.e. ' ${ }^{\text {double-and-add': }}$

$$
k=(1,0,1, \ldots, 0,0) \rightarrow(-, D B L, D B L+A D D, \ldots, D B L, D B L)
$$

- Security related to hardness of the discrete logarithm problem i.e. find k given $P, Q=[k] P$.

Why Elliptic Curves?

- Functionality: Can realize key exchange, encryption, signatures
- Security:
- Best known algorithm for solving ECDLP is Pollard's rho
- Expected run time $\sqrt{\pi r / 4}$ in a subgroup of prime order r
- Performance:
- Efficient representation of group elements
- Efficient group operations and exponentiation
- Much smaller key sizes than RSA or DL in finite fields

Why Elliptic Curves?

- Roughly equivalent levels of security

Security level	Symmetric Algorithms	RSA/ Finite Field DL	ECC
128 bits	AES-128, SHA-256	3072 bit modulus/field size	256 bit field size

- See various (slightly different) recommendations on http://www.keylength.com.

Standards - The NIST Curves

NGT

- (1999/2000) NIST standardizes a collection of elliptic curves
- For example P-256 given by $E: y^{2}=x^{3}-3 x+b$ modulo

$$
p=2^{256}-2^{224}+2^{192}+2^{96}-1
$$

- with 256 -bit prime order $r=\# E\left(\mathbb{F}_{p}\right)$, where

$$
\begin{aligned}
& b=\sqrt{-27 / \text { SHA1 }(s)}, \\
& s=\mathrm{c} 49 \mathrm{~d} 360886 \mathrm{e} 704936 \mathrm{a} 6678 \mathrm{e} 1139 \mathrm{~d} 26 \mathrm{~b} 7819 \mathrm{f7} \mathrm{e} 90
\end{aligned}
$$

- ... so the curve is "verifiably random"...

One in a million?

"Consider now the possibility that one in a million of all curves have an exploitable structure that "they" know about, but we don't. Then "they" simply generate a million random seeds until "they" find one that generates one of "their" curves...
... So, sigh, why didn't they do it that way? Do they want to be distrusted?" Mike Scott '99

Other voices

- 2008 - Koblitz and Menezes: "However, in practice the NSA has had the resources and expertise to dominate NIST, and NIST has rarely played a significant independent role."
- 2013 - Bernstein and Lange talk "The security dangers of the NIST curves":
"Jerry Solinas at the NSA used this [random method] to generate the NIST curves ... or so he says..."

Dual_EC_DRBG

- Example of a weakened standard?
- Possibility of a back door seems to have been known by 2005.
- 2007 - Shumow and Ferguson: "We don't know how $Q=[d] P$ was chosen, so we don't know if the algorithm designer [NIST] knows [the backdoor] d."
- Change to the standard in 2007, making the attack easier.

Snowden

- Confirmed some of the suspicions
- Cryptography standards may have been influenced by the NSA

- E.g. DUAL_EC_DRBG

```
The Natu Hork Times
    "... the NSA had written
the [crypto] standard
and could break it."
```


"I no longer trust the constants. I believe the NSA has manipulated them through their relationships with industry."
Schneier '13 (post-Snowden)

What about some new curves?

Rigidity

- Give reasoning for all parameters and minimize "choices" that could allow room for manipulation
- Hash function needs a seed (digits of e, π, etc), but do choice of seed and choice of hash function themselves introduce more wiggle room?
- Goal: Justify all choices with (hopefully) undisputable efficiency arguments, e.g. choose fast prime field and take smallest curve constant that gives "optimal" group order [Bernstein'06].

Rigid curve generation

Define a short Weierstrass curve

$$
E_{b} / \mathbb{F}_{p}: y^{2}=x^{3}-3 x+b
$$

as follows.

1. Pick a prime p according to well-defined efficiency/security criteria.
2. Find smallest $|b|>0$, such that $\# E_{b}\left(\mathbb{F}_{p}\right)=r$ is prime.

What about these?

Replacement curve	Prime p	Constant b
(NEW) Curve P-256	$2^{256}-2^{224}+2^{192}+2^{96}-1$	2627
(NEW) Curve P-384	$2^{384}-2^{128}-2^{96}+2^{32}-1$	14060
(NEW) Curve P-521	$2^{521}-1$	167884

- Same fields and equations $\left(E_{b}: y^{2}=x^{3}-3 x+b\right)$ as NIST curves
- BUT smallest constant b such that $\# E_{\mathrm{b}}\left(\mathbb{F}_{p}\right)$ and $\# E^{\prime}\left(\mathbb{F}_{p}\right)$ are prime
- So, simply change curve constants, and we're done, right???

Is that all? Motivations

- Curves that regain confidence:
- rigid generation / nothing up my sleeves,
- public approval and acceptance.
- 15 years on, we can do much better than the NIST curves (and this is true regardless of NIST-curve paranoia!):
- faster finite fields and modular reduction,
- side-channel resistance,
- a whole new world of curve models.

Prime selection

There are several alternatives for primes:

- pseudo-random primes,
- pseudo-Mersenne primes $p=2^{m}-s, 0<|s|<2^{\lfloor m / 2\rfloor}$,
- Solinas-primes $p=2^{a} \pm 2^{b} \pm 1,0<b<a$,
- etc.

Efficiency criterium: take prime with fastest modular reduction!

Arithmetic for pseudo-Mersenne primes

- Constant time modular multiplication

input: $\quad 0 \leq x, y<2^{m}-s$

$$
x \cdot y \in \mathbf{Z}
$$

$$
=h \cdot 2^{m}+l
$$

$$
\equiv h \cdot 2^{m}+l-h\left(2^{m}-s\right) \bmod \left(2^{\mathrm{m}}-s\right)
$$

$$
=l+s \cdot h
$$

output: $\quad x \cdot y \bmod \left(2^{m}-s\right)$
(after fixed, worst-case number
 of reduction rounds)

- Constant time modular inversion:
- Constant time modular square-root:

$$
a^{-1} \equiv a^{p-2} \bmod p
$$

$$
\sqrt{ } a \equiv a^{(p+1) / 4} \bmod p
$$

Favorite primes

- Bernstein and Lange: Curve25519, Curve41417, E-521

$$
p=2^{255}-19, \quad p=2^{414}-17, \quad p=2^{521}-1
$$

- Hamburg: Ed448-Goldilocks, Ed480-Ridinghood

$$
p=2^{448}-2^{224}-1, \quad p=2^{480}-2^{240}-1
$$

- Brainpool: brainpoolP256t1, brainpoolP384t1, etc

```
p=76884956397045344220809746629001649093037950200943055203735601445031516197751
```

- Bos, Costello, Longa, N.:

$$
p=2^{256}-189, p=2^{379}-19, p=2^{384}-317, p=2^{512}-569
$$

A world of curve models

$$
y^{2}=x^{3}+a x+b
$$

short Weierstrass curves

$$
y^{2}=x^{4}+2 a x^{2}+1
$$

$$
a x^{3}+y^{3}+1=d x y
$$

(twisted) Hessian curves

$$
B y^{2}=x^{3}+A x^{2}+x
$$

Montgomery curves

$$
a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

(twisted) Edwards curves

$$
y^{2}=x^{3}+a x^{2}+16 a x
$$

$$
s^{2}+c^{2}=1 \cap a s^{2}+d^{2}=1
$$

Curve models

- Many different curve models and coordinate systems
- Many different formulas, ways to compute the group law
- Projective coordinates to avoid modular inversion
- Efficient formulas on Weierstrass model do not work for all points, they are actually sets of formulas

Text book arithmetic on $y^{2}=x^{3}+a x+b$

$\left(x_{[2] T}, y_{[2] T}\right)=\operatorname{DBL}\left(x_{T}, y_{T}\right)$

$$
\left(x_{T+P}, y_{T+P}\right)=A D D\left(x_{T}, y_{T}, x_{P}, y_{P}\right)
$$

Montgomery's arithmetic on $B y^{2}=x^{3}+A x^{2}+x$

$x_{[2] T}=D B L\left(x_{T}\right)$

$x_{T+P}=\operatorname{DIFFADD}\left(x_{T}, x_{P}, x_{T-P}\right)$

The Montgomery Ladder on $B y^{2}=x^{3}+A x^{2}+x$
Rather than computing: $x_{Q+R}=f\left(x_{Q}, y_{Q}, x_{R}, y_{R}\right)$

$$
y_{Q+R}=g\left(x_{Q}, y_{Q}, x_{R}, y_{R}\right)
$$

It's much faster to compute: $x_{Q+R}=h\left(x_{Q}, x_{R}, x_{Q-R}\right)$

VS.

Key: so that we've always got x_{Q-R}, fix $Q-R=P$, the input point!
$[n+1] P$
One "rung" of the ladder
$[2 n+1] P$
$[n] P$
$[2 n] P$ or $[2 n+2] P$

Twist-security

- Ladder gives scalar multiplications on $E: B y^{2}=x^{3}+A x^{2}+x$ as

$$
x([k] P)=\operatorname{LADDER}(x(P), k, A)
$$

- Independent of B, i.e. works on $E^{\prime}: B^{\prime} y^{2}=x^{3}+A x^{2}+x$ for any B^{\prime}
- Up to isomorphism, there are only two possibilities for fixed A : E and its quadratic twist E^{\prime}
- If E and E^{\prime} are both secure, no need to check $P \in E$ for any $x(P) \in$ K, as $\operatorname{LADDER}(x, k, A)$ gives result on E or E^{\prime} for all $x \in K$
- Twist-security only really useful when doing x-only computations, but why not have it anyway?

Curve25519

- Dan Bernstein (2005)

$$
\begin{gathered}
E: y^{2}=x^{3}+A x^{2}+x \\
p=2^{255}-19, A=486662
\end{gathered}
$$

- Diffie-Hellman key exchange using the Montgomery ladder
- Simple, constant-time x-only scalar multiplication
- Twist-secure, i.e. all x-coordinates work, avoids check of curve equation
- Montgomery coordinates not useful for signatures (ECDSA verification needs general point addition)
- $\# E\left(\mathbb{F}_{p}\right)=8 \cdot r_{,} \# E^{\prime}\left(\mathbb{F}_{p}\right)=4 \cdot r^{\prime}, r, r^{\prime}$ are both prime.

Complete addition on Edwards curves

Let $d \neq \square$ in \mathbb{F}_{p} and consider the Edwards curve

$$
E / \mathbb{F}_{p}: x^{2}+y^{2}=1+d x^{2} y^{2}
$$

For all (!!!) $\quad P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right) \in E\left(\mathbb{F}_{p}\right)$

$$
P_{1}+P_{2}=: P_{3}=\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Denominators never zero, neutral element rational $=(0,1)$, etc..
(Bernstein-Lange, AsiaCrypt 2007)

Models considered for use in practice

Weierstrass
 curves
 $$
y^{2}=x^{3}+a x+b
$$

- Most general form
- Prime order possible
- Exceptions in group law

- NIST and

Brainpool curves

Montgomery curves
$B y^{2}=x^{3}+A x^{2}+x$

- Subset of curves
- Not prime order
- Fast Montgomery ladder
- \approx Exception free
(twisted) Edwards curves
$a x^{2}+y^{2}=1+d x^{2} y^{2}$
- Subset of curves
- Not prime order
- Fastest addition law
- Some have complete group law

The NUMS curves

Security $\mathrm{s}=$	Prime $\mathrm{p}=$	Weierstrass $\mathrm{b}=$	Twisted Edwards $\mathrm{d}=$	Montgomery $\mathrm{A}=$
128	$2^{256}-189$	152961	15342	-61370
192	$2^{384}-317$	-34568	333194	-1332778
256	$2^{512}-569$	121243	637608	-2550434

- Primes: Largest $p=2^{2 s}-\gamma \equiv 3 \bmod 4$ (here: largest primes, full stop)
- Weierstrass: Smallest $|b|$ such that $\# E$ and $\# E^{\prime}$ both prime
- Twisted Edwards: Smallest $d>0$ such that $\# E$ and $\# E^{\prime}$ both 4 times a prime, and $d>0$ corresponds to $t>0$.

Small constants for $p \equiv 3 \bmod 4$

$$
M_{A}: y^{2}=x^{3}+A x^{2}+x \quad E_{a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

Search that minimizes Montgomery constant size also minimizes size of both twisted Edwards and Edwards constants.

Real world discussions

- TLS WG requested recommendations for new elliptic curves from the CFRG
See mailing list on https://irtf.org/cfrg.
TLS 1.3 will have new cipher suites with Curve25519 and a curve using $p=2^{448}-2^{244}-1$.
- NIST is holding a workshop on the standardization of new elliptic curves in June, see http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm.

Some References

- Bos, Costello, Longa, N.:

Selecting elliptic curves for cryptography - an efficiency and security analysis
http://eprint.iacr.org/2014/130

- Longa: MSR ECCLib
http://research.microsoft.com/en-us/projects/nums/default.aspx
- Bernstein, Lange; Safecurves web site: http://safecurves.cr.yp.to/
- Bernstein, Lange: Explicit Formulas Database (EFD)
http://www.hyperelliptic.org/EFD/
Formulas and operation counts for elliptic curve operations on many different curve models
- Bernstein, Curve25519: http://cr.yp.to/ecdh/curve25519-20060209.pdf
- Hisil, PhD thesis: http://eprints.qut.edu.au/33233/

