
Private Computation
on Encrypted Genomic Data

Michael Naehrig

Cryptography Research Group

Microsoft Research

Workshop on Genome Privacy 2014

Amsterdam, 15 July 2014

Joint work with Adriana Lopez-Alt (New York University)

and Kristin Lauter (MSR)

Encrypt everything?

• Protect outsourced data by encrypting everything

• “Conventional” encryption methods do not allow any

computation on the encrypted data

without using the secret key and decrypting it

• Homomorphic encryption schemes allow specific operations

on encrypted data with only public information

Fully Homomorphic Encryption (FHE)

FHE enables unlimited computation on encrypted data

• Public operations on ciphertexts:

𝑚1 𝑚1
Enc

𝑚2 𝑚2
Enc

𝑚1 𝑚1 +𝑚2

𝑚1 ⋅ 𝑚2𝑚2

(Enc(𝑚1), Enc(𝑚2)) → Enc 𝑚1 +𝑚2

(Enc(𝑚1), Enc(𝑚2)) → Enc 𝑚1 ⋅ 𝑚2

Fully Homomorphic Encryption (FHE)

• For data encrypted bitwise (𝑚1, 𝑚2 ∈ {0,1}),
operations 𝑚1 +𝑚2 and 𝑚1 ⋅ 𝑚2 are bitwise (XOR and AND)

• Get arbitrary operations via binary circuits.

FHE enables unlimited computation on encrypted data

• Public operations on ciphertexts:

(Enc(𝑚1), Enc(𝑚2)) → Enc 𝑚1 +𝑚2

(Enc(𝑚1), Enc(𝑚2)) → Enc 𝑚1 ⋅ 𝑚2

A possible scenario for genomic data?

This might not be a solution to your problem!

Trusted party,

hosts data and

regulates access

Untrusted cloud service, stores and

computes on encrypted data

Requests encrypted

results of specific

computationRequests for decryption of certain

results

Here’s the caveat

• FHE schemes do exist!

• BUT FHE on binary circuits with bitwise encryption is

extremely inefficient:

• huge ciphertexts,

• costly noise handling,

• large overhead in storage space and computation time

Ways to slightly ease the pain

• Pack more data into ciphertexts

• Use so-called leveled homomorphic schemes

• Use arithmetic circuits and restrict to computations with

low multiplicative depth

This comes at a cost: restrictions on the type of computations that

can be done!

Homomorphic Encryption from RLWE

𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1), 𝑛 = 2𝑘

𝑎1 = 2𝑥7 +𝑥5 −11𝑥4 +𝑥2 +5𝑥 +7

𝑎2 = 𝑥6 −4𝑥5 −3𝑥3 +12𝑥2 +3

𝑎1 + 𝑎2 = 2𝑥7 +𝑥6 −3𝑥5 −11𝑥4 −3𝑥3 +13𝑥2 +5𝑥 +10

𝑎1 ⋅ 𝑎2 = 52𝑥7 −145𝑥6 −30𝑥5 −28𝑥4 +38𝑥3 +108𝑥2 −53𝑥 +23

Example: 𝑛 = 8
𝑎1 = 2𝑥7 + 𝑥5 − 11𝑥4 + 𝑥2 + 5𝑥 + 7
𝑎2 = 𝑥6 − 4𝑥5 − 3𝑥3 + 12𝑥2 + 3

• Uses polynomial rings as plaintext and ciphertext spaces

Homomorphic Encryption from RLWE

• Work with polynomials in 𝑅 modulo some 𝑞 ∈ 𝐙

• Homomorphic operations (/) correspond to polynomial

operations (add/mult) in 𝑅
• is relatively efficient, is costly

• Use this structure to encode and work with your data

• Uses polynomial rings as plaintext and ciphertext spaces

𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1), 𝑛 = 2𝑘

Homomorphic Encryption from RLWE

• Encode an integer 𝑧 ∈ 𝐙 as a polynomial 𝑚 ∈ 𝑅 with 𝑚 2 = 𝑧.

Example: 𝑛 = 8

𝑧 = 13, 𝑧 2 = 1101

Use the polynomial
𝑚13 = 𝑥3 + 𝑥2 + 1

𝑧 = 11, 𝑧 2 = 1011
𝑚13 = 𝑥3 + 𝑥 + 1

Addition
𝑚13 +𝑚11 = 2𝑥3 + 𝑥2 + 𝑥 + 2
(𝑚13+𝑚11) 2 = 2 ⋅ 8 + 4 + 2 + 2 = 24

Multiplication
𝑚13 ⋅ 𝑚11

= 𝑥6 + 𝑥5 + 𝑥4 + 3 ⋅ 𝑥3 + 𝑥2 + 𝑥 + 1
(𝑚13⋅ 𝑚11) 2
= 64 + 32 + 16 + 3 ⋅ 8 + 4 + 2 + 1 = 143

HE Performance

Operation KeyGen Encrypt Add Mult Decrypt

Parameters I 3.6s 0.3s 0.001s 0.05s 0.04s

Parameters II 18.1s 0.8s 0.003s 0.24s 0.26s

80-bit security

• Parameter set I: 𝑛 = 4096, 𝑞 ≈ 2192, ciphertext ≈ 100KB
• Parameter set II: 𝑛 = 8192, 𝑞 ≈ 2384, ciphertext ≈ 400KB

Proof-of-concept implementation: computer algebra system Magma,

Intel Core i7 @ 3.1GHz, 64-bit Windows 8.1

Encoding and encrypting of genotype data

AA
Encode

(1,0,0) 1
Encrypt

0 0

Aa
Encode

(0,1,0)
Encrypt

0 1 0

aa
Encode

(0,0,1) 0
Encrypt

0 1

missing
Encode

(0,0,0)
Encrypt

0 0 0

Computing genotype counts 1 0

1

1

0

100

0 0

00

00

0

𝑁𝐴𝐴 𝑁𝐴𝑎 𝑁𝑎𝑎

𝑁𝐴𝐴 𝑁𝐴𝑎 𝑁𝑎𝑎 𝑁

𝑁𝐴𝐴 𝑁𝐴𝑎 𝑁𝑎𝑎 𝑁

• Only homomorphic additions

• Cost linear in size of data sample

Pearson goodness-of-fit test

Tests for Hardy-Weinberg Equilibrium, i.e. whether allele

frequencies are statistically independent

𝑝𝐴𝐴 = 𝑝𝐴
2, 𝑝𝐴𝑎 = 2𝑝𝐴𝑝𝑎, 𝑝𝑎𝑎 = 𝑝𝑎

2

• 𝑝𝐴𝐴 =
𝑁𝐴𝐴

𝑁
, 𝑝𝐴𝑎 =

𝑁𝐴𝑎

𝑁
, 𝑝𝑎𝑎 =

𝑁𝑎𝑎

𝑁

• Observed counts: 𝑁𝐴𝐴, 𝑁𝐴𝑎, 𝑁𝑎𝑎,

𝑝𝐴 =
2𝑁𝐴𝐴+𝑁𝐴𝑎

2𝑁
, 𝑝𝑎 = 1 − 𝑝𝐴

• Expected counts: 𝐸𝐴𝐴 = 𝑁𝑝𝐴
2, 𝐸𝐴𝑎 = 2𝑁𝑝𝐴𝑝𝑎, 𝐸𝑎𝑎 = 𝑁𝑝𝑎

2

Pearson goodness-of-fit test

• Compute the 𝑋2 test statistic

𝑋2 =
𝑁𝐴𝐴 − 𝐸𝐴𝐴

2

𝐸𝐴𝐴
+

𝑁𝐴𝑎 − 𝐸𝐴𝑎
2

𝐸𝐴𝑎
+

𝑁𝑎𝑎 − 𝐸𝑎𝑎
2

𝐸𝑎𝑎

• Problem: Arithmetic circuits over 𝑅 do not allow divisions

• Rewrite the formula to avoid divisions

Modified algorithm

It turns out that

𝑋2 =
𝛼

2𝑁

1

𝛽1
+

1

𝛽2
+

1

𝛽3
,

where

𝛼 = 4𝑁𝐴𝐴𝑁𝑎𝑎 − 𝑁𝐴𝑎
2 2, 𝛽1 = 2 2𝑁𝐴𝐴 + 𝑁𝐴𝑎

2,

𝛽2 = 2𝑁𝐴𝐴 + 𝑁𝐴𝑎 2𝑁𝑎𝑎 + 𝑁𝐴𝑎 , 𝛽3 = 2 2𝑁𝑎𝑎 + 𝑁𝐴𝑎
2

• Return encryptions of values 𝛼, 𝛽1, 𝛽2, 𝛽3, 𝑁
• 𝑋2 is computed after decryption

Other algorithms

Other than the Pearson test for Hardy-Weinberg equilibrium,

we implemented:

• Estimation Maximization for haplotyping (EM),

1,2,3 iterations,

• Test for Linkage Disequilibrium (LD),

• Cochran-Armitage Test for Trend (CATT),

case control studies.

Genetic algorithm performance

Algorithm Pearson EM (iterations) LD CATT

1 2 3

Parameters I 0.3s 0.6s 1.1s - 0.2s 1.0s

Parameters II 1.4s 2.3s 4.5s 6.9s 0.7s 3.6s

Proof-of-concept implementation: computer algebra system Magma,

Intel Core i7 @ 3.1GHz, 64-bit Windows 8.1

80-bit security

• Parameter set I: 𝑛 = 4096, 𝑞 ≈ 2192, ciphertext ≈ 100KB
• Parameter set II: 𝑛 = 8192, 𝑞 ≈ 2384, ciphertext ≈ 400KB

Private Computation
on Encrypted Genomic Data

Michael Naehrig

Cryptography Research Group

Microsoft Research

Workshop on Genome Privacy 2014

Amsterdam, 15 July 2014

Joint work with Adriana Lopez-Alt (New York University)

and Kristin Lauter (MSR)

