Exponentiating in Pairing Groups

Michael Naehrig

Microsoft Research mnaehrig@microsoft.com

joint work with Joppe W. Bos and Craig Costello

SIAM AG13, Fort Collins MS5 - Cryptography and Number Theory 1 August 2013

Pairings

$$e: G_1 \times G_2 \rightarrow G_T$$

- $ightharpoonup G_1$ and G_2 are groups (of points on an elliptic curve),
- $ightharpoonup G_T$ is a (multiplicative) group (of finite field elements),
- all groups have prime order r,
- *e* is bilinear, non-degenerate, efficiently computable

Pairing groups

$$e: G_1 \times G_2 \rightarrow G_T$$

- $G_1 = E(\mathbb{F}_p)[r], \ G_2 \subseteq E(\mathbb{F}_{p^k})[r],$
- ▶ E/\mathbb{F}_p : elliptic curve, e.g. in short Weierstrass form

$$E: y^2 = x^3 + ax + b,$$

- r prime, $r \mid \#E(\mathbb{F}_p)$, $\operatorname{char}(\mathbb{F}_p) > 3$,
- with small (even) embedding degree k > 1,

$$r \mid p^k - 1, \quad r \nmid p^i - 1 \text{ for } i < k,$$

• $G_T = \mu_r \subseteq \mathbb{F}_{p^k}^*$ group of r-th roots of unity,

Optimal ate pairings

Typical setting at higher security levels:

$$e:G_2'\times G_1 o G_T,\quad (Q',P)\mapsto g_{Q'}(P)^{rac{
ho^\kappa-1}{r}}$$

- $\blacktriangleright G_1 = E(\mathbb{F}_p)[r], G'_2 = E'(\mathbb{F}_{p^e})[r], G_T = \mu_r \subseteq \mathbb{F}_{p^k}^*,$
- ▶ E'/\mathbb{F}_{p^e} : twist of E of degree $d \mid k$, e = k/d, $r \mid \#E'(\mathbb{F}_{p^e})$,
- $g_{Q'}$: function depending on Q' with coefficients in $\mathbb{F}_{p^k}^*$.

The pairing explosion

- ► The big bilinear bang: [Jou00], [SOK00], [BF01] ...
 PBC universe still expanding: ... [2013/413], [2013/414] ...
- Secure bilinear maps would have been welcomed by cryptographers regardless of where they came from

Ben Lynn 2007:

"...that pairings come from the realm of algebraic geometry (on curves) is a happy coincidence"

- Why so happy?
 - Already received a huge amount of optimization
 - Much more fun than traditional crypto primitives
 - ▶ Discrete log problem on curves already under the microscope

ECC and PBC: a symbiotic relationship

Many ECC optimisations quickly transferred to pairings, e.g.

- avoiding inversions
- projective space
- fast primes (supersingular curves)
-

Pairings helped ECC too, e.g.

- Galbraith-Scott 2008: fast exponentiation on pairing groups using efficiently computable endomorphisms
- ▶ i.e. Frobenius useful over extension fields
- ► Galbraith-Lin-Scott (GLS) 2008: fast ECC over extension fields using eff. comp. endomorph.

Non-Weierstrass models for pairings...not so much

- ▶ A very successful ECC optimization: non-Weierstrass curves e.g. Montgomery, Hessian, Jacobi quartics, Jacobi intersections, Edwards, twisted Edwards, . . . (see EFD)
- Not so successful in PBC ... why?

$$P + Q = R$$
 , $div(f) = (P) + (Q) - (R) - (O)$

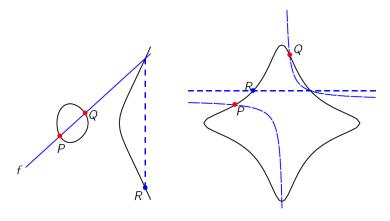
In ECC computations we only need points

get R as fast as possible

In pairing computations we need points and functions

get R and f as fast as possible

Non-Weierstrass faster for ECC...not for PBC



Getting R from P and Q: much faster on Edwards (and others) Getting R, f from P and Q: Weierstrass preferable

This work: focus only on the scalar multiplications

Alternative models not faster for pairing, **but** can they be used to enhance scalar multiplications in pairing groups???

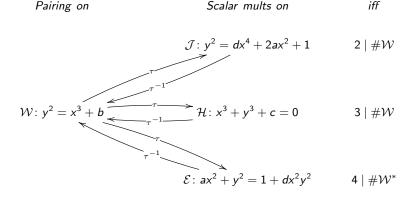
- maybe even bigger speedups for pairing exponentiations
- ▶ high dimensional GLV/GLS (# doublings < # additions)</p>
- ▶ for additions, Weierstrass coordinates suck most, e.g. $y^2 = x^3 + b$ Weierstrass add. ≈ 17 m, Edwards ≈ 9 m !!!
- curve models in pairings very minor improvement at best, but in scalar mulplications big savings possible!

Pairing-based protocols in practice

- **>** pairing computation involves three groups $e \colon \mathbb{G}_1 \times \mathbb{G}_2 o \mathbb{G}_T$
- ▶ often many more standalone operations in any or all of \mathbb{G}_1 , \mathbb{G}_2 , \mathbb{G}_T than pairing(s) ... can be orders of magnitude more!

Utilizing non-Weierstrass models

- $m \mathcal{J}=\mathsf{Jacobi}$ quartic $\mathcal{H}=\mathsf{Hessian}$ $\mathcal{E}=\mathsf{twisted}$ Edwards
- ▶ We always have j = 0 in this work (e.g. \mathcal{H} has d = 0)



Note *: field K has $\#K \equiv 1 \mod 4$, then $4 \mid E$ is enough, otherwise need point of order 4 for \mathcal{E} (cheers anon. reviewer)

The power of the sextic twist for \mathbb{G}_2

- ▶ Elements in \mathbb{G}_2 are points over the extension field $\subset E(\mathbb{F}_{p^k})$
 - k times larger to store
 - ▶ *m* times more costly to work over \mathbb{F}_{p^k} , where $k \ll m \leq k^2$!!!
- ▶ Can use group isomorphic to \mathbb{G}_2 , which is on a different curve:

$$\mathbb{G}_2' \subseteq E'(\mathbb{F}_{p^{k/d}})$$

- E' is called the twisted curve
 - elements compressed by factor d
 - ▶ m times faster to work with, where $d \ll m \le d^2$

Sextic twists: d = 6 is biggest possible for elliptic curves

- only possible if $6 \mid k$ and j = 0 (i.e. $y^2 = x^3 + b$)
- luckily all the best families with $6 \mid k$ have $y^2 = x^3 + b$
- $ightharpoonup E'/\mathbb{F}_{p^{k/d}}\colon y^2=x^3+b'$, and $\Psi\colon E' o E$ to map $\mathbb{G}_2'\leftrightarrow \mathbb{G}_2$

GLV/GLS

Galbraith-Scott 2008

•
$$\mathbb{G}_1 \subseteq E(\mathbb{F}_p) : y^2 = x^3 + b$$

-
$$\phi:(x,y)\mapsto(\zeta x,y),\ \zeta^3=1\in\mathbb{F}_p$$

-
$$\phi(P) = [\lambda_{\phi}]P$$
 for $\lambda_{\phi}^2 + \lambda_{\phi} + 1 \equiv 0 \mod r$

- gives 2-dimensional (GLV) decomposition on
$$\mathbb{G}_1$$

$$ightharpoonup \mathbb{G}_2' \subseteq E'(\mathbb{F}_{p^e}) : y^2 = x^3 + b'$$

-
$$\psi = \Psi \cdot \pi_{n} \cdot \Psi^{-1}$$

-
$$\psi(P) = [\lambda_{\psi}]P$$
 for $\Phi_k(\lambda_{\psi}) \equiv 0 \mod r$

- gives
$$\varphi(k)$$
-dimensional (GLS) decomposition on \mathbb{G}_2'

GLV/GLS

- ▶ [s]P starts by computing $\phi(P)$ or $\psi^i(P)$ for $1 \le i \le \varphi(k) 1$
- ▶ decompose $[s]P = \sum_{i=0}^{\varphi(k)-1} [s_i]P_i$ by finding a vector close to (s,0) or $(s,0,\ldots,0)$ in the GLV/GLS lattices

$$B_{\phi} = \left(egin{array}{ccc} r & 0 \ -\lambda_{\phi} & 1 \end{array}
ight); \qquad B_{\psi} = \left(egin{array}{cccc} r & 0 & \dots & 0 \ -\lambda_{\psi} & 1 & \dots & 0 \ dots & dots & \ddots & dots \ -\lambda_{\psi}^{arphi(k)-1} & 0 & \dots & 1 \end{array}
ight).$$

- ▶ all s_i are much shorter than s
- compute $[s]P = \sum_{i=0}^{\varphi(k)-1} [s_i]P_i$ by multi-exponentiation

Mapping back and forth to ${\mathcal W}$

- ▶ ideally we'd define (elements of) \mathbb{G}_1 or \mathbb{G}_2' on fastest model
- ▶ requires endomorphisms to transfer favorably to other model, but only GLV morphism ϕ on $\mathcal{H}: x^3 + y^3 + c = 0$ does \odot

The general strategy

We apply ϕ or ψ (repeatedly) on \mathcal{W} , map across to \mathcal{J} , \mathcal{H} or \mathcal{E} for the rest of the routine, and come back to \mathcal{W} at the end

Our goal

			exp. in \mathbb{G}_1	exp. in \mathbb{G}_2	exp. in $\mathbb{G}_{\mathcal{T}}$
128-bit	BN-12	?	??	??	?
128-bit 192-bit 256-bit	BLS-12	?	??	??	?
	KSS-18	?	??	??	?
256-bit	BLS-24	?	??	??	?

- fill in the above table using state-of-the-art techniques for exponentiations and pairings
- give protocol designers a good idea of the ratios of exponentiation costs in

$$\mathbb{G}_1 \colon \mathbb{G}_2 \colon \mathbb{G}_{\mathcal{T}} \colon e$$

- no speed records (no assembly)
- ▶ find optimal curve models in all ?? cases

Points of small order

- **Prop 1.** BN (k = 12): $E(\mathbb{F}_p)$ and $E'(\mathbb{F}_{p^2})$ do not contain points of order 2, 3 or 4.
- **Prop 2.** BLS (k = 12): If $p \equiv 3 \mod 4$, $E(\mathbb{F}_p)$ contains a point of order 3 and can contain a point of order 2, but not 4. $E'(\mathbb{F}_{p^2})$ does not contain a point of order 2, 3 or 4.
- **Prop 3.** KSS (k = 18): $E(\mathbb{F}_p)$ does not contain a point of order 2, 3 or 4.
- $E'(\mathbb{F}_{p^3})$ contains a point of order 3 but none of order 2 or 4.
- **Prop 4.** BLS (k = 24): If $p \equiv 3 \mod 4$, $E(\mathbb{F}_p)$ can contain points of order 2 or 3 (although not simultaneously), but not 4. $E'(\mathbb{F}_{p^4})$ can contain a point of order 2, but none of order 3 or 4.

Available models

		\mathbb{G}_1		\mathbb{G}_2
family- <i>k</i>	algorithm	models avail.	algorithm	models avail.
BN-12	2-GLV	\mathcal{W}	4-GLS	\mathcal{W}
BLS-12	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	4-GLS	${\mathcal W}$
KSS-18	2-GLV	${\mathcal W}$	6-GLS	\mathcal{H}, \mathcal{W}
BLS-24	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	8-GLS	$\mathcal{E},\mathcal{J},\mathcal{W}$

model/	DBL	ADD	MIX	AFF
coords	cost	cost	cost	cost
$\overline{\mathcal{W}}$ / Jac.	7 _{2,5,0,14}	16 _{11,5,0,13}	117,4,0,14	6 _{4,2,0,12}
${\cal J}$ / ext.	9 _{1,7,1,12}	13 _{7,3,3,19}	12 _{6,3,3,18}	$11_{5,3,3,18}$
${\cal H}$ $/$ proj.	7 _{6,1,0,11}	$12_{12,0,0,3}$	$10_{10,0,0,3}$	8 _{8,0,0,3}
${\cal E}$ $/$ ext.	9 _{4,4,1,7}	$10_{9,0,1,7}$	$9_{8,1,0,7}$	8 _{7,0,1,7}

▶ operation counts don't/can't assume small constants like ECC

Best models...

			\mathbb{G}_1	\mathbb{G}_2'		
	family- <i>k</i>	algorithm	models avail.	algorithm	models avail.	
_	BN-12	2-GLV	\mathcal{W}	4-GLS	$\overline{\mathcal{W}}$	
	BLS-12	2-GLV	Hessian (1.23x)	4-GLS	${\mathcal W}$	
	KSS-18	2-GLV	\mathcal{W}	6-GLS	Hessian (1.11x)	
	BLS-24	2-GLV	Hessian $(1.19x)$	8-GLS	twisted Edwards (1.16x)	

model/	DBL	ADD	MIX	AFF
coords	cost	cost	cost	cost
\mathcal{W} / Jac.	7 _{2,5,0,14}	16 _{11,5,0,13}	117,4,0,14	64,2,0,12
${\cal J}$ $/$ ext.	9 _{1,7,1,12}	13 _{7,3,3,19}	$12_{6,3,3,18}$	$11_{5,3,3,18}$
${\cal H}$ $/$ proj.	7 _{6,1,0,11}	12 _{12,0,0,3}	$10_{10,0,0,3}$	8 _{8,0,0,3}
${\cal E}$ $/$ ext.	9 _{4,4,1,7}	$10_{9,0,1,7}$	$9_{8,1,0,7}$	8 _{7,0,1,7}

- ▶ for BLS k = 12 and BLS k = 24, define $\mathbb{G}_1 \subset \mathcal{H}/\mathbb{F}_p$ (modify pairing to include initial conversion to \mathcal{W})
- ▶ for KSS k=18 and BLS k=24, $\mathbb{G}_2 \subset \mathcal{W}/\mathbb{F}_p$, but τ to \mathcal{H}, \mathcal{E} after ψ 's are computed, and τ^{-1} to come back to \mathcal{W} at end

Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level	family-k	pairing <i>e</i>	exp. in \mathbb{G}_1	exp. in \mathbb{G}_2	exp. in $\mathbb{G}_{\mathcal{T}}$
128-bit	BN-12	7.0	0.9	1.8	3.1
100 6:4	BLS-12	47.2	4.4	10.9	17.5
192-DIL	KSS-18	63.3	3.5	9.8	15.7
256-bit	BLS-24	115.0	5.2	1.8 10.9 9.8 27.6	47.1

- state-of-the-art algorithms (optimal ate, lazy reduction, cyclotomic squarings, etc.)
- ▶ not rivaling speed records, but hope that \mathbb{G}_1 : \mathbb{G}_2 : \mathbb{G}_T : e ratios stay similar
- should give protocol designers a good idea of ratios
- what's best for 192-bit security (match protocol to family)