Exponentiating in Pairing Groups

Michael Naehrig
Microsoft Research mnaehrig@microsoft.com
joint work with
Joppe W. Bos and Craig Costello

SIAM AG13, Fort Collins
MS5 - Cryptography and Number Theory
1 August 2013

Pairings

$$
e: G_{1} \times G_{2} \rightarrow G_{T}
$$

- G_{1} and G_{2} are groups (of points on an elliptic curve),
- G_{T} is a (multiplicative) group (of finite field elements),
- all groups have prime order r,
- e is bilinear, non-degenerate, efficiently computable

Pairing groups

$$
e: G_{1} \times G_{2} \rightarrow G_{T}
$$

- $G_{1}=E\left(\mathbb{F}_{p}\right)[r], G_{2} \subseteq E\left(\mathbb{F}_{p^{k}}\right)[r]$,
- E / \mathbb{F}_{p} : elliptic curve, e.g. in short Weierstrass form

$$
E: y^{2}=x^{3}+a x+b
$$

- r prime, $r \mid \# E\left(\mathbb{F}_{p}\right), \operatorname{char}\left(\mathbb{F}_{p}\right)>3$,
- with small (even) embedding degree $k>1$,

$$
r \mid p^{k}-1, \quad r \nmid p^{i}-1 \text { for } i<k
$$

- $G_{T}=\mu_{r} \subseteq \mathbb{F}_{p^{k}}^{*}$ group of r-th roots of unity,

Optimal ate pairings

Typical setting at higher security levels:

$$
e: G_{2}^{\prime} \times G_{1} \rightarrow G_{T}, \quad\left(Q^{\prime}, P\right) \mapsto g_{Q^{\prime}}(P)^{\frac{p^{k}-1}{r}}
$$

- $G_{1}=E\left(\mathbb{F}_{p}\right)[r], G_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{p^{e}}\right)[r], G_{T}=\mu_{r} \subseteq \mathbb{F}_{p^{k}}^{*}$,
- $E^{\prime} / \mathbb{F}_{p^{e}}$: twist of E of degree $d|k, e=k / d, r| \# E^{\prime}\left(\mathbb{F}_{p^{e}}\right)$,
- $g_{Q^{\prime}}$: function depending on Q^{\prime} with coefficients in $\mathbb{F}_{p^{k}}^{*}$.

The pairing explosion

- The big bilinear bang: [Jou00], [SOK00], [BF01] ...

PBC universe still expanding: . . [2013/413],[2013/414] ...

- Secure bilinear maps would have been welcomed by cryptographers regardless of where they came from

Ben Lynn 2007:
". . . that pairings come from the realm of algebraic geometry (on curves) is a happy coincidence"

- Why so happy?
- Already received a huge amount of optimization
- Much more fun than traditional crypto primitives
- Discrete log problem on curves already under the microscope

ECC and PBC: a symbiotic relationship

Many ECC optimisations quickly transferred to pairings, e.g.

- avoiding inversions
- projective space
- fast primes (supersingular curves)

Pairings helped ECC too, e.g.

- Galbraith-Scott 2008: fast exponentiation on pairing groups using efficiently computable endomorphisms
- i.e. Frobenius useful over extension fields
- Galbraith-Lin-Scott (GLS) 2008: fast ECC over extension fields using eff. comp. endomorph.

Non-Weierstrass models for pairings. . . not so much

- A very successful ECC optimization: non-Weierstrass curves
e.g. Montgomery, Hessian, Jacobi quartics, Jacobi intersections, Edwards, twisted Edwards, ... (see EFD)
- Not so successful in PBC ... why?

$$
P+Q=R \quad, \quad \operatorname{div}(f)=(P)+(Q)-(R)-(\mathcal{O})
$$

In ECC computations we only need points
get R as fast as possible
In pairing computations we need points and functions
get R and f as fast as possible

Non-Weierstrass faster for ECC. . . not for PBC

Getting R from P and Q : much faster on Edwards (and others) Getting R, f from P and Q : Weierstrass preferable

This work: focus only on the scalar multiplications

Alternative models not faster for pairing, but can they be used to enhance scalar multiplications in pairing groups???

- maybe even bigger speedups for pairing exponentiations
- high dimensional GLV/GLS (\# doublings < \# additions)
- for additions, Weierstrass coordinates suck most, e.g. $y^{2}=x^{3}+b$ - Weierstrass add. $\approx 17 \mathbf{m}$, Edwards $\approx 9 \mathbf{m}$!!!
- curve models in pairings very minor improvement at best, but in scalar mulplications big savings possible!

Pairing-based protocols in practice

- pairing computation involves three groups e: $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$
- often many more standalone operations in any or all of \mathbb{G}_{1}, $\mathbb{G}_{2}, \mathbb{G}_{T}$ than pairing(s) ... can be orders of magnitude more!

Utilizing non-Weierstrass models

- $\mathcal{J}=$ Jacobi quartic $\mathcal{H}=$ Hessian $\mathcal{E}=$ twisted Edwards
- We always have $j=0$ in this work (e.g. \mathcal{H} has $d=0$)

Pairing on Scalar mults on iff

- Note $*$: field K has $\# K \equiv 1 \bmod 4$, then $4 \mid E$ is enough, otherwise need point of order 4 for \mathcal{E} (cheers anon. reviewer)

The power of the sextic twist for \mathbb{G}_{2}

- Elements in \mathbb{G}_{2} are points over the extension field $\subset E\left(\mathbb{F}_{p^{k}}\right)$
- k times larger to store
- m times more costly to work over $\mathbb{F}_{p^{k}}$, where $k \ll m \leq k^{2}$!!!
- Can use group isomorphic to \mathbb{G}_{2}, which is on a different curve:

$$
\mathbb{G}_{2}^{\prime} \subseteq E^{\prime}\left(\mathbb{F}_{p^{k / d}}\right)
$$

- E^{\prime} is called the twisted curve
- elements compressed by factor d
- m times faster to work with, where $d \ll m \leq d^{2}$

Sextic twists: $d=6$ is biggest possible for elliptic curves

- only possible if $6 \mid k$ and $j=0$ (i.e. $y^{2}=x^{3}+b$)
- luckily all the best families with $6 \mid k$ have $y^{2}=x^{3}+b$
- $E^{\prime} / \mathbb{F}_{p^{k / d}}: y^{2}=x^{3}+b^{\prime}$, and $\Psi: E^{\prime} \rightarrow E$ to map $\mathbb{G}_{2}^{\prime} \leftrightarrow \mathbb{G}_{2}$

GLV/GLS

Galbraith-Scott 2008

- $\mathbb{G}_{1} \subseteq E\left(\mathbb{F}_{p}\right): y^{2}=x^{3}+b$
- $\phi:(x, y) \mapsto(\zeta x, y), \zeta^{3}=1 \in \mathbb{F}_{p}$
- $\phi(P)=\left[\lambda_{\phi}\right] P$ for $\lambda_{\phi}^{2}+\lambda_{\phi}+1 \equiv 0 \bmod r$
- gives 2-dimensional (GLV) decomposition on \mathbb{G}_{1}
- $\mathbb{G}_{2}^{\prime} \subseteq E^{\prime}\left(\mathbb{F}_{p^{e}}\right): y^{2}=x^{3}+b^{\prime}$
- $\psi=\psi \cdot \pi_{p} \cdot \psi^{-1}$
- $\psi(P)=\left[\lambda_{\psi}\right] P$ for $\Phi_{k}\left(\lambda_{\psi}\right) \equiv 0 \bmod r$
- gives $\varphi(k)$-dimensional (GLS) decomposition on \mathbb{G}_{2}^{\prime}

GLV/GLS

- [s] P starts by computing $\phi(P)$ or $\psi^{i}(P)$ for $1 \leq i \leq \varphi(k)-1$
- decompose $[s] P=\sum_{i=0}^{\varphi(k)-1}\left[s_{i}\right] P_{i}$ by finding a vector close to $(s, 0)$ or $(s, 0, \ldots, 0)$ in the GLV/GLS lattices

$$
B_{\phi}=\left(\begin{array}{cc}
r & 0 \\
-\lambda_{\phi} & 1
\end{array}\right) ; \quad B_{\psi}=\left(\begin{array}{cccc}
r & 0 & \ldots & 0 \\
-\lambda_{\psi} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-\lambda_{\psi}^{\varphi(k)-1} & 0 & \ldots & 1
\end{array}\right) .
$$

- all s_{i} are much shorter than s
- compute $[s] P=\sum_{i=0}^{\varphi(k)-1}\left[s_{i}\right] P_{i}$ by multi-exponentiation

Mapping back and forth to \mathcal{W}

- ideally we'd define (elements of) \mathbb{G}_{1} or \mathbb{G}_{2}^{\prime} on fastest model
- requires endomorphisms to transfer favorably to other model, but only GLV morphism ϕ on $\mathcal{H}: x^{3}+y^{3}+c=0$ does $\cdot($

The general strategy
We apply ϕ or ψ (repeatedly) on \mathcal{W}, map across to \mathcal{J}, \mathcal{H} or \mathcal{E} for the rest of the routine, and come back to \mathcal{W} at the end

Our goal

sec. level	family- k	pairing e	exp. in \mathbb{G}_{1}	exp. in \mathbb{G}_{2}	exp. in \mathbb{G}_{T}
128 -bit	BN-12	$?$	$? ?$	$? ?$	$?$
192-bit	BLS-12	$?$	$? ?$	$? ?$	$?$
256 -bit	KSS-18	BLS-24	$?$	$? ?$	$? ?$

- fill in the above table using state-of-the-art techniques for exponentiations and pairings
- give protocol designers a good idea of the ratios of exponentiation costs in

$$
\mathbb{G}_{1}: \mathbb{G}_{2}: \mathbb{G}_{T}: e
$$

- no speed records (no assembly)
- find optimal curve models in all ?? cases

Points of small order

Prop 1. $B N(k=12): E\left(\mathbb{F}_{p}\right)$ and $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ do not contain points of order 2, 3 or 4.

Prop 2. $B L S(k=12)$: If $p \equiv 3 \bmod 4, E\left(\mathbb{F}_{p}\right)$ contains a point of order 3 and can contain a point of order 2, but not 4. $E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$ does not contain a point of order 2, 3 or 4.

Prop 3. $K S S(k=18)$: $E\left(\mathbb{F}_{p}\right)$ does not contain a point of order 2, 3 or 4.
$E^{\prime}\left(\mathbb{F}_{p^{3}}\right)$ contains a point of order 3 but none of order 2 or 4 .
Prop 4. $B L S(k=24)$: If $p \equiv 3 \bmod 4, E\left(\mathbb{F}_{p}\right)$ can contain points of order 2 or 3 (although not simultaneously), but not 4. $E^{\prime}\left(\mathbb{F}_{p^{4}}\right)$ can contain a point of order 2 , but none of order 3 or 4.

Available models

	\mathbb{G}_{1}		\mathbb{G}_{2}	
family- k	algorithm	models avail.	algorithm	models avail.
BN-12	2-GLV	\mathcal{W}	4-GLS	\mathcal{W}
BLS-12	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	4-GLS	\mathcal{W}
KSS-18	2-GLV	\mathcal{W}	6-GLS	\mathcal{H}, \mathcal{W}
BLS-24	2-GLV	$\mathcal{H}, \mathcal{J}, \mathcal{W}$	8-GLS	$\mathcal{E}, \mathcal{J}, \mathcal{W}$

model/	DBL	ADD	MIX	AFF
coords	cost	cost	cost	cost
$\mathcal{W} /$ Jac.	$\mathbf{7}_{2,5,0,14}$	$\mathbf{1 6}_{11,5,0,13}$	$\mathbf{1 1}_{7,4,0,14}$	$\mathbf{6}_{4,2,0,12}$
$\mathcal{J} /$ ext.	$\mathbf{9}_{1,7,1,12}$	$\mathbf{1 3}_{7,3,3,19}$	$\mathbf{1 2}_{6,3,3,18}$	$\mathbf{1 1}_{5,3,3,18}$
\mathcal{H} / proj.	$\mathbf{7}_{6,1,0,11}$	$\mathbf{1 2}_{12,0,0,3}$	$\mathbf{1 0}_{10,0,0,3}$	$\mathbf{8}_{8,0,0,3}$
$\mathcal{E} /$ ext.	$\mathbf{9}_{4,4,1,7}$	$\mathbf{1 0}_{9,0,1,7}$	$\mathbf{9}_{8,1,0,7}$	$\mathbf{8}_{7,0,1,7}$

- operation counts don't/can't assume small constants like ECC

Best models. . .

| family-k | algorithm | \mathbb{G}_{1} | | models avail. |
| :---: | :---: | :---: | :---: | :---: | algorithm \quad| \mathbb{G}_{2}^{\prime} |
| :---: |
| models avail. |
| BN-12 |
| 2-GLV |
| BLS-12 |
| 2-GLV |
| Hessian (1.23x) |
| 4-GLS |
| KSS-18 |
| 2-GLS |

model/ coords	DBL cost	ADD cost	MIX cost	AFF cost
$\mathcal{W} /$ Jac.	$\mathbf{7}_{2,5,0,0,14}$	$\mathbf{1 6}_{11,5,0,13}$	$\mathbf{1 1}_{7,4,0,14}$	$\mathbf{6}_{4,2,0,12}$
$\mathcal{J} /$ ext.	$\mathbf{9}_{1,7,7,12}$	$\mathbf{1 3}_{7,3,3,19}$	$\mathbf{1 2}_{6,3,3,18}$	$\mathbf{1 1}_{5,3,3,18}$
$\mathcal{H} /$ proj.	$\mathbf{7}_{6,1,0,11}$	$\mathbf{1 2}_{12,0,0,3}$	$\mathbf{1 0}_{10,0,0,3}$	$\mathbf{8}_{8,0,0,3}$
$\mathcal{E} /$ ext.	$\mathbf{9}_{4,4,1,7}$	$\mathbf{1 0}_{9,0,1,7}$	$\mathbf{9}_{8,1,0,7}$	$\mathbf{8}_{7,0,0,7}$

- for BLS $k=12$ and BLS $k=24$, define $\mathbb{G}_{1} \subset \mathcal{H} / \mathbb{F}_{p}$ (modify pairing to include initial conversion to \mathcal{W})
- for KSS $k=18$ and BLS $k=24, \mathbb{G}_{2} \subset \mathcal{W} / \mathbb{F}_{p}$, but τ to \mathcal{H}, \mathcal{E} after ψ 's are computed, and τ^{-1} to come back to \mathcal{W} at end

Results

Benchmark results (in millions (M) of clock cycles Intel Core i7-3520M).

sec. level	family- k	pairing e	exp. in \mathbb{G}_{1}	exp. in \mathbb{G}_{2}	exp. in \mathbb{G}_{T}
128-bit	BN-12	7.0	0.9	1.8	3.1
192-bit	BLS-12	47.2	4.4	10.9	17.5
256-bit	KSS-18	63.3	3.5	9.8	15.7
	BLS-24	115.0	5.2	27.6	47.1

- state-of-the-art algorithms (optimal ate, lazy reduction, cyclotomic squarings, etc.)
- not rivaling speed records, but hope that $\mathbb{G}_{1}: \mathbb{G}_{2}: \mathbb{G}_{T}: e$ ratios stay similar
- should give protocol designers a good idea of ratios
- what's best for 192-bit security (match protocol to family)

