Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme

> Michael Naehrig Cryptography Research Group Microsoft Research

Joint work with Joppe W. Bos (MSR), Jake Loftus (University of Bristol), and Kristin Lauter (MSR)

PQCrypto 2013 Limoges, 5 June 2013

## Fully Homomorphic Encryption (FHE)

Enables unlimited computation on encrypted data Need scheme with unlimited add and mult capability

- Idea: Rivest, Adleman, Dertouzos (1978)
- Boneh, Goh, Nissim (2005): unlimited add + 1 mult
- Breakthrough: Gentry (2009) showed Totally and utterly impractical  $\bullet$ such schemes exist
- A lot of progress since then
- Gentry, Halevi, Smart (2012): homomorphic evaluation of AES  $\bullet$ 5 minutes per block (16 bytes)





### Homomorphic Encryption from RLWE

Encryption from RLWE

- RLWEencrypt (Lyubashevsky, Peikert, Regev 2010)
- secureNTRU (Stehlé, Steinfeld 2011)

Homomorphic encryption schemes from (R)LWE

- RLWE FHE: BV (Brakerski, Vaikuntanathan 2011)
- Leveled HE: BGV (Brakerski, Gentry, Vaikuntanathan 2012)
- Multi-key scheme from NTRU (López-Alt, Tromer, Vaikuntanathan 2012)
- Scale-invariant HE from LWE (Brakerski 2012)
- Scale-invariant HE from RLWE (Fan, Vercauteren 2012)

#### This talk

Rather theoretical result:

- A fully homomorphic encryption scheme
- Based on secureNTRU with security based only on RLWE (and a circular security assumption)
- no need for the SPR assumption (from NTRU-based multi-key FHE)

### This talk

More practical result:

A leveled homomorphic encryption scheme

- Based on NTRU with security based on RLWE and SPR assumption (as in NTRU-based multi-key FHE)
- Using "Regev-style" encryption [B12]
   i.e. scale invariant without modulus switching
- Ciphertexts have only one element (half the size of BGV)
- Parameters comparable to BGV

#### In this talk

there will be No Bootstrapping! only leveled homomorphic encryption

In "practice", one tries to avoid bootstrapping

## A Ring R



• Define

 $R = \mathbf{Z}[X] / (\Phi_d(X))$ 

represented by the set of polynomials with integer coefficients of degree less than  $n = \deg(\Phi_d) = \varphi(d)$ 

• 
$$a = \sum_{i=0}^{n-1} a_i X^i \in R, ||a||_{\infty} = \max_i \{|a_i|\}$$

• For an integer modulus q let  $R_q = R/qR$ 

For example: 
$$d = 2^k$$
,  $n = \frac{\varphi(d)}{2} = 2^{k-1}$ ,  $R = \mathbb{Z}[X]/(X^n + 1)$ 



#### A Discrete Noise Distribution $\chi$



Let  $\chi$  be a probability distribution on Rthat samples small elements  $a \leftarrow \chi$  with high probability e.g. a discrete Gaussian distribution

- For example: If  $d = 2^k$ ,  $n = 2^{k-1}$ ,  $R = \mathbb{Z}[X]/(X^n + 1)$ , can take  $\chi = D_{Z^n,\sigma}$
- i.e. each coefficient is sampled independently from a one-dimensional discrete Gaussian with standard deviation  $\sigma$
- probability proportional to  $\exp(-\pi |x|^2/\sigma^2)$  for each  $x \in \mathbb{Z}$

Ring Learning With Errors (RLWE) (Lyubashevsky, Peikert, Regev 2010)

Given the Ring *R*, modulus q,  $R_q = R/qR$ , and the probability distribution  $\chi$  on *R* 

Problem: distinguish between two distributions

- 1. Uniform distribution  $(a, b) \in R_q^2$
- 2. The distribution that for a fixed  $s \leftarrow \chi$ samples  $a \leftarrow R_q$  uniformly, an error  $e \leftarrow \chi$ and outputs  $(a, a \cdot s + e)$

Assumption: The RLWE problem is hard, i.e.  $(a, a \cdot s + e) \sim (a, b)$  looks uniform random

### (Symmetric) Encryption from RLWE

Message  $m \in R/2R$  $s \leftarrow \chi$  secret key

BV (Brakerski, Vaikuntanathan 2011) encryption: Sample  $a \leftarrow R_q$  uniform,  $e \leftarrow \chi$  error/noise  $b = m + a \cdot s + 2e \mod q$ , ciphertext c = (a, b)

$$b - a \cdot s = m + 2e \mod q$$
  
decrypt:  $(b - a \cdot s) \mod 2$   
decrypts correctly if  $||e||_{\infty} < \frac{q}{2}$ 

∎ m ∎ 2e ∎ q

#### Homomorphic Addition

$$c_1 = (a_1, b_1) = (a_1, m_1 + a_1 \cdot s + 2e_1)$$
  

$$c_2 = (a_2, b_2) = (a_2, m_2 + a_2 \cdot s + 2e_2)$$

#### Addition:

$$c_3 = (a_3, b_3) = c_1 + c_2 = (a_1 + a_2, (m_1 + m_2) + (a_1 + a_2) \cdot s + 2(e_1 + e_2))$$

encrypts  $(m_1 + m_2) \mod 2$ , i.e. sum in  $R_2$ 

#### Homomorphic Multiplication

$$c_1 = (a_1, b_1) = (a_1, m_1 + a_1 \cdot s + 2e_1)$$
  

$$c_2 = (a_2, b_2) = (a_2, m_2 + a_2 \cdot s + 2e_2)$$

Multiplication (BV):  $(b_1 - a_1 \cdot s)(b_2 - a_2 \cdot s) = (m_1 + 2e_1) (m_2 + 2e_2)$  $= m_1 m_2 + 2(m_1 e_2 + m_2 e_1 + 2e_1 e_2)$ 

$$(b_1 - a_1 \cdot s)(b_2 - a_2 \cdot s) = b_1 b_2 - (b_1 a_2 + b_2 a_1)s + a_1 a_2 s^2$$

New ciphertext:  $c_3 = (a_1a_2, b_1a_2 + b_2a_1, b_1b_2)$  now 3 elements! Relinearization transforms it back to two elements (key switching) Encrypts  $(m_1 \cdot m_2)$  mod 2, i.e. product in  $R_2$ 

#### Noise Growth

- Initial noise: B
- Addition: noise terms add up,  $B \rightarrow 2B$
- Multiplication: noise terms are multiplied,  $B \rightarrow B^2$



•  $B^2 \rightarrow B^4$ ,  $B^4 \rightarrow B^8$ , ...,  $B^{2^{L-1}} \rightarrow B^{2^L}$  (L levels of multiplications)



# Modulus Switching



Brakerski, Gentry, Vaikuntanathan (BGV, 2012)

Switch (scale down) to a smaller modulus after each mult. level

• Need a chain of moduli  $q = q_0, q_i \approx \frac{q_{i-1}}{B}$ 



- $B^2 \to B^3 \to B^4, \dots, \to B^L$  (L levels of mult)
- Leveled homomorphic encryption

### Avoiding Modulus Switching

Message  $m \in R/2R$  $s \leftarrow \chi$  secret key

Regev (2005) encryption for RLWE (Fan, Vercauteren 2012): Sample  $a \leftarrow R_q$  uniform,  $e \leftarrow \chi$  noise  $b = \left\lfloor \frac{q}{2} \right\rfloor m + a \cdot s + e \mod q$ , ciphertext c = (a, b)

$$b - a \cdot s = \left\lfloor \frac{q}{2} \right\rfloor m + e, \text{ decrypt: } \left\lfloor \frac{2}{q} \left( b - a \cdot s \right) \right\rfloor$$
  
decrypts correctly if  $\|e\|_{\infty} < \frac{q}{4}$  because  
 $\left\lfloor \frac{q}{2} \right\rfloor \cdot 2 = q - (q \mod 2), \text{ i.e. } \left\lfloor \frac{q}{2} \right\rfloor \cdot \frac{2}{q} = 1 - \frac{q \mod 2}{q}$ 

■ (q/2)m ■ 2 ■ q

#### Scale-invariant Multiplication Multiplication (FV):

- $(b_1 a_1 \cdot s)(b_2 a_2 \cdot s) = (\left\lfloor \frac{q}{2} \right\rfloor m_1 + e_1) (\left\lfloor \frac{q}{2} \right\rfloor m_2 + e_2)$   $= \left\lfloor \frac{q}{2} \right\rfloor^2 m_1 m_2 + \left\lfloor \frac{q}{2} \right\rfloor (m_1 e_2 + m_2 e_1) + e_1 e_2$ •  $\frac{2}{q} (b_1 - a_1 \cdot s)(b_2 - a_2 \cdot s) = \left\lfloor \frac{q}{2} \right\rfloor m_1 m_2$  $+ (m_1 e_2 + m_2 e_1) + \frac{2}{q} e_1 e_2 + \tilde{e}$
- New noise term is of size  $C \cdot B$ , after *L* levels  $C^L \cdot B$ *C* independent of *B*

Multi-key homomorphic encryption López-Alt, Tromer, Vaikuntanathan (2012)

Message  $m \in \{0,1\}$ Sample  $f, g \leftarrow \chi, f = 1 + 2f'$  invertible mod qsecret key f, public key  $h = \frac{2g}{f}$ 

NTRU-like encryption:

Encryption:Sample s,  $e \leftarrow \chi$ <br/> $c = m + h \cdot s + 2e \mod q$ Decryption: $m = (f \cdot c \mod q) \mod 2$ , since<br/> $f \cdot c = m + 2(gs + ef + mf')$ ,<br/>decrypts correctly if  $||gs + ef + mf'|| < \frac{q}{2}$ .

Multi-key homomorphic encryption López-Alt, Tromer, Vaikuntanathan (2012)

 $c_1 = m_1 + h_1 \cdot s + 2e_1 \qquad f_1 \cdot c_1 = m_1 + 2(g_1s_1 + f_1e_1 + m_1f_1') \mod q$  $c_2 = m_2 + h_2 \cdot s + 2e_2 \qquad f_2 \cdot c_2 = m_2 + 2(g_2s_2 + f_2e_2 + m_2f_2') \mod q$ 

Multiplication:  $(f_1 \cdot c_1)(f_2 \cdot c_2) = (m_1 + 2E_1) (m_2 + 2E_2)$  $= m_1 m_2 + 2(m_1 E_2 + m_2 E_1 + 2E_1 E_2)$ 

For  $f_1 = f_2 = f$  (i.e.  $g_1 = g_2 = g$ ,  $h_1 = h_2 = h$ ): Ciphertext  $c_1 \cdot c_2 \mod q$  decrypts under  $f^2$  instead of fKey switching transforms it back to a ciphertext that decrypts under f

#### Multi-key homomorphic encryption López-Alt, Tromer, Vaikuntanathan (2012)

- Replaces uniform random  $a \leftarrow R_q$  by polynomial ratio  $h = \frac{2g}{f}$
- Security follows from RLWE if  $h = \frac{2g}{f}$  looks uniform random

| RLWE                                                                                         | LATV12                                                                                              |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $a \leftarrow R_q$ uniform random<br>Secret $s \leftarrow \chi$<br>Noise $e \leftarrow \chi$ | PK: $h = \frac{2g}{f}$ , SK: $f, g \leftarrow \chi$<br>Noise $s \leftarrow \chi, e \leftarrow \chi$ |
| $b = a \cdot s + 2e$                                                                         | $c=h\cdot s+2e+m$                                                                                   |

#### Modified NTRU Stehlé, Steinfeld (2011)

LATV12 make an additional assumption, the Small Polynomial Ratio (SPR) assumption:

•  $\frac{g}{f}$  looks uniform random in  $R_q$ 

Theorem (Stehlé, Steinfeld 2011): If  $d = 2^k$ ,  $n = 2^{k-1}$ ,  $R = \mathbf{Z}[X]/(X^n + 1)$ ,  $\chi = D_{Z^n,\sigma}$ then the SPR assumption holds if  $\sigma > \text{poly}(n) \cdot \sqrt{q}$ .

LATV12 conclude that such  $\sigma$  is too large for homomorphism

#### Observation

- The distribution for sampling *f*, *g* needs not be the same as that for sampling *s*, *e*
- Choose different distributions  $f, g \leftarrow \chi_{key}$  and  $s, e \leftarrow \chi_{err}$  with different standard deviations  $\sigma_{key}$  and  $\sigma_{err}$

| RLWE                                                                                                     | LATV12                                                                                          |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $a \leftarrow R_q$ uniform random<br>Secret $s \leftarrow \chi_{err}$<br>Noise $e \leftarrow \chi_{err}$ | PK: $h = \frac{2g}{f}$ , SK: $f, g \leftarrow \chi_{key}$<br>Noise $s, e \leftarrow \chi_{err}$ |
| $b = a \cdot s + 2e$                                                                                     | $c=h\cdot s+2e+m$                                                                               |

### **Basic Encryption Scheme**

- KeyGen:  $f, g \leftarrow \chi_{key}, f = 1 + tf'$  invertible mod qSK: f, PK:  $h = \frac{tg}{f}$
- Encrypt:  $m \in R/tR$ ,  $s, e \leftarrow \chi_{err}$ ,  $c = \left\lfloor \frac{q}{t} \right\rfloor m + hs + e$
- Decrypt:  $m = \left| \frac{t}{q} (f \cdot c \mod q) \right| \mod t$
- $f \cdot c \equiv \left( \left| \frac{q}{t} \right| m + v \right) \mod q$ , v is the noise level in cDecryption is correct, if  $\|v\|_{\infty} < \left( \left| \frac{q}{t} \right| - t \right) / 2$
- Noise in a fresh ciphertext is  $||v||_{\infty} < \delta t B_{key}(2B_{err} + t/2)$ , where  $B_{key}$  and  $B_{err}$  are bounds on the norms of the noise polys

#### Homomorphic Multiplication

• First step:  $\widetilde{c_3} = \left\lfloor \frac{t}{q} (c_1 \cdot c_2) \right\rfloor \mod q$ 

But this needs to be decrypted with  $f^2$ 

• Use the following functions:

$$P_w(f) = \left(f \cdot w^i \mod q\right)_{i=0}^{\ell-1}$$
  
and  $D_w(c)$  is the base  $w$  decomposition of  $c$ , i.e.  
 $D_w(c) = (c_i)_{i=0}^{\ell-1}, c = \sum_{i=0} c_i w^i$ .  
Then  $\langle D_w(c), P_w(f) \rangle = fc \mod q$ .

- In key generation compute and publish evaluation key  $\gamma = P_w(f) + e + hs$ , where  $e, s \leftarrow \chi_{err}^{\ell}$ ,  $\ell = \lfloor \log_w(q) \rfloor + 2$
- KeySwitch: compute  $c_3 = \langle D_w(\widetilde{c_3}), \gamma \rangle$

#### Noise Growth in Homomorphic Multiplication

- Assume  $c_1$  and  $c_2$  have noise levels bounded by V
- and key and noise distribution are bounded by  $B_{\text{key}}$  and  $B_{\text{err}}$ , resp.

• 
$$fc_3 = \left\lfloor \frac{q}{t} \right\rfloor m_1 m_2 + \nu \mod q$$
  
 $\|\nu\|_{\infty} < \delta^2 t^2 B_{\text{key}} V + \delta^2 t^2 B_{\text{key}}^2 + \delta^2 t \ell w B_{\text{err}} B_{\text{key}}$ 

• Indeed, if  $\sigma_{key}$  is as demanded by Stehlé and Steinfeld, then there is no guarantee that the noise is less than q

#### Avoiding the SPR assumption

Use tensor products of decompositions and powers (see Brakerski 2012)

- Change multiplication from  $\widetilde{c_3} = \left[\frac{t}{q}(c_1 \cdot c_2)\right] \mod q$ to  $\widetilde{c_3} = \left[\frac{t}{q}P_w(c_1) \otimes P_w(c_2)\right] \mod q \in R_q^{\ell^2}$
- This intermediate ciphertext decrypts under  $D_w(f) \otimes D_w(f)$
- Adjust evaluation key to

$$\gamma = f^{-1} P_w \left( D_w(f) \otimes D_w(f) \right) + \boldsymbol{e} + h\boldsymbol{s} \mod q \in R_q^{\ell^3}$$

• Noise bound is now

 $\|v\|_{\infty} < \delta^2 t \operatorname{w} \log_w(tB_{\text{key}}) V + \delta^2 t^2 w \log_w(tB_{\text{key}}) + \cdots$ 

### Avoiding the SPR assumption

Noise growth small enough to use Stehlé, Steinfeld setting  $d = 2^k, n = 2^{k-1}, R = \mathbb{Z}[X]/(X^n + 1), \chi = D_{Z^n,\sigma}, \sigma > \text{poly}(n) \cdot \sqrt{q}$ .

- PK is indistinguishable from uniform random element in  $R_q$
- Tensoring helps with noise growth, but is rather unnatural and annoying

For a "more practical" version:

- Need SPR assumption, take narrow key distribution
- Power and decomposition functions with varying base w give more flexibility trading size of evaluation key vs. noise growth
- Use distributions of different widths for different purpose

#### Parameters

- Correctness via noise bounds
- Security via estimating runtime of attack on scheme in time 2<sup>80</sup> based on Lindner-Peikert analysis

| q (bits) | Dimension <i>n</i>         | Size of elt in R | t    | Levels L |
|----------|----------------------------|------------------|------|----------|
| 128      | 128 2 <sup>12</sup> 66 KB  | 2                | 3    |          |
|          |                            |                  | 1024 | 1        |
| 256      | 256 2 <sup>13</sup> 262 KB | 2                | 7    |          |
|          | 1024                       | 4                |      |          |
| 1024     | 2 <sup>15</sup>            | 4.2 MB           | 2    | 31       |
|          |                            |                  | 1024 | 19       |

#### Implementation

We have implemented homomorphic encryption with 127-bit prime q, n = 4096,  $w = 2^{32}$ 

• plain C, no assembly (yet), a lot potential for optimization

| Operation              | Encrypt | Decrypt | Add  | Mul  |
|------------------------|---------|---------|------|------|
| Cycles/10 <sup>6</sup> | 79.2    | 14.1    | 0.07 | 90.7 |
| ms                     | 27      | 5       | 0.03 | 31   |

Intel Core i7-3520M @ 2.893 GHz

We have not implemented AES yet! (Due to lack of motivation for using AES as a benchmark for HE.) Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme

> Michael Naehrig Cryptography Research Group Microsoft Research

Joint work with Joppe W. Bos (MSR), Jake Loftus (University of Bristol), and Kristin Lauter (MSR)

PQCrypto 2013 Limoges, 5 June 2013

Thank you!