Curves and Fields for Efficient Cryptographic Pairings

Michael Naehrig

XCG Cryptography Research Group Microsoft Research

Pacific Northwest Number Theory Conference 2013 Seattle, 1 June 2013

Public-Key Cryptography

- Diffie-Hellman key agreement (1976)
- Cyclic group $(G,+), G=\langle P\rangle$, prime order $\mathrm{r}=|G|$
$\cdot[m] P=\underbrace{P+P+\cdots+P}_{m \text { times }}$

Alice

Secret $a \in \mathbf{Z} / r \mathbf{Z}$

$$
P_{A}=[a] P
$$

$P_{B}=[b] P$

$$
\mathrm{K}=[a] P_{B}=[b] P_{A}=[a b] P
$$

Bob

Secret $b \in \mathbf{Z} / r \mathbf{Z}$
$P_{B}=[b] P$
$P_{A}=[a] P$

Public-Key Cryptography

- Cyclic group $(G,+), G=\langle P\rangle$, prime order $r=|G|$,
- Diffie-Hellman Problem (DHP) in G : given $\mathrm{P}_{\mathrm{A}}=[a] P$ and $\mathrm{P}_{\mathrm{B}}=[b] P$, find $[a b] P$.
- Discrete Logarithm Problem (DLP) in G : given $\mathrm{P}_{\mathrm{A}}=[a] P$, find a.
- For security, DHP/DLP in G must be computationally infeasible.

Three-Party Key Agreement

- Extension to three participants needs two communication rounds
$1^{\text {st }}$ round
$[c] P_{B}=[b c] P$
$[c] P_{A}=[a c] P$
Charlie
Secret $c \in \mathbf{Z} / r \mathbf{Z}$
$P_{C}=[c] P$
$P_{A}=[a] P \quad P_{B}=[b] P$
Alice

Secret $a \in \mathbf{Z} / r \mathbf{Z}$
$P_{A}=[a] P$
$P_{B}=[b] P$
$[a] P_{B}=[a b] P$

Three-Party Key Agreement

- Extension to three participants needs two communication rounds
$2^{\text {nd }}$ round

Alice

Secret $a \in \mathbf{Z} / r \mathbf{Z}$
$P_{A}=[a] P$
$P_{B}=[b] P$
$[a] P_{B}=[a b] P$
$[c] P_{B}=[b c] P$
$[c] P_{A}=[a c] P$
Charlie
Secret c $\in \mathbf{Z} / r \mathbf{Z}$ $\begin{array}{ll}P_{C}=[c] P & \\ P_{A}=[a] P & P_{B}=[b] P\end{array}$

$$
\begin{aligned}
\mathrm{K} & =[\mathrm{abc}] \mathrm{P}=[a]([b c] P) \\
& =[c]([a b] P)=[b]([a c] P)
\end{aligned}
$$

Bob

Secret $b \in \mathbf{Z} / r \mathbf{Z}$ $P_{B}=[b] P$

Three-Party Key Agreement (Joux, 2000)

- If we have a bilinear map $e: G \times G \rightarrow G_{3}$, where $\left(G_{3}, \cdot\right)$ is a cyclic group of prime order, and $e(P, P) \neq 1$:

Three-Party Key Agreement (Joux, 2000)

- Bilinear Diffie-Hellman (BDH) problem:

Given $\mathrm{P},[a] P,[b] P,[c] P \in G$, find $e(P, P)^{a b c}$.

- BDHP must be computationally infeasible.

Three-Party Key Agreement (Joux, 2000)

- If we have a bilinear map $e: G_{1} \times G_{2} \rightarrow G_{3}$, where $\left(G_{3}, \cdot\right)$ is a cyclic group of prime order, and $e(P, Q) \neq 1$:

Short Digital Signatures (Boneh-Lynn-Shacham, 2000)

- System parameters: a pairing $e: G_{1} \times G_{2} \rightarrow G_{3}, P \in G_{1}, Q \in G_{2}$, and a cryptographic hash function $H:\{0,1\}^{*} \rightarrow G_{1}$
- Alice's private key: $x_{A} \in \mathbf{Z} / r \mathbf{Z}$, public key: $Q_{A}=\left[x_{A}\right] Q \in G_{2}$
- Signature of message $M \in\{0,1\}^{*}: \sigma=\left[x_{A}\right] H(M) \in G_{1}$
- Verification: check whether $e(\sigma, Q)=e\left(H(M), Q_{A}\right)$
- Correctness:

$$
e(\sigma, Q)=e\left(\left[x_{A}\right] H(M), Q\right)=e\left(H(M),\left[x_{A}\right] Q\right)=e\left(H(M), Q_{A}\right)
$$

- Only half the size of (EC)DSA signatures for same security

Many More Interesting Applications...

- Non-interactive key agreement (Sakai-Ohgishi-Kasahara, 2000)
- Identity-based encryption (Boneh-Franklin, 2001)
- Attribute-based encryption (Sahai-Waters, 2004)
- Non-interactive zero-knowledge proofs (Groth-Sahai, 2008)
- Anonymous credentials (Belenkiy et al., 2009)
- Verifiable computation (Gentry-Howell-Parno-Raykova, 2013)

Realizing Cryptographic Pairings

- Need quite large groups G_{1}, G_{2}, G_{3} s.t. solving DLP in all groups is computationally infeasible
- Need a pairing $e: G_{1} \times G_{2} \rightarrow G_{3}$
- Efficiency: need fast exponentiations in G_{1}, G_{2}, G_{3} and fast algorithm to compute the pairing
- There are different notions of practicality

Need security and good performance! Slow crypto will not be used!

Elliptic Curves over Finite Fields

- ...have been used to provide groups for DL-based systems before (proposed by Miller and Koblitz in 1985, standardized for use in real-world applications)
- ...have algorithms for efficient exponentiations in these groups
- ...have undergone extensive cryptanalysis to build confidence in their security
- ...have a pairing that maps two points to a finite field element

Elliptic Curves over Finite Fields

- \mathbf{F}_{q} finite field, E an elliptic curve over \mathbf{F}_{q}
- If $\operatorname{char}(q) \notin\{2,3\}, E: y^{2}=x^{3}+a x+b, a, b \in \mathbf{F}_{q}$
- $E\left(\mathbf{F}_{q}\right)=\left\{(x, y) \in \mathbf{F}_{q}^{2}: y^{2}=x^{3}+a x+b\right\} \cup\{\infty\}$ is an Abelian group with neutral element ∞
- $n=\# E\left(\mathbf{F}_{q}\right)=q+1-t,|t| \leq 2 \sqrt{q}$

- Choose field and curve parameters s.t. $n=\# E\left(\mathbf{F}_{q}\right)$ has a large prime divisor r, use the group $G=\langle P\rangle$, where ord $(P)=r$ and s.t. solving DLP is infeasible

The Tate Pairing

E / \mathbf{F}_{q} elliptic curve, r a prime divisor of $n=\# E\left(\mathbf{F}_{q}\right)$
Embedding degree: smallest integer k such that $r \mid q^{k}-1$
For $k>1, r$-torsion group $\mathrm{E}[\mathrm{r}] \subset E\left(\mathbf{F}_{q^{k}}\right)$

- $G_{1}=\langle P\rangle=E\left(\mathbf{F}_{q}\right)[r], G_{2}=\langle Q\rangle=E\left(\mathbf{F}_{q^{k}}\right)[r], \infty \neq P, Q \notin E\left(\mathbf{F}_{q}\right)$
- $G_{3}=\mu_{r} \subset \mathbf{F}_{q^{k}}^{*}$ group of r-th roots of unity

$$
t_{r}: G_{1} \times G_{2} \rightarrow G_{3},(P, Q) \mapsto f_{r, P}(Q)^{\left(q^{k}-1\right) / r}
$$

Optimal Pairings

In practice, compute variants of the Tate pairing:

- E / \mathbf{F}_{q} elliptic curve, r a prime divisor of $n=\# E\left(\mathbf{F}_{q}\right), k$ even
- Use a twist E^{\prime} of $E: \psi: E^{\prime} \rightarrow E$ twisting isomorphism over $\mathbf{F}_{q^{k}}$ $G_{2}^{\prime}=\left\langle Q^{\prime}\right\rangle=E^{\prime}\left(\mathbf{F}_{q^{e}}\right)[r], \infty \neq Q^{\prime}$, where $\psi\left(Q^{\prime}\right)=Q, e \in\left\{\frac{k}{2}, \frac{k}{4}, \frac{k}{6}\right\}$ (depending on $j(E)$)
- Replace function $f_{r, P}(Q)$ by $g_{m, Q^{\prime}}(\mathrm{P})$ of smaller degree (for a suitable $m \in \mathbf{Z}$)

$$
a_{\mathrm{opt}}: G_{2}^{\prime} \times G_{1} \rightarrow G_{3},\left(Q^{\prime}, P\right) \mapsto g_{m, Q^{\prime}}(P)^{\left(p^{k}-1\right) / r}
$$

Components of Miller's Algorithm

- Build function $g_{m, Q^{\prime}}(P)$ iteratively in Miller loop from DBL/ADD steps (while computing [m] Q^{\prime})

DBL	ADD	computation
$l_{R^{\prime}, R^{\prime}}(P)$	$l_{R^{\prime}, Q^{\prime}}(P)$	Coefficients in $\mathbf{F}_{q} e^{\prime}$ evaluated at $\mathrm{P} \in E\left(\mathbf{F}_{q}\right)$
$R^{\prime} \leftarrow[2] R^{\prime}$	$R^{\prime} \leftarrow R^{\prime}+Q^{\prime}$	Curve arithmetic in $E^{\prime}\left(\mathbf{F}_{q^{e}}\right)$
$f \leftarrow f^{2} \cdot l_{R^{\prime}, R^{\prime}}(P)$	$f \leftarrow f \cdot l_{R^{\prime}, Q^{\prime}}(P)$	General squaring, special mult. in $\mathbf{F}_{q^{k}}$

- Final exponentiation to the power $\left(q^{k}-1\right) / r$ can use Frobenius automorphism and arithmetic in special subgroups of $\mathbf{F}_{q^{k}}^{*}$

Minimal Requirements for Security

- Hardness of DLP measured by runtime of best known algorithms
- Security level of λ bits: best algorithm needs 2^{λ} operations
- Elliptic Curve Groups: Pollard- ρ (generic algorithm) random walk through group G with $|G|=r$ expected number of steps before collision occurs: $\approx \sqrt{r}$ i.e. for 128 bits of security, group order must be around 256 bits
- Finite Field Group: Index Calculus algorithm (uses field structure) similar to factoring algorithms, uses a factor base of "small" elements, sub-exponential algorithm \Rightarrow much larger field sizes required
- Recent work by Joux, significant improvement for binary field extensions lowering asymptotic complexity

Minimal Requirements for Security

- Take k as small as possible, but DLP must be infeasible in all groups
- $\rho=\log (q) / \log (r)$

Security level (bits)	EC group order Size of r (bits)	Extension field size Size of q^{k} (bits)	Ratio $\rho \cdot k$
128	256	3072	12
192	384	7680	20
256	512	15360	30

$$
\log \left(q^{k}\right)=\rho k \cdot \log (r)
$$

NIST recommendations for key sizes (2012)

Balanced Parameter Choice

- $\rho=\log (q) / \log (r), \rho k \cdot \log (r)=\log q^{k}$
- If ρ is too large, q is larger than necessary.
- If ρk is too large, q^{k} is larger than necessary.
- If ρk is too small, r is larger than necessary.

Security level (bits)	EC group order Size of r (bits)	Extension field size Size of q^{k} (bits)	Ratio $\rho \cdot k$
128	256	3072	12
192	384	7680	20
256	512	15360	30

NIST recommendations for key sizes (2012)

Supersingular Elliptic Curves

Pairings on supersingular elliptic curves are efficient (Menezes-Okamoto-Vanstone, 1993 and Frey-Rueck, 1994)

- $k \leq 6$ (only suitable for low security)
- If $\operatorname{char}\left(\mathbf{F}_{q}\right)>3$, then $k \leq 2$

Reducing discrete logarithms via pairings:
For $P \in G_{1}$ there exists $Q \in G_{2}$ with $e(P, Q) \neq 1$

- The map $G_{1} \rightarrow G_{3}, P \mapsto e(P, Q)$ is a group isomorphism
- Solve DLP $P_{A}=[a] P$ in G_{1} by solving DLP $g_{A}=e(P, Q)^{a}$ in G_{3}

Pairing-Friendly Curves

The embedding degree of an ordinary elliptic curve is large in general. (k is the order of $q \bmod r$)

- No chance of finding small k by random search.

Find primes p, r and an integer n as follows

- $n=p+1-t,|t| \leq 2 \sqrt{p}, t \neq 0$
- $r \mid n$
- $r \mid p^{k}-1$ for small k or $r \mid \Phi_{k}(p)$ (k-th cyclotomic polynomial)
- $t^{2}-4 p=D v^{2}<0,|D|$ small enough to compute the Hilbert class polynomial in $\mathbf{Q}(\sqrt{D})$

Polynomial Parameterizations

Best pairing-friendly curves come from polynomial families

- Parameterize p, r, t by polynomials $p(x), r(x), t(x) \in \mathbf{Q}[x]$ that satisfy the above conditions
- Define rho value for a family $\rho=\operatorname{deg}(p) / \operatorname{deg}(r)$
- Look at factorization of $\Phi_{k}(p(x))$ or $\Phi_{k}(t(x)-1)$ for low-degree candidates for $p(x)$ or $t(x)$ of the right degree
- Take $r(x)$ to be one of the factors
- Hope for the CM equation to be nice

Example

$$
k=12 \quad \Phi_{12}(x)=x^{4}-x^{2}+1 \quad t(x)=6 x^{2}+1
$$

$$
\begin{aligned}
& \Phi_{12}(t(x)-1)=\Phi_{12}\left(6 x^{2}\right)=n(x) n(-x) \\
& \text { where } n(x)=36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 \\
& p(x)=n(x)+t(x)-1=36 x^{4}+36 x^{3}+24 x^{2}+6 x+1
\end{aligned}
$$

$$
\text { Set } r(x)=n(x)
$$

$$
\rho=1
$$

$$
\begin{gathered}
t(x)^{2}-4 p(x)=-3\left(6 x^{2}+4 x+1\right)^{2} \\
D=-3
\end{gathered}
$$

$$
j(E)=0
$$

$$
E: y^{2}=x^{3}+b
$$

Families of Pairing-Friendly Curves

All examples below have $j(E)=0$,

- $e=k / 6$ (minimal fields for twist group G_{2}^{\prime})
- $E: y^{2}=x^{3}+b$
$\left.\left.\begin{array}{|c|l|c|c|c|c|}\hline \lambda & \text { Family } & k & \rho(x) & r(x) & t(x) \\ \hline 128 & 12 & 36 x^{4}+36 x^{3}+24 x^{2}+6 x+1 & 36 x^{4}+36 x^{3}+18 x^{2}+6 x+1 & 6 x^{2}+1 \\ \hline 192 & \begin{array}{l}\text { BN } \\ \text { (Barreto-N., 2005) }\end{array} & \begin{array}{l}\text { BLS } \\ \text { (Barreto-Lynn-Scott, 2002) }\end{array} & 12 & (x-1)^{2}\left(x^{4}-x^{2}+1\right) / 3+x & x^{4}-x^{2}+1\end{array}\right] x+1\right)$

Families of Pairing-Friendly Curves

To find specific curves, search for an integer u such that

- $p(u), r(u)$ are both prime
- Try different b until $E: y^{2}=x^{3}+b$ has a point of order r

λ	Family	k	ρ	ρk	$\log (r)$	$\log (p)$	u
128	12	1	12	254	254	$-\left(2^{62}+2^{55}+1\right)$	
192	(Barreto-N. 2005)						
(Barreto-Lyn--Scott, 2002)	12	1.25	15	424	635	$2^{106}-2^{72}+2^{69}-1$	
192	18	1.33	24	376	508	$2^{64}-2^{51}+2^{47}+2^{28}$	
KSS (Kachisa-Schaefer-Scott, 2008)	24	1.25	30	504	629	$2^{63}-2^{47}+2^{38}$	
BLS (Barreto-Yyn--Scott, 2002)	24						

Field Extensions

- Construct degree-6 extension as
$\mathbf{F}_{p^{k}}=\mathbf{F}_{p^{k / 6}}(z), z^{6}=\xi$
$\mathbf{F}_{p^{k / 2}}=\mathbf{F}_{p^{k / 6}}(v), v^{3}=\xi$
- Use monomials with small constants for all field extensions
- $p \equiv 3 \bmod 4: \mathbf{F}_{p^{2}}=\mathbf{F}_{p}(i), i^{2}=-1$

$$
\begin{aligned}
& \left(\alpha_{0}+i \alpha_{1}\right) \cdot\left(\beta_{0}+i \beta_{1}\right) \\
& =\left(\alpha_{0} \cdot \beta_{0}-\alpha_{1} \cdot \beta_{1}\right)+i\left(\alpha_{0} \cdot \beta_{1}+\alpha_{1} \cdot \beta_{0}\right)
\end{aligned}
$$

- Karatsuba multiplication (only 3 mults)

$$
\alpha_{0} \beta_{1}+\alpha_{1} \beta_{0}=\left(\alpha_{0}+\alpha_{1}\right)\left(\beta_{0}+\beta_{1}\right)-\alpha_{0} \beta_{0}-\alpha_{1} \beta_{1}
$$

Field Extensions

Lazy reduction:

- Choose p of size a few bits smaller than multiple of machine word size (e.g. 64)
- Separate modular multiplication from modular reduction and postpone reduction until after following additions/subtractions
- Example: Do not reduce (3 reductions)

$$
\alpha_{0} \beta_{0}, \alpha_{1} \beta_{1},\left(\alpha_{0}+\alpha_{1}\right)\left(\beta_{0}+\beta_{1}\right)
$$

- instead keep double precision for adds/subs and reduce (2 reductions)
$\left(\alpha_{0} \beta_{0}-\alpha_{1} \beta_{1}\right),\left(\alpha_{0}+\alpha_{1}\right)\left(\beta_{0}+\beta_{1}\right)-\alpha_{0} \beta_{0}-\alpha_{1} \beta_{1}$
- Carry up in the tower

The Final Exponentiation

Exponent $\quad \mathrm{c}=\frac{p^{k}-1}{r}, \log (c) \approx(k-1) \log (p)$
Assume k even: $\quad \mathrm{c}=\left(p^{k / 2}-1\right) \frac{p^{k / 2}+1}{r}$
$k=12: \quad \frac{p^{12}-1}{r}=\left(p^{6}-1\right)\left(p^{2}+1\right) \frac{p^{4}-p^{2}+1}{r}$

- Use Frobenius: $f^{c}=\left[\left(f^{p^{6}} f^{-1}\right)^{p^{2}}\left(f^{p^{6}} f^{-1}\right)\right]^{\frac{p^{4}-p^{2}+1}{r}}$
- $\frac{p^{4}-p^{2}+1}{r}=\lambda_{3} p^{3}+\lambda_{2} p^{2}+\lambda_{1} p+\lambda_{0},\left|\lambda_{i}\right|<p, \lambda_{i}=\lambda_{i}(u), \operatorname{deg}\left(\lambda_{i}(x)\right) \leq 3$ This part can be done with 3 exponentiations by u, some Frobenius applications and some multiplications and squarings
- Note: After \exp by $\left(p^{6}-1\right)$, elts have norm 1, i.e. $f^{-1}=f^{p^{6}}=\bar{f}$

The Final Exponentiation

- Actual exponentation work: 3 exponentiations by u, $\approx 3 \log (p)$ instead of $\approx 11 \log (p)$
- Usually, u can be chosen very sparse, i.e. exponentiation is almost only squarings
- After exp by $\left(p^{6}-1\right)\left(p^{2}+1\right)$, result is in cyclotomic subgroup of $\mathbf{F}_{p^{k}}^{*}$, i.e. these squarings cost only $\approx 50 \%$ of the original squarings
- Still, this exponentiation is more than half the cost of a pairing

Exponentiations in Pairing Groups

Often protocols use only few pairings, but many exponentiations in G_{1} and/or G_{2}^{\prime}

- Important to speed up those as much as possible
- Use endomorphisms in curve groups (GLV/GLS methods and precomputations)
- Endomorphisms give certain multiples of curve points for free Example: $E / \mathbf{F}_{p}: y^{2}=x^{3}+b, p \equiv 1 \bmod 3$, has endomorph. $\phi:(x, y) \mapsto(\zeta x, y), \zeta^{3}=1, \zeta \neq 1$ and $\phi(P)=[\lambda] P$ for some $\lambda \in \mathbf{Z} / r \mathbf{Z}, \lambda^{2}+\lambda+1 \equiv 0 \bmod r$

Efficiency of Pairings

- Ten years ago pairings were considered too slow for practical use
- At 128 -bit security, efficiency gain of factor 50 (within last 6 years) Current speed record is $<0.5 \mathrm{~ms}$ per pairing on AMD Phenom II Within factor 10 of cost for exponentiations in curve groups
- Careful parameter choice is important

Pairings are efficient!

