Curves and Fields for Efficient Cryptographic Pairings

Michael Naehrig XCG Cryptography Research Group Microsoft Research

Pacific Northwest Number Theory Conference 2013 Seattle, 1 June 2013

Public-Key Cryptography

• Diffie-Hellman key agreement (1976)

• Cyclic group (G, +), $G = \langle P \rangle$, prime order r = |G|

•
$$[m]P = P + P + \dots + P$$

m times

Public-Key Cryptography

- Cyclic group (G, +), $G = \langle P \rangle$, prime order r = |G|,
- Diffie-Hellman Problem (DHP) in G : given $P_A = [a]P$ and $P_B = [b]P$, find [ab]P.
- Discrete Logarithm Problem (DLP) in G : given $P_A = [a]P$, find a.
- For security, DHP/DLP in *G* must be computationally infeasible.

Three-Party Key Agreement

• Extension to three participants needs two communication rounds

Three-Party Key Agreement

• Extension to three participants needs two communication rounds

Three-Party Key Agreement (Joux, 2000)

• If we have a bilinear map $e: G \times G \rightarrow G_3$, where (G_3, \cdot) is a cyclic group of prime order, and $e(P, P) \neq 1$:

Three-Party Key Agreement (Joux, 2000)

- Bilinear Diffie-Hellman (BDH) problem: Given P, $[a]P, [b]P, [c]P \in G$, find $e(P, P)^{abc}$.
- BDHP must be computationally infeasible.

Three-Party Key Agreement (Joux, 2000)

• If we have a bilinear map $e: G_1 \times G_2 \to G_3$, where (G_3, \cdot) is a cyclic group of prime order, and $e(P, Q) \neq 1$:

Short Digital Signatures (Boneh-Lynn-Shacham, 2000)

- System parameters: a pairing $e: G_1 \times G_2 \to G_3$, $P \in G_1, Q \in G_2$, and a cryptographic hash function $H: \{0,1\}^* \to G_1$
- Alice's private key: $x_A \in \mathbb{Z}/r\mathbb{Z}$, public key: $Q_A = [x_A]Q \in G_2$
- Signature of message $M \in \{0,1\}^*$: $\sigma = [x_A]H(M) \in G_1$
- Verification: check whether $e(\sigma, Q) = e(H(M), Q_A)$
- Correctness:

 $e(\sigma, Q) = e([x_A]H(M), Q) = e(H(M), [x_A]Q) = e(H(M), Q_A)$

• Only half the size of (EC)DSA signatures for same security

Many More Interesting Applications...

- Non-interactive key agreement (Sakai-Ohgishi-Kasahara, 2000)
- Identity-based encryption (Boneh-Franklin, 2001)
- Attribute-based encryption (Sahai-Waters, 2004)
- Non-interactive zero-knowledge proofs (Groth-Sahai, 2008)
- Anonymous credentials (Belenkiy et al., 2009)
- Verifiable computation (Gentry-Howell-Parno-Raykova, 2013)

Realizing Cryptographic Pairings

- Need quite large groups G_1, G_2, G_3 s.t. solving DLP in all groups is computationally infeasible
- Need a pairing $e: G_1 \times G_2 \rightarrow G_3$
- Efficiency: need fast exponentiations in G_1, G_2, G_3 and fast algorithm to compute the pairing
- There are different notions of practicality

Need security and good performance! Slow crypto will not be used!

Elliptic Curves over Finite Fields

- ...have been used to provide groups for DL-based systems before (proposed by Miller and Koblitz in 1985, standardized for use in real-world applications)
- ...have algorithms for efficient exponentiations in these groups
- ...have undergone extensive cryptanalysis to build confidence in their security
- ...have a pairing that maps two points to a finite field element

Elliptic Curves over Finite Fields

- \mathbf{F}_q finite field, E an elliptic curve over \mathbf{F}_q
- If char(q) \notin {2,3}, $E: y^2 = x^3 + ax + b$, $a, b \in \mathbf{F}_q$
- $E(\mathbf{F}_q) = \{(x, y) \in \mathbf{F}_q^2 : y^2 = x^3 + ax + b\} \cup \{\infty\}$ is an Abelian group with neutral element ∞

•
$$n = \#E(\mathbf{F}_q) = q + 1 - t, |t| \le 2\sqrt{q}$$

• Choose field and curve parameters s.t. $n = \#E(\mathbf{F}_q)$ has a large prime divisor r, use the group $G = \langle P \rangle$, where $\operatorname{ord}(P) = r$ and s.t. solving DLP is infeasible

The Tate Pairing

 E/\mathbf{F}_q elliptic curve, r a prime divisor of $n = \#E(\mathbf{F}_q)$

Embedding degree: smallest integer k such that $r \mid q^k - 1$

For k > 1, r-torsion group $E[r] \subset E(\mathbf{F}_{q^k})$ • $G_1 = \langle P \rangle = E(\mathbf{F}_q)[r], G_2 = \langle Q \rangle = E(\mathbf{F}_{q^k})[r], \infty \neq P, Q \notin E(\mathbf{F}_q)$ • $G_3 = \mu_r \subset \mathbf{F}_{q^{k,r}}^*$ group of r-th roots of unity

$$t_r: G_1 \times G_2 \to G_3, (P,Q) \mapsto f_{r,P}(Q)^{(q^k-1)/r}$$

Optimal Pairings

In practice, compute variants of the Tate pairing:

- E/\mathbf{F}_q elliptic curve, r a prime divisor of $n = \#E(\mathbf{F}_q)$, k even
- Use a twist E' of $E: \psi: E' \to E$ twisting isomorphism over \mathbf{F}_{q^k} $G'_2 = \langle Q' \rangle = E'(\mathbf{F}_{q^e})[r], \ \infty \neq Q'$, where $\psi(Q') = Q, e \in \{\frac{k}{2}, \frac{k}{4}, \frac{k}{6}\}$ (depending on j(E))
- Replace function $f_{r,P}(Q)$ by $g_{m,Q'}(P)$ of smaller degree (for a suitable $m \in \mathbb{Z}$)

$$a_{\text{opt}}: G'_2 \times G_1 \to G_3, (Q', P) \mapsto g_{m,Q'}(P)^{(p^k-1)/r}$$

Components of Miller's Algorithm

• Build function $g_{m,Q'}(P)$ iteratively in Miller loop from DBL/ADD steps (while computing [m]Q')

DBL	ADD	computation
$l_{R',R'}(P)$	$l_{R',Q'}(P)$	Coefficients in \mathbf{F}_{q^e} , evaluated at $P \in E(\mathbf{F}_q)$
$R' \leftarrow [2]R'$	$R' \leftarrow R' + Q'$	Curve arithmetic in $E'(\mathbf{F}_{q^e})$
$f \leftarrow f^2 \cdot l_{R',R'}(P)$	$f \leftarrow f \cdot l_{R',Q'}(P)$	General squaring, special mult. in \mathbf{F}_{q^k}

• Final exponentiation to the power $(q^k - 1)/r$ can use Frobenius automorphism and arithmetic in special subgroups of $\mathbf{F}_{q^k}^*$

Minimal Requirements for Security

- Hardness of DLP measured by runtime of best known algorithms
- Security level of λ bits: best algorithm needs 2^{λ} operations
- Elliptic Curve Groups: Pollard- ρ (generic algorithm) random walk through group *G* with |G| = rexpected number of steps before collision occurs: $\approx \sqrt{r}$ i.e. for 128 bits of security, group order must be around 256 bits
- Finite Field Group: Index Calculus algorithm (uses field structure) similar to factoring algorithms, uses a factor base of "small" elements, sub-exponential algorithm ⇒ much larger field sizes required
- Recent work by Joux, significant improvement for binary field extensions lowering asymptotic complexity

Minimal Requirements for Security

- Take k as small as possible, but DLP must be infeasible in all groups
- $\rho = \log(q) / \log(r)$ $\log(q^k) = \rho k \cdot \log(r)$ Extension field size Ratio $\rho \cdot k$ Security EC group order level (bits) Size of *r* (bits) Size of q^k (bits) $\log(q) = \rho \log(r)$ 12 128 256 3072 $\log(r)$ 20 192 384 7680 256 512 15360 30

NIST recommendations for key sizes (2012)

Balanced Parameter Choice

- $\rho = \log(q) / \log(r)$, $\rho k \cdot \log(r) = \log q^k$
- If ρ is too large, q is larger than necessary.
- If ρk is too large, q^k is larger than necessary.
- If ρk is too small, r is larger than necessary.

Security level (bits)	EC group order Size of r (bits)	Extension field size Size of q ^k (bits)	Ratio $\rho \cdot k$
128	256	3072	12
192	384	7680	20
256	512	15360	30

NIST recommendations for key sizes (2012)

Supersingular Elliptic Curves

Pairings on supersingular elliptic curves are efficient (Menezes-Okamoto-Vanstone, 1993 and Frey-Rueck, 1994)

- $k \leq 6$ (only suitable for low security)
- If char(\mathbf{F}_q) > 3, then $k \leq 2$

Reducing discrete logarithms via pairings: For $P \in G_1$ there exists $Q \in G_2$ with $e(P,Q) \neq 1$

- The map $G_1 \rightarrow G_3, P \mapsto e(P, Q)$ is a group isomorphism
- Solve DLP $P_A = [a]P$ in G_1 by solving DLP $g_A = e(P,Q)^a$ in G_3

Pairing-Friendly Curves

The embedding degree of an ordinary elliptic curve is large in general. (k is the order of $q \mod r$)

• No chance of finding small k by random search.

Find primes p, r and an integer n as follows

•
$$n = p + 1 - t$$
, $|t| \le 2\sqrt{p}$, $t \ne 0$

• r | n

- $r \mid p^k 1$ for small k or $r \mid \Phi_k(p)$ (k-th cyclotomic polynomial)
- $t^2 4p = Dv^2 < 0$, |D| small enough to compute the Hilbert class polynomial in $\mathbf{Q}(\sqrt{D})$

Polynomial Parameterizations

Best pairing-friendly curves come from polynomial families

- Parameterize p, r, t by polynomials $p(x), r(x), t(x) \in \mathbf{Q}[x]$ that satisfy the above conditions
- Define rho value for a family $\rho = \deg(p) / \deg(r)$
- Look at factorization of $\Phi_k(p(x))$ or $\Phi_k(t(x) 1)$ for low-degree candidates for p(x) or t(x) of the right degree
- Take r(x) to be one of the factors
- Hope for the CM equation to be nice

Example

$$k = 12 \qquad \Phi_{12}(x) = x^4 - x^2 + 1 \qquad t(x) = 6x^2 + 1$$

 $\Phi_{12}(t(x) - 1) = \Phi_{12}(6x^2) = n(x)n(-x),$
where $n(x) = 36x^4 + 36x^3 + 18x^2 + 6x + 1$
 $p(x) = n(x) + t(x) - 1 = 36x^4 + 36x^3 + 24x^2 + 6x + 1$
Set $r(x) = n(x)$
 $p = 1$
 $p(x) = -3$
 $j(E) = 0$
 $p(x) = x^3 + b$

Families of Pairing-Friendly Curves

All examples below have j(E) = 0,

- e = k/6 (minimal fields for twist group G'_2)
- $E: y^2 = x^3 + b$

λ	Family	k	p(x)	r(x)	t(x)
128	BN (Barreto-N., 2005)	12	$36x^4 + 36x^3 + 24x^2 + 6x + 1$	$36x^4 + 36x^3 + 18x^2 + 6x + 1$	$6x^2 + 1$
192	BLS (Barreto-Lynn-Scott, 2002)	12	$(x-1)^2(x^4-x^2+1)/3+x$	$x^4 - x^2 + 1$	<i>x</i> + 1
192	KSS (Kachisa-Schaefer-Scott, 2008)	18	$(x^8 + 5x^7 + 7x^6 + 37x^5 + 188x^4 + 259x^3 + 343x^2 + 1763x + 2401)/21$	$(x^4 + 16x^2 + 7)/7$	$(x^6 + 37x^3 + 343)/7^3$
256	BLS (Barreto-Lynn-Scott, 2002)	24	$(x-1)^2(x^8-x^4+1)/3+x$	$x^8 - x^4 + 1$	<i>x</i> + 1

Families of Pairing-Friendly Curves

To find specific curves, search for an integer *u* such that

- p(u), r(u) are both prime
- Try different *b* until $E: y^2 = x^3 + b$ has a point of order *r*

λ	Family	k	ρ	ρk	$\log(r)$	$\log(p)$	u
128	BN (Barreto-N., 2005)	12	1	12	254	254	$-(2^{62}+2^{55}+1)$
192	BLS (Barreto-Lynn-Scott, 2002)	12	1.25	15	424	635	$2^{106} - 2^{72} + 2^{69} - 1$
192	KSS (Kachisa-Schaefer-Scott, 2008)	18	1.33	24	376	508	$2^{64} - 2^{51} + 2^{47} + 2^{28}$
256	BLS (Barreto-Lynn-Scott, 2002)	24	1.25	30	504	629	$2^{63} - 2^{47} + 2^{38}$

Field Extensions

- Construct degree-6 extension as $\mathbf{F}_{p^k} = \mathbf{F}_{p^{k/6}}(z), z^6 = \xi$ $\mathbf{F}_{p^{k/2}} = \mathbf{F}_{p^{k/6}}(v), v^3 = \xi$
- Use monomials with small constants for all field extensions

•
$$p \equiv 3 \mod 4$$
: $\mathbf{F}_{p^2} = \mathbf{F}_p(i), i^2 = -1$
 $(\alpha_0 + i\alpha_1) \cdot (\beta_0 + i\beta_1)$
 $= (\alpha_0 \cdot \beta_0 - \alpha_1 \cdot \beta_1) + i(\alpha_0 \cdot \beta_1 + \alpha_1 \cdot \beta_0)$

• Karatsuba multiplication (only 3 mults) $\alpha_0\beta_1 + \alpha_1\beta_0 = (\alpha_0 + \alpha_1)(\beta_0 + \beta_1) - \alpha_0\beta_0 - \alpha_1\beta_1$

Field Extensions

Lazy reduction:

- Choose *p* of size a few bits smaller than multiple of machine word size (e.g. 64)
- Separate modular multiplication from modular reduction and postpone reduction until after following additions/subtractions
- Example: Do not reduce (3 reductions) $\alpha_0\beta_0, \alpha_1\beta_1, (\alpha_0 + \alpha_1)(\beta_0 + \beta_1)$
- instead keep double precision for adds/subs and reduce (2 reductions) $(\alpha_0\beta_0 - \alpha_1\beta_1), (\alpha_0 + \alpha_1)(\beta_0 + \beta_1) - \alpha_0\beta_0 - \alpha_1\beta_1$
- Carry up in the tower

The Final Exponentiation

- Exponent $c = \frac{p^{k}-1}{r}$, $\log(c) \approx (k-1)\log(p)$ Assume k even: $c = (p^{k/2}-1)\frac{p^{k/2}+1}{r}$ k = 12: $\frac{p^{12}-1}{r} = (p^{6}-1)(p^{2}+1)\frac{p^{4}-p^{2}+1}{r}$ • Use Frobenius: $f^{c} = [(f^{p^{6}}f^{-1})^{p^{2}}(f^{p^{6}}f^{-1})]\frac{p^{4}-p^{2}+1}{r}$
- $\frac{p^4 p^2 + 1}{r} = \lambda_3 p^3 + \lambda_2 p^2 + \lambda_1 p + \lambda_0$, $|\lambda_i| < p$, $\lambda_i = \lambda_i(u)$, $deg(\lambda_i(x)) \le 3$ This part can be done with 3 exponentiations by u, some Frobenius applications and some multiplications and squarings
- Note: After exp by $(p^6 1)$, elts have norm 1, i.e. $f^{-1} = f^{p^6} = \overline{f}$

The Final Exponentiation

- Actual exponentation work: 3 exponentiations by u,
 ≈ 3log(p) instead of ≈ 11log(p)
- \bullet Usually, u can be chosen very sparse, i.e. exponentiation is almost only squarings
- After exp by $(p^6 1)(p^2 + 1)$, result is in cyclotomic subgroup of $\mathbf{F}_{p^k}^*$, i.e. these squarings cost only $\approx 50\%$ of the original squarings
- Still, this exponentiation is more than half the cost of a pairing

Exponentiations in Pairing Groups

Often protocols use only few pairings, but many exponentiations in G_1 and/or G'_2

- Important to speed up those as much as possible
- Use endomorphisms in curve groups (GLV/GLS methods and precomputations)
- Endomorphisms give certain multiples of curve points for free Example: $E/\mathbf{F}_p: y^2 = x^3 + b, p \equiv 1 \mod 3$, has endomorph. $\phi: (x, y) \mapsto (\zeta x, y), \zeta^3 = 1, \zeta \neq 1$ and $\phi(P) = [\lambda]P$ for some $\lambda \in \mathbf{Z}/r\mathbf{Z}, \lambda^2 + \lambda + 1 \equiv 0 \mod r$

Efficiency of Pairings

- Ten years ago pairings were considered too slow for practical use
- At 128-bit security, efficiency gain of factor 50 (within last 6 years) Current speed record is <0.5ms per pairing on AMD Phenom II Within factor 10 of cost for exponentiations in curve groups
- Careful parameter choice is important

Pairings are efficient!

Thank you!

mnaehrig@microsoft.com