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Public-Key Cryptography

* Diffie-Hellman key agreement (1976) &
* Cyclic group (G,+), G = (P), prime orderr = |G|
emP=P+P+--+P

m times
Alice K= [a]Py = [b]P, = [ab]P Bob

Secreta € Z/rZ b Secretbh € Z/7rZ
Py = la]P b Pg = [b]P

Py = [b]P P, = [a]P




Public-Key Cryptography

* Cyclic group (G,+), G = (P), prime order r = |G|,
 Diffie-Hellman Problem (DHP) in G :

given P, = |a]P anc
* Discrete Logarithm

* For security, DHP/D

P = |b]|P, find |[ab]P.
Problem (DLP) in G : given Py, = |a]P, find a.
P in G must be computationally infeasible.

Py

Alice

= |a]Pg =

[b]Py = |

Ps = [b]P

K
Secreta € Z/rZ \
P, = |a]P

b]P
/

Bob

Secretbh € Z/7rZ
Pg = [b]P
P, = [a]P



Three-Party Key Agreement

* Extension to three participants needs two communication rounds

[c]Pg= [bc]P
[c]Pa= lac]P

1 round Charlie
Secretc € Z/rZ
P- =|[c]P
Fa P, =[alP Py = [b]P Py
Alice P Bob
Secreta € Z/rZ Secretbh € Z/7rZ
Py = [a]P Py = [b]P
Py = [b]P

la]Pg = [ab]P



Three-Party Key Agreement

* Extension to three participants needs two communication rounds

[c]Pg= |bc]P
[c]Ps= lac]|P
nd .
2 round Charlie
rab] Secretc € Z/rZ
ab]pP P = [c]P
P, = [alP Py =[b]P lac]p
[bc]P
Alice Bob
Secreta € Z/rZ ~ [ bC]P . [ ]([bC]P) Secretbh € Z/7rZ
fiir "2 [AabIP) = [b)lacl b
Pg = |b]P

la]Pg = [ab]P



Three-Party Key Agreement goux 2000

* If we have a bilinear map e:G X G - G5,
where (Gs3,') is a cyclic group of prime order, and e(P, P) # 1:

Alice

Secreta € Z/rZ
P, = |a]P
Py = [b]P
P. = |[c]P

Charlie
Secretc € Z/rZ
P, P, = [c]P P,
P, = [a]P
Pa P, = [b]P Pg
Py

—
Py

K= e(P, P)®b¢

= e([b]P,[c]P)*
= e([a]P, [c]P)"
= e([a]P,[b]P)°

Bob

Secretbh € Z/7rZ
P; = |b]P
P, = |a]P
P, = [c]P




Three-Party Key Agreement goux 2000

* Bilinear Diffie-Hellman (BDH) problem:
Given P, [a]P, [b]P, [c]P € G, find e(P, P)4bc.

e BDHP must be computationally infeasible.

Alice

Secreta € Z/rZ
P, = |a]P
Py = [b]P
P. = |[c]P

Charlie

Secretc € Z/rZ
Pc Pc = [c]P Pc
PA — [a]P
Py P, = [b]P Pg

Pp

—
Py

K= e(P, P)®b¢

= e([b]P,[c]P)*
= e([a]P, [c]P)"
= e([a]P,[b]P)°

Bob

Secretbh € Z/7rZ
P; = |b]P
P, = |a]P
P, = [c]P




Three-Party Key Agreement goux 2000

e If we have a bilinear map e: G, X G, = G5,

where (G3,) is a cyclic group of prime order, and e(P, Q) + 1:

Alice

Secreta € Z/rZ
P, = |a]P
Py = [b]P
Qc = lc]Q

Qc

Charlie

Secretc € Z/rZ

Qc = lclQ
P, = [a]P

Qp = [b]Q

Pp

Qc
(s

—
Py

7<

e(P Q)abc

= e([b]P, [c]Q)*
= e([a]P, [c]Q)"
= e([a]P, [b]P)*

Bob

Secretbh € Z/7rZ

Pg = |b]P,Qp = [b]Q
PA = [a]P

Qc = lclQ




Short Dlgltal Signatu '€S (Boneh-Lynn-Shacham, 2000)

* System parameters: a pairinge: Gy X G, = G3 , P € G{,0Q € G,
and a cryptographic hash function H:{0,1}* - G,

* Alice’s private key: x, € Z/rZ, public key: Q4 = [x4]0 € G,
e Signature of message M € {0,1}*: 0 = |x4,|H(M) € G,

* Verification: check whether e(a,Q) = e(H(M), Q,)

* Correctness:

e(o,Q) = e([x,]JHM), Q) = e(H(M), [x,]1Q) = e(H(M), Q)
* Only half the size of (EC)DSA signatures for same security



Many More Interesting Applications...

* Non-interactive key agreement (Sakai-Ohgishi-Kasahara, 2000)
* |dentity-based encryption (Boneh-Franklin, 2001)

* Attribute-based encryption (Sahai-Waters, 2004)

* Non-interactive zero-knowledge proofs (Groth-Sahai, 2008)

* Anonymous credentials (Belenkiy et al., 2009)

* Verifiable computation (Gentry-Howell-Parno-Raykova, 2013)



Realizing Cryptographic Pairings

* Need quite large groups G4, G5, G
s.t. solving DLP in all groups is computationally infeasible

* Need a pairing e: G; X G, — G4

« Efficiency: need fast exponentiations in G4, G,, G
and fast algorithm to compute the pairing

 There are different notions of practicality

Need security and good performance!
Slow crypto will not be used!




Elliptic Curves over Finite Fields

* ...have been used to provide groups for DL-based systems before
(proposed by Miller and Koblitz in 1985,
standardized for use in real-world applications)

» ...have algorithms for efficient exponentiations in these groups

e ...have undergone extensive cryptanalysis to build confidence in
their security

* ...have a pairing that maps two points to a finite field element



Elliptic Curves over Finite Fields

- F, finite field, E an elliptic curve over F,

e If char(q) ¢ {2,3},E:y* =x3>+ax+b,a,b € F, OQ

* E(F,) = {(x,y) € F2:y? = x3 + ax + b} U {00}

Is an Abelian group with neutral element oo In o

cn=#E(F,)=q+1—t|t| <2\q R +Q

» Choose field and curve parameters s.t. n = #E(F, ) has a large
prime divisor r, use the group G = (P), where ord(P) =r
and s.t. solving DLP is infeasible




The Tate Pairing

E /F, elliptic curve, r a prime divisor of n = #E(F,)

Embedding degree: smallest integer k such thatr | g* — 1

For k > 1, r-torsion group E[r] E(Fqk)

+ Gy = (P) = E(F)[r], G, = (Q) = E(F i )[r], o0 # P, Q & E(F,)
¢ G3 = U, C F;k, group of r-th roots of unity

k_
ty:Gy X G, > G3,(P,Q) & fr,P(Q)(q D/r




Optimal Pairings

In practice, compute variants of the Tate pairing:
» E/F, elliptic curve, r a prime divisor of n = #E(F, ), k even

* Use a twist E” of E: y: E' — E twisting isomorphism over F_k
kK k k

Gy =(Q') = E'(Fge)[r], 0 # Q', where Y(Q") = Q, e € 5,7~
(depending on j(E))

* Replace function f,. p(Q) by g,,, o’(P) of smaller degree
(for a suitable m € Z)

/ / k_
Qopt: Gy X G1 = G3, (Q',P) » gm,Q’(P)(p D/




Components of Miller’s Algorithm

Rf
* Build function g,, o+ (P) iteratively in Miller loop /O

from DBL/ADD steps (while computing [m]Q’) N R+ Q')
DBL
L1 o1 (P l.1 (P Coefficients in Fe,
RUR ( ) R0 ( ) evaluated at P EqE(Fq)
R’ « [2]R’ R' <R + Q' Curve arithmetic in E’(F,e)
2.1, , B General squaring, special
f<f° i R (P) f<f g 0 (P) mult, in ¥

- Final exponentiation to the power (g* — 1)/r can use Frobenius
automorphism and arithmetic in special subgroups of F;k



Minimal Requirements for Security

* Hardness of DLP measured by runtime of best known algorithms
» Security level of 1 bits: best algorithm needs 2+ operations

* Elliptic Curve Groups: Pollard-p (generic algorithm)
random walk through group G with |G| =1
expected number of steps before collision occurs: = +/r
l.e. for 128 bits of security, group order must be around 256 bits

* Finite Field Group: Index Calculus algorithm (uses field structure)
similar to factoring algorithms, uses a factor base of “small” elements,
sub-exponential algorithm = much larger field sizes required

-y,
o
o N

» Recent work by Joux, significant improvement for binary field extensions
lowering asymptotic complexity



Minimal Requirements for Security

 Take k as small as possible, but DLP must be infeasible in all groups

* p = log(q) /log(r) log(*) = pl - og(r) —- '

Security EC group order ExtenS|on field size |Ratiop - k
level (bits) Size of r (blts) Size of g¥ (bits)

128 3072 log(q) = plog(r) —+
192 384 7680 20 log(r) - I I

256 512 15360 30

NIST recommendations for key sizes (2012)




security

Balanced Parameter Choice L pk too large
* p = log(q) /log(r), pk - log(r) = log q" ! min
* If p is too large, q is larger than necessary. I
* If pk is too large, g¥is larger than necessary.

o If pk is too small, r is larger than necessary. | e

n

level (bits) Size of r (blts) Size of g¥ (bits)

128 3072 f ok good

192 384 7680 20 I

256 512 15360 30 I !
NIST recommendations for key sizes (2012) 4




Supersingular Elliptic Curves

Pairings on supersingular elliptic curves are efficient
(Menezes-Okamoto-Vanstone, 1993 and Frey-Rueck, 1994)

* k < 6 (only suitable for low security)
o |If char(Fq) > 3 thenk <2

Reducing discrete logarithms via pairings:
For P € G, there exists Q € G, withe(P,Q) # 1

* The map G; — G3,P » e(P,Q) is a group isomorphism
* Solve DLP P, = [a]P in G, by solving DLP g, = e(P, Q)% in G5



Pairing-Friendly Curves

The embedding degree of an ordinary elliptic curve is large in general.
(k is the order of g mod )

* No chance of finding small k by random search.

Find primes p,r and an integer n as follows
'n=p+1-—t|[t|<2p, t+#0

‘r|n

7| p* — 1 for small k orr | ®,(p) (k-th cyclotomic polynomial)

* t* — 4p = Dv* < 0, |D| small enough to compute the Hilbert class
polynomial in Q(+/D)



Polynomial Parameterizations

Best pairing-friendly curves come from polynomial families

« Parameterize p,r,t by polynomials p(x),r(x), t(x) € Q|x]
that satisfy the above conditions

* Define rho value for a family p = deg(p) /deg(r)

* Look at factorization of @, (p(x)) or @, (t(x) — 1) for low-degree
candidates for p(x) or t(x) of the right degree

* Take r(x) to be one of the factors
« Hope for the CM equation to be nice



Example
k=12 === d,(x)=x*—x%+1 t(x) = 6x% + 1

/ /
O, (t(x) — 1) = D1,(6x%) = n(x)n(—x), /

where n(x) = 36x* + 36x3 + 18x% + 6x + 1

\

p(x) =n(x) +t(x) —1=36x*+36x3+24x%+6x+1

Set (x) = n(x) / = t(x)? —4p(x) = —3(6x* + 4x + 1)*
~N -

p = D = —3
j(E)=/O m— E:y‘=x°4D



Families of Pairing-Friendly Curves

All examples below have j(E) = 0,
* e = k/6 (minimal fields for twist group G,)
e E:y?=x3+b

o Famiy kL p) L r

128 BN 36x* +36x3 +24x*+6x+ 1 36x* +36x3 +18x%2 +6x + 1 6x> +1
(Barreto-N., 2005)

192 BLS 12 (x—1D2%(x*—x2+1)/3+x x*—x?+1 x+1
(Barreto-Lynn-Scott, 2002)

192 KSS 18 (x®+5x7 +7x° +37x° + 188x* (x*+ 16x2+7)/7 (x® + 37x3

+ 259x3 + 343x% + 1763x + 2401)/21 + 343)/73

(Kachisa-Schaefer-Scott, 2008)

256 BLS 24 (x—1D2?(x®—x*+1)/3+x x8—x*+1 x+1

(Barreto-Lynn-Scott, 2002)



Families of Pairing-Friendly Curves

To find specific curves, search for an integer u such that
* p(u),r(u) are both prime
 Try different b until E: y% = x3 + b has a point of order r

L Famiy___k _p ok losn) losp) L u ___

128 BN 254 254 —(2%% +2%% + 1)
(Barreto-N., 2005)

192 BLS 12 125 15 424 635 219627242691
(Barreto-Lynn-Scott, 2002)

192 KSS 18 133 24 376 508 264 — 251 4247 4 228

(Kachisa-Schaefer-Scott, 2008)

256 BLS 24 125 30 504 629 263 — 247 4 238

(Barreto-Lynn-Scott, 2002)



Field Extensions F .

p
 Construct degree-6 extension as ,
Fpk = Fpk/6(Z), Z6 = gt
Fpk/z = Fpk/6 (v),v3=¢ Fpk/z
* Use monomials with small constants for all field
extensions 3 oy
* p =3 mod 4: F,2 = F, (i) i2 = —1 BLS12 KSS18 BLS24
= : F, ,
(ag+iay) - (By+iBy) Fpk/6 sz Fps Fp4
= (ag - fo— a1 P1) +ilagy- Py +ay - Lo) |2
» Karatsuba multiplication (only 3 mults) 2 3 Fye
aof1 + a1By = (ag + a1)(Bo + 1) — agBo — 151 |2
Fp Fp Fp Fp



Field Extensions F

Lazy reduction:
« Choose p of size a few bits smaller than multiple
of machine word size (e.g. 64)

2

 Separate modular multiplication from modular Fpk/z
reduction and postpone reduction until after
following additions/subtractions 3 an
« Example: Do not reduce (3 reductions) BLS12 KSS18 BLS24
aofo, a1B1, (ag + a1)(Bo + B1) Fpk/a F, F,: Fp

* instead keep double precision for adds/subs

and reduce (2 reductions) : F|2
(apBo — a1P1), (ag + a1)(Bo + B1) — apBo — @151 : p
« Carry up in the tower |2



The Final Exponentiation

k_
Exponent ¢ = & " S log(c) =~ (k — 1)log(p)
k/2
Assume k even: ¢ = (pk/2-1)% r+1
12_4 t—p?+1
k=122 === -DE*+D—

p¥—p?41

» Use Frobenius: ¢ = [(fP°f )P (fP°f D] -

4 _ .2 1
BP0 = A5p® + 4202 + Aup + Ao, 4] <, A = A(u), deg(2;(x)) < 3
This part can be done with 3 exponentiations by u, some Frobenius
applications and some multiplications and squarings

» Note: After exp by (p® — 1), elts have norm 1,i.e. f~1 = fP° = f




The Final Exponentiation

 Actual exponentation work: 3 exponentiations by u,
~ 3log(p) instead of = 11log(p)

* Usually, u can be chosen very sparse, I.e. exponentiation is almost
only squarings

* After exp by (p°® — 1)(p* + 1), result is in cyclotomic subgroup of
F;k, .e. these squarings cost only = 50% of the original squarings

» Still, this exponentiation is more than half the cost of a pairing



Exponentiations in Pairing Groups

Often protocols use only few pairings, but many exponentiations in
G, and/or G,

 Important to speed up those as much as possible

* Use endomorphisms in curve groups (GLV/GLS methods and
precomputations)

« Endomorphisms give certain multiples of curve points for free
Example: E/F,:y* = x> + b,p = 1 mod 3,
has endomorph. ¢: (x,y) » ({x,y),{> =1, # 1 and
d(P) = [A]P forsome A €Z/rZ, 1>+ A1+ 1=0modr



Efficiency of Pairings

* Ten years ago pairings were considered too slow for practical use

At 128-bit security, efficiency gain of factor 50 (within last 6 years)
Current speed record is <0.5ms per pairing on AMD Phenom |l
Within factor 10 of cost for exponentiations in curve groups

» Careful parameter choice is important

Pairings are efficient!

Thank you!



