
Curves and Fields for 
Efficient Cryptographic Pairings

Michael Naehrig

XCG Cryptography Research Group

Microsoft Research

Pacific Northwest Number Theory Conference 2013

Seattle, 1 June 2013



Public-Key Cryptography

• Diffie-Hellman key agreement (1976)

• Cyclic group (𝐺, +), 𝐺 = 𝑃 , prime order r = 𝐺

• 𝑚 𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃

𝑚 times

Alice Bob

𝑃𝐴

𝑃𝐵

K = 𝑎 𝑃𝐵 = 𝑏 𝑃𝐴 = 𝑎𝑏 𝑃

Secret 𝑎 ∈ 𝐙/𝑟𝐙 Secret 𝑏 ∈ 𝐙/𝑟𝐙
𝑃𝐴 = 𝑎 𝑃 𝑃𝐵 = 𝑏 𝑃

𝑃𝐵 = 𝑏 𝑃 𝑃𝐴 = 𝑎 𝑃



Public-Key Cryptography

• Cyclic group (𝐺, +), 𝐺 = 𝑃 , prime order r = 𝐺 ,

• Diffie-Hellman Problem (DHP) in 𝐺 : 

given PA = 𝑎 𝑃 and PB = 𝑏 𝑃, find 𝑎𝑏 𝑃.

• Discrete Logarithm Problem (DLP) in 𝐺 : given PA = 𝑎 𝑃, find 𝑎.

• For security, DHP/DLP in 𝐺 must be computationally infeasible.

Bob

𝑃𝐴

𝑃𝐵

K = 𝑎 𝑃𝐵 = 𝑏 𝑃𝐴 = 𝑎𝑏 𝑃

Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

𝑃𝐵 = 𝑏 𝑃 𝑃𝐴 = 𝑎 𝑃



Three-Party Key Agreement

Charlie
Secret c ∈ 𝐙/𝑟𝐙
𝑃𝐶 = 𝑐 𝑃

𝑃𝐴

𝑃𝐵

𝑃𝐵

1st round

• Extension to three participants needs two communication rounds

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

Bob
Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃

𝑃𝐵 = 𝑏 𝑃
𝑎 𝑃𝐵 = 𝑎𝑏 𝑃

𝑃𝐴 = 𝑎 𝑃 𝑃𝐵 = 𝑏 𝑃

[𝑐]𝑃𝐴= 𝑎𝑐 𝑃

[𝑐]𝑃𝐵= 𝑏𝑐 𝑃



Three-Party Key Agreement

𝑃𝐴 = 𝑎 𝑃 𝑃𝐵 = 𝑏 𝑃

𝑃𝐵 = 𝑏 𝑃
𝑎 𝑃𝐵 = 𝑎𝑏 𝑃

𝑎𝑏 𝑃

[𝑐]𝑃𝐴= 𝑎𝑐 𝑃

[𝑐]𝑃𝐵= 𝑏𝑐 𝑃

𝑎𝑐 𝑃

K = abc P = 𝑎 𝑏𝑐 𝑃
= 𝑐 𝑎𝑏 𝑃 = 𝑏 𝑎𝑐 𝑃

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

Bob
Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃

𝑏𝑐 𝑃

Charlie
Secret c ∈ 𝐙/𝑟𝐙
𝑃𝐶 = 𝑐 𝑃

2nd round

• Extension to three participants needs two communication rounds



Three-Party Key Agreement (Joux, 2000)

Charlie
Secret c ∈ 𝐙/𝑟𝐙
𝑃𝐶 = 𝑐 𝑃

𝑃𝐴

𝑃𝐵

𝑃𝐵

• If we have a bilinear map  𝑒: 𝐺 × 𝐺 → 𝐺3 ,

where (𝐺3,⋅) is a cyclic group of prime order, and 𝑒 𝑃, 𝑃 ≠ 1:

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

Bob
Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃
𝑃𝐴

𝑃𝐶𝑃𝐶

𝑃𝐶 = 𝑐 𝑃 𝑃𝐶 = 𝑐 𝑃
𝑃𝐴 = 𝑎 𝑃

𝑃𝐴 = 𝑎 𝑃
𝑃𝐵 = 𝑏 𝑃

𝑃𝐵 = 𝑏 𝑃

K = 𝑒 𝑃, 𝑃 𝑎𝑏𝑐

= 𝑒 𝑏 𝑃, 𝑐 𝑃 𝑎

= 𝑒 𝑎 𝑃, 𝑐 𝑃 𝑏

= 𝑒 𝑎 𝑃, 𝑏 𝑃 𝑐



Three-Party Key Agreement (Joux, 2000)

• Bilinear Diffie-Hellman (BDH) problem: 

Given P, 𝑎 𝑃, 𝑏 𝑃, 𝑐 𝑃 ∈ 𝐺, find 𝑒 𝑃, 𝑃 𝑎𝑏𝑐.

• BDHP must be computationally infeasible.

Charlie
Secret c ∈ 𝐙/𝑟𝐙
𝑃𝐶 = 𝑐 𝑃

𝑃𝐴

𝑃𝐵

𝑃𝐵

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

Bob
Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃
𝑃𝐴

𝑃𝐶𝑃𝐶

𝑃𝐶 = 𝑐 𝑃 𝑃𝐶 = 𝑐 𝑃
𝑃𝐴 = 𝑎 𝑃

𝑃𝐴 = 𝑎 𝑃
𝑃𝐵 = 𝑏 𝑃

𝑃𝐵 = 𝑏 𝑃

K = 𝑒 𝑃, 𝑃 𝑎𝑏𝑐

= 𝑒 𝑏 𝑃, 𝑐 𝑃 𝑎

= 𝑒 𝑎 𝑃, 𝑐 𝑃 𝑏

= 𝑒 𝑎 𝑃, 𝑏 𝑃 𝑐



Three-Party Key Agreement (Joux, 2000)

Charlie
Secret c ∈ 𝐙/𝑟𝐙
𝑄𝐶 = 𝑐 𝑄

𝑃𝐴

𝑃𝐵

𝑄𝐵

• If we have a bilinear map  𝑒: 𝐺1 × 𝐺2 → 𝐺3 ,  

where (𝐺3,⋅) is a cyclic group of prime order, and 𝑒 𝑃, 𝑄 ≠ 1:

Alice
Secret 𝑎 ∈ 𝐙/𝑟𝐙

𝑃𝐴 = 𝑎 𝑃

Bob
Secret 𝑏 ∈ 𝐙/𝑟𝐙

𝑃𝐵 = 𝑏 𝑃, 𝑄𝐵 = 𝑏 𝑄
𝑃𝐴

𝑄𝐶𝑄𝐶

𝑄𝐶 = 𝑐 𝑄 𝑄𝐶 = 𝑐 𝑄
𝑃𝐴 = 𝑎 𝑃

𝑃𝐴 = 𝑎 𝑃
𝑄𝐵 = 𝑏 𝑄

𝑃𝐵 = 𝑏 𝑃

K = 𝑒 𝑃, 𝑄 𝑎𝑏𝑐

= 𝑒 𝑏 𝑃, 𝑐 𝑄 𝑎

= 𝑒 𝑎 𝑃, 𝑐 𝑄 𝑏

= 𝑒 𝑎 𝑃, 𝑏 𝑃 𝑐



Short Digital Signatures (Boneh-Lynn-Shacham, 2000)

• System parameters: a pairing 𝑒: 𝐺1 × 𝐺2 → 𝐺3 , 𝑃 ∈ 𝐺1, 𝑄 ∈ 𝐺2,

and a cryptographic hash function 𝐻: 0,1 ∗ → 𝐺1

• Alice’s private key: 𝑥𝐴 ∈ 𝐙/𝑟𝐙, public key: 𝑄𝐴 = [𝑥𝐴]𝑄 ∈ 𝐺2

• Signature of message 𝑀 ∈ 0,1 ∗: 𝜎 = 𝑥𝐴 𝐻 𝑀 ∈ 𝐺1

• Verification: check whether 𝑒 𝜎, 𝑄 = 𝑒(𝐻 𝑀 ,𝑄𝐴)

• Correctness: 

𝑒 𝜎, 𝑄 = 𝑒 𝑥𝐴 𝐻 𝑀 ,𝑄 = 𝑒(𝐻 𝑀 , 𝑥𝐴 𝑄) = 𝑒(𝐻 𝑀 ,𝑄𝐴)

• Only half the size of (EC)DSA signatures for same security



Many More Interesting Applications…

• Non-interactive key agreement (Sakai-Ohgishi-Kasahara, 2000)

• Identity-based encryption (Boneh-Franklin, 2001)

• Attribute-based encryption (Sahai-Waters, 2004)

• Non-interactive zero-knowledge proofs (Groth-Sahai, 2008)

• Anonymous credentials (Belenkiy et al., 2009)

• Verifiable computation (Gentry-Howell-Parno-Raykova, 2013)



Realizing Cryptographic Pairings

• Need quite large groups 𝐺1, 𝐺2, 𝐺3
s.t. solving DLP in all groups is computationally infeasible

• Need a pairing 𝑒: 𝐺1 × 𝐺2 → 𝐺3

• Efficiency: need fast exponentiations in 𝐺1, 𝐺2, 𝐺3
and fast algorithm to compute the pairing

• There are different notions of practicality

Need security and good performance! 

Slow crypto will not be used!



Elliptic Curves over Finite Fields

• …have been used to provide groups for DL-based systems before

(proposed by Miller and Koblitz in 1985, 

standardized for use in real-world applications)

• …have algorithms for efficient exponentiations in these groups

• …have undergone extensive cryptanalysis to build confidence in 

their security

• …have a pairing that maps two points to a finite field element



Elliptic Curves over Finite Fields

• 𝐅𝑞 finite field, 𝐸 an elliptic curve over 𝐅𝑞

• If char 𝑞 ∉ 2,3 , 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐅𝑞

• 𝐸 𝐅𝑞 = 𝑥, 𝑦 ∈ 𝐅𝑞
2: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 ∪ ∞

is an Abelian group with neutral element ∞

• 𝑛 = #𝐸 𝐅𝑞 = 𝑞 + 1 − 𝑡, 𝑡 ≤ 2 𝑞

• Choose field and curve parameters s.t. 𝑛 = #𝐸 𝐅𝑞 has a large 
prime divisor 𝑟, use the group 𝐺 = 〈𝑃〉, where ord 𝑃 = 𝑟
and s.t. solving DLP is infeasible



The Tate Pairing

𝐸/𝐅𝑞 elliptic curve, 𝑟 a prime divisor of 𝑛 = #𝐸 𝐅𝑞

𝑡𝑟: 𝐺1 × 𝐺2 → 𝐺3, 𝑃, 𝑄 ↦ 𝑓𝑟,𝑃 𝑄 (𝑞𝑘−1)/𝑟

Embedding degree: smallest integer 𝑘 such that 𝑟 ∣ 𝑞𝑘 − 1

For 𝑘 > 1, 𝑟-torsion group E r ⊂ 𝐸 𝐅𝑞𝑘

• 𝐺1 = 〈𝑃〉 = 𝐸 𝐅𝑞 𝑟 , 𝐺2 = 〈𝑄〉 = 𝐸 𝐅𝑞𝑘 𝑟 , ∞ ≠ 𝑃,𝑄 ∉ 𝐸(𝐅𝑞)

• 𝐺3 = 𝜇𝑟 ⊂ 𝐅
𝑞𝑘
∗ , group of 𝑟-th roots of unity



Optimal Pairings

In practice, compute variants of the Tate pairing:

• 𝐸/𝐅𝑞 elliptic curve, 𝑟 a prime divisor of 𝑛 = #𝐸 𝐅𝑞 , 𝑘 even

• Use a twist 𝐸′ of 𝐸: 𝜓:𝐸′ → 𝐸 twisting isomorphism over 𝐅𝑞𝑘

𝐺2
′ = 〈𝑄′〉 = 𝐸′ 𝐅𝑞𝑒 𝑟 , ∞ ≠ 𝑄′, where 𝜓 𝑄′ = 𝑄, 𝑒 ∈ {

𝑘

2
,
𝑘

4
,
𝑘

6
}

(depending on 𝑗(𝐸)) 

• Replace function 𝑓𝑟,𝑃(𝑄) by 𝑔𝑚,𝑄′(P) of smaller degree 

(for a suitable 𝑚 ∈ 𝐙)

𝑎opt: 𝐺2
′ × 𝐺1 → 𝐺3, 𝑄

′, 𝑃 ↦ 𝑔𝑚,𝑄′ 𝑃
(𝑝𝑘−1)/𝑟



Components of Miller’s Algorithm

• Build function 𝑔𝑚,𝑄′(𝑃) iteratively in Miller loop 

from DBL/ADD steps (while computing 𝑚 𝑄′)  

DBL ADD computation

𝑙𝑅′,𝑅′(𝑃) 𝑙𝑅′,𝑄′(𝑃)
Coefficients in 𝐅𝑞𝑒, 

evaluated at P ∈ 𝐸(𝐅𝑞)

𝑅′ ← 2 𝑅′ 𝑅′ ← 𝑅′ + 𝑄′ Curve arithmetic in 𝐸′ 𝐅𝑞𝑒

𝑓 ← 𝑓2 ⋅ 𝑙𝑅′,𝑅′(𝑃) 𝑓 ← 𝑓 ⋅ 𝑙𝑅′,𝑄′(𝑃)
General squaring, special 

mult. in 𝐅𝑞𝑘

• Final exponentiation to the power  (𝑞𝑘 − 1)/𝑟 can use Frobenius

automorphism and arithmetic in special subgroups of 𝐅
𝑞𝑘
∗



Minimal Requirements for Security

• Hardness of DLP measured by runtime of best known algorithms

• Security level of 𝜆 bits: best algorithm needs 2𝜆 operations

• Elliptic Curve Groups: Pollard-𝜌 (generic algorithm) 

random walk through group 𝐺 with 𝐺 = 𝑟
expected number of steps before collision occurs: ≈ 𝑟
i.e. for 128 bits of security, group order must be around 256 bits

• Finite Field Group: Index Calculus algorithm (uses field structure)

similar to factoring algorithms, uses a factor base of “small” elements,

sub-exponential algorithm ⇒ much larger field sizes required

• Recent work by Joux, significant improvement for binary field extensions

lowering asymptotic complexity



Minimal Requirements for Security

• Take 𝑘 as small as possible, but DLP must be infeasible in all groups

• 𝜌 = log 𝑞 /log(𝑟)

Security 

level (bits)

EC group order 

Size of 𝑟 (bits)

Extension field size 

Size of qk (bits)

Ratio 𝜌 ⋅ 𝑘

128 256 3072 12

192 384 7680 20

256 512 15360 30

NIST recommendations for key sizes (2012)

log(𝑟)

log 𝑞 =𝜌log(𝑟)

log 𝑞𝑘 =𝜌𝑘 ⋅ log(𝑟)



Balanced Parameter Choice

• 𝜌 = log 𝑞 /log(𝑟), 𝜌𝑘 ⋅ log 𝑟 = log 𝑞𝑘

• If 𝜌 is too large, 𝑞 is larger than necessary.

• If 𝜌𝑘 is too large, 𝑞𝑘is larger than necessary.

• If 𝜌𝑘 is too small, 𝑟 is larger than necessary.

Security 

level (bits)

EC group order 

Size of 𝑟 (bits)

Extension field size 

Size of qk (bits)

Ratio 𝜌 ⋅ 𝑘

128 256 3072 12

192 384 7680 20

256 512 15360 30

NIST recommendations for key sizes (2012)

security

𝑟 𝑞𝑘

𝑞𝑘

𝑞𝑘

𝑟

𝑟

min

min

min

𝜌𝑘 too large

𝜌𝑘 too small

𝜌𝑘 good



Pairings on supersingular elliptic curves are efficient 
(Menezes-Okamoto-Vanstone, 1993 and Frey-Rueck, 1994)

• 𝑘 ≤ 6 (only suitable for low security)

• If char 𝐅𝑞 > 3, then 𝑘 ≤ 2

Reducing discrete logarithms via pairings: 
For 𝑃 ∈ 𝐺1 there exists 𝑄 ∈ 𝐺2 with 𝑒 𝑃, 𝑄 ≠ 1

• The map 𝐺1 → 𝐺3, 𝑃 ↦ 𝑒(𝑃, 𝑄) is a group isomorphism

• Solve DLP 𝑃𝐴 = [𝑎]𝑃 in 𝐺1 by solving DLP 𝑔𝐴 = 𝑒 𝑃, 𝑄 𝑎 in 𝐺3

Supersingular Elliptic Curves



Pairing-Friendly Curves

The embedding degree of an ordinary elliptic curve is large in general.
(𝑘 is the order of 𝑞 mod 𝑟)

• No chance of finding small 𝑘 by random search.

Find primes 𝑝, 𝑟 and an integer 𝑛 as follows

• 𝑛 = 𝑝 + 1 − 𝑡, 𝑡 ≤ 2 𝑝, 𝑡 ≠ 0

• 𝑟 ∣ 𝑛

• 𝑟 ∣ 𝑝𝑘 − 1 for small 𝑘 or 𝑟 ∣ Φ𝑘(𝑝) (𝑘-th cyclotomic polynomial)

• 𝑡2 − 4𝑝 = 𝐷𝑣2 < 0, 𝐷 small enough to compute the Hilbert class 

polynomial in 𝐐( 𝐷)



Polynomial Parameterizations

Best pairing-friendly curves come from polynomial families 

• Parameterize 𝑝, 𝑟, 𝑡 by polynomials 𝑝 𝑥 , 𝑟 𝑥 , 𝑡 𝑥 ∈ 𝐐 𝑥
that satisfy the above conditions

• Define rho value for a family 𝜌 = deg 𝑝 /deg(𝑟)

• Look at factorization of Φ𝑘(𝑝(𝑥)) or Φ𝑘(𝑡 𝑥 − 1) for low-degree 

candidates for 𝑝(𝑥) or 𝑡 𝑥 of the right degree

• Take 𝑟(𝑥) to be one of the factors 

• Hope for the CM equation to be nice



Example
𝑘 = 12 Φ12 𝑥 = 𝑥4 − 𝑥2 + 1

Φ12 𝑡 𝑥 − 1 = Φ12 6𝑥2 = 𝑛 𝑥 𝑛(−𝑥),
where 𝑛(𝑥) = 36𝑥4 + 36𝑥3 + 18𝑥2 + 6𝑥 + 1

𝑡 𝑥 = 6𝑥2 + 1

𝑝 𝑥 = 𝑛 𝑥 + 𝑡 𝑥 − 1 = 36𝑥4 + 36𝑥3 + 24𝑥2 + 6𝑥 + 1

𝑡 𝑥 2 − 4𝑝 𝑥 = −3 6𝑥2 + 4𝑥 + 1 2

𝑗(𝐸) = 0

Set 𝑟 𝑥 = 𝑛 𝑥

𝜌 = 1 𝐷 = −3

𝐸: 𝑦2 = 𝑥3 + 𝑏



Families of Pairing-Friendly Curves

𝜆 Family 𝑘 𝑝(𝑥) 𝑟(𝑥) 𝑡(𝑥)
128 BN 

(Barreto-N., 2005)

12 36𝑥4 + 36𝑥3 + 24𝑥2 + 6𝑥 + 1 36𝑥4 + 36𝑥3 + 18𝑥2 + 6𝑥 + 1 6𝑥2 + 1

192 BLS 
(Barreto-Lynn-Scott, 2002)

12 𝑥 − 1 2 𝑥4 − 𝑥2 + 1 /3 + 𝑥 𝑥4 − 𝑥2 + 1 𝑥 + 1

192 KSS 
(Kachisa-Schaefer-Scott, 2008)

18 (𝑥8 + 5𝑥7 + 7𝑥6 + 37𝑥5 + 188𝑥4

+ 259𝑥3 + 343𝑥2 + 1763𝑥 + 2401)/21
(𝑥4 + 16𝑥2 + 7)/7 (𝑥6 + 37𝑥3

+ 343)/73

256 BLS 
(Barreto-Lynn-Scott, 2002)

24 𝑥 − 1 2 𝑥8 − 𝑥4 + 1 /3 + 𝑥 𝑥8 − 𝑥4 + 1 𝑥 + 1

All examples below have 𝑗(𝐸) = 0, 
• 𝑒 = 𝑘/6 (minimal fields for twist group 𝐺2

′ )
• 𝐸: 𝑦2 = 𝑥3 + 𝑏



Families of Pairing-Friendly Curves

𝜆 Family 𝑘 𝜌 𝜌𝑘 log(𝑟) log(𝑝) 𝑢
128 BN 

(Barreto-N., 2005)

12 1 12 254 254 −(262 + 255 + 1)

192 BLS 
(Barreto-Lynn-Scott, 2002)

12 1.25 15 424 635 2106 − 272 + 269 − 1

192 KSS 
(Kachisa-Schaefer-Scott, 2008)

18 1.33 24 376 508 264 − 251 + 247 + 228

256 BLS 
(Barreto-Lynn-Scott, 2002)

24 1.25 30 504 629 263 − 247 + 238

To find specific curves, search for an integer 𝑢 such that 
• 𝑝 𝑢 , 𝑟(𝑢) are both prime

• Try different 𝑏 until 𝐸: 𝑦2 = 𝑥3 + 𝑏 has a point of order 𝑟



Field Extensions

• Construct degree-6 extension as

𝐅𝑝𝑘 = 𝐅𝑝𝑘/6(𝑧), 𝑧
6 = 𝜉

𝐅𝑝𝑘/2 = 𝐅𝑝𝑘/6(𝑣), 𝑣
3 = 𝜉

• Use monomials with small constants for all field 

extensions

• 𝑝 ≡ 3 mod 4: 𝐅𝑝2 = 𝐅𝑝(𝑖), 𝑖
2 = −1

𝛼0 + 𝑖𝛼1 ⋅ 𝛽0 + 𝑖𝛽1
= 𝛼0 ⋅ 𝛽0 − 𝛼1 ⋅ 𝛽1 + 𝑖 𝛼0 ⋅ 𝛽1 +𝛼1 ⋅ 𝛽0

• Karatsuba multiplication (only 3 mults)
𝛼0𝛽1 + 𝛼1𝛽0 = 𝛼0 + 𝛼1 𝛽0 + 𝛽1 − 𝛼0𝛽0 − 𝛼1𝛽1

𝐅𝑝𝑘

𝐅𝑝𝑘/6

𝐅𝑝

𝐅𝑝𝑘/2

3

2

𝐅𝑝 𝐅𝑝

𝐅𝑝2 𝐅𝑝3

32

𝐅𝑝4

𝐅𝑝2

𝐅𝑝

2

2
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Field Extensions 𝐅𝑝𝑘

𝐅𝑝𝑘/6

𝐅𝑝

𝐅𝑝𝑘/2

3

2

𝐅𝑝 𝐅𝑝

𝐅𝑝2 𝐅𝑝3

32

𝐅𝑝4

𝐅𝑝2

𝐅𝑝

2

2

Lazy reduction:

• Choose 𝑝 of size a few bits smaller than multiple 

of machine word size (e.g. 64)

• Separate modular multiplication from modular 

reduction and postpone reduction until after 

following additions/subtractions

• Example: Do not reduce (3 reductions) 

𝛼0𝛽0, 𝛼1𝛽1, 𝛼0 + 𝛼1 𝛽0 + 𝛽1
• instead keep double precision for adds/subs

and reduce (2 reductions)

𝛼0𝛽0 − 𝛼1𝛽1 , 𝛼0 + 𝛼1 𝛽0 + 𝛽1 − 𝛼0𝛽0 − 𝛼1𝛽1
• Carry up in the tower

BN
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The Final Exponentiation

Exponent c =
𝑝𝑘−1

𝑟
, log 𝑐 ≈ 𝑘 − 1 log(𝑝)

Assume 𝑘 even: c = (𝑝𝑘/2 − 1)
𝑝𝑘/2+1

𝑟

𝑘 = 12: 
𝑝12−1

𝑟
= (𝑝6 − 1)(𝑝2 + 1)

𝑝4−𝑝2+1

𝑟

• Use Frobenius: 𝑓𝑐 = [(𝑓𝑝
6
𝑓−1)𝑝

2
(𝑓𝑝

6
𝑓−1)]

𝑝4−𝑝2+1

𝑟

•
𝑝4−𝑝2+1

𝑟
= 𝜆3𝑝

3 + 𝜆2𝑝
2 + 𝜆1𝑝 + 𝜆0, |𝜆𝑖| < 𝑝, 𝜆𝑖 = 𝜆𝑖 𝑢 , deg 𝜆𝑖 𝑥 ≤ 3

This part can be done with 3 exponentiations by 𝑢, some Frobenius
applications and some multiplications and squarings

• Note: After exp by 𝑝6 − 1 , elts have norm 1, i.e. 𝑓−1 = 𝑓𝑝
6
=  𝑓



The Final Exponentiation

• Actual exponentation work: 3 exponentiations by 𝑢,
≈ 3log(𝑝) instead of ≈ 11log(𝑝)

• Usually, 𝑢 can be chosen very sparse, i.e. exponentiation is almost 

only squarings

• After exp by 𝑝6 − 1 𝑝2 + 1 , result is in cyclotomic subgroup of 

𝐅
𝑝𝑘
∗ , i.e. these squarings cost only ≈ 50% of the original squarings

• Still, this exponentiation is more than half the cost of a pairing



Exponentiations in Pairing Groups

Often protocols use only few pairings, but many exponentiations in 

𝐺1 and/or 𝐺2
′

• Important to speed up those as much as possible

• Use endomorphisms in curve groups (GLV/GLS methods and 

precomputations)

• Endomorphisms give certain multiples of curve points for free 

Example: 𝐸/𝐅𝑝: 𝑦
2 = 𝑥3 + 𝑏, 𝑝 ≡ 1 mod 3, 

has endomorph. 𝜙: 𝑥, 𝑦 ↦ (𝜁𝑥, 𝑦), 𝜁3 = 1, 𝜁 ≠ 1 and 

𝜙 𝑃 = 𝜆 𝑃 for some 𝜆 ∈ 𝐙/𝑟𝐙, 𝜆2 + 𝜆 + 1 ≡ 0 mod 𝑟



Efficiency of Pairings 

• Ten years ago pairings were considered too slow for practical use

• At 128-bit security, efficiency gain of factor 50 (within last 6 years) 

Current speed record is <0.5ms per pairing on AMD Phenom II

Within factor 10 of cost for exponentiations in curve groups 

• Careful parameter choice is important

Pairings are efficient!

Thank you! mnaehrig@microsoft.com


