ML Confidential Machine Learning on Encrypted Data

Michael Naehrig

Microsoft Research mnaehrig@microsoft.com

joint work with Thore Graepel (MSR Cambridge) and Kristin Lauter

Crypto Group Lunch, 27 July 2012

A simple machine learning task

Supervised learning

- Goal: derive a function from labelled training data
- Function can "reasonably" label test data according to the experience learned from the training data
- A simple example: binary classification
 - ► Given a set *T* of *m* samples of labelled training data $(\mathbf{x}, y_{\mathbf{x}}) \in \mathbb{R}^n \times Y$, where $Y = \{-1, 1\}$
 - ► derive a function f : ℝⁿ → Y that labels a test vector x by a "reasonable" y_x = f(x)

Linear Means classifier

Divide training data T into classes T₊₁ and T₋₁ according to their label

$$T_{\pm 1} = \{ \mathbf{x} \in T \mid y_{\mathbf{x}} = \pm 1 \}, \quad m_{\pm 1} = |T_{\pm 1}|$$

Compute class-conditional mean vectors

$$\mathbf{m}_{+1} = \frac{1}{m_{+1}} \sum_{\mathbf{x} \in T_{+1}} \mathbf{x} = \frac{\mathbf{s}_{+1}}{m_{+1}}, \quad \mathbf{m}_{-1} = \frac{1}{m_{-1}} \sum_{\mathbf{x} \in T_{-1}} \mathbf{x} = \frac{\mathbf{s}_{-1}}{m_{-1}}$$

- Compute difference vector $\mathbf{w}^* = \mathbf{m}_{+1} \mathbf{m}_{-1}$
- and mid-point between means $\mathbf{x}_0 = (\mathbf{m}_{+1} + \mathbf{m}_{-1})/2$
- define a hyperplane between the means, "separating" the two classes

Linear Means classifier

The score function (given a test vector $\mathbf{x} \in \mathbb{R}^n$) is:

$$f^*(\mathbf{x}; \mathbf{w}^*, c^*) = \mathbf{w}^{*T}\mathbf{x} - c^*$$

• where
$$c^* = \mathbf{w}^{*T}\mathbf{x}_0$$

- classification $y_{\mathbf{x}} = \operatorname{sign}(f^*(\mathbf{x}; \mathbf{w}^*, c^*))$
- ▶ f* is linear in x, quadratic in training data (considering the numbers m₊₁ and m₋₁ to be constants)

Polynomial learning algorithm

Definition: A learning algorithm

 $A: (\mathbb{R}^n \times \mathcal{Y})^m \times \mathbb{R}^n \to \mathcal{Y}$

is called *polynomial of degree* d if it is a polynomial of degree d in its arguments (including training data).

 Linear Means classifier is polynomial of degree 2 (if we consider m₊₁ and m₋₁ to be constants) (if we forget about the sign)

In a division-free world

Imagine you haven't yet learned how to divide real numbers... You only know how to add, subtract and multiply.

- Come up with algorithms that avoid division
- multiply through with all denominators
- keep denominators separate

same idea: projective coordinates for elliptic curve arithmetic

cost: more multiplications

Division-Free Linear Means classifier

 $\blacktriangleright \text{ Replace means } \mathbf{m}_{\pm 1} \text{ by }$

$$m_{-1} \cdot \sum_{\mathbf{x} \in T_{+1}} \mathbf{x} = m_{-1} \mathbf{s}_{+1}, \quad m_{+1} \cdot \sum_{\mathbf{x} \in T_{-1}} \mathbf{x} = m_{+1} \mathbf{s}_{-1}$$

- ▶ and compute $\tilde{\mathbf{w}}^* := m_{-1}\mathbf{s}_{+1} m_{+1} \cdot \mathbf{s}_{-1} = m_{+1}m_{-1}(\mathbf{m}_{+1} \mathbf{m}_{-1}) = m_{+1} \cdot m_{-1}\mathbf{w}^*$
- ► replace c^* by $\tilde{c}^* = 2m_{+1}^2m_{-1}^2c^*$ using $\tilde{\mathbf{x}}_0 := m_{-1}\mathbf{s}_{+1} + m_{+1}\mathbf{s}_{-1} = 2m_{+1}m_{-1}\mathbf{x}_0$
- get new score function

$$\tilde{f}^*(\mathbf{x}; \tilde{\mathbf{w}}^*, \tilde{c}^*) := 2m_{+1}m_{-1}\tilde{\mathbf{w}}^{*T}\mathbf{x} - \tilde{c}^* = 2m_{+1}^2m_{-1}^2f^*(\mathbf{x}; \mathbf{w}^*, c^*)$$

- result has the same sign as original score
- work with suitable multiples of the original values

In an integer world

Imagine you don't know real numbers, only integers...

- Represent all real data by integers
- normalize: shift mean to 0 and divide by standard deviation
- fix required precision
- move decimal point to the right, accordingly
- round to the nearest integer

 $[18.94, 21.31, 123.6, 1130, 0.09009, 0.1029, 0.108, 0.07951, 0.1582, 0.05461 \\ \downarrow \\ [126, 43, 117, 133, -91, -39, -9, 41, -113, -123]$

ML Confidential

The world of Somewhat Homomorphic Encryption (SHE)

- Can only use integer messages (polynomials with integer coefficients)
- can not divide
- can not compare
- multiplication is extremely expensive
- But can do
 - division-free
 - integer
 - Iow-degree polynomial

learning algorithms under SHE

(No FHE, because bootstrapping, modulus switching, key switching are too painful and maybe not really necessary)

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

- ► Consider ring $R = \mathbb{Z}[x]/(f(x))$, $f(x) = x^d + 1$, $d = 2^k$
- Work in $R_q = R/qR$, q a power of 2
- Message space: $R_t = \mathbb{Z}_t[x]/(f(x)), t$ a power of 2
- $\blacktriangleright \ \Delta = q/t$
- discrete Gaussian $\chi = D_{\mathbb{Z}^d,\sigma}$

SH.Keygen

Sample small $s \leftarrow \chi$, secret key sk = s.

Sample RLWE instance:

Sample $a_1 \leftarrow R_q$ unif. rand., small error $e \leftarrow \chi$.

Public key

▶ pk =
$$(a_0 = -(a_1s + e), a_1)$$
.

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

SH.Enc

Given $pk = (a_0, a_1)$ and a message $m \in R_q$,

▶ sample
$$u \leftarrow \chi$$
, and $f, g \leftarrow \chi$,

Set ciphertext

►
$$ct = (c_0, c_1) := (a_0u + g + \Delta m, a_1u + f).$$

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

SH.Dec

Given sk = s and a ciphertext $ct = (c_0, c_1)$,

- compute $\widetilde{m} = c_0 + c_1 s \in R_q$
- ▶ lift to integer coefficients, compute $\widetilde{m} \cdot t/q$
- round to nearest integer and reduce mod t

Correctness:

$$\widetilde{m} = c_0 + c_1 s = (a_0 u + g + \Delta m) + (a_1 u + f) s$$

= $-(a_1 s + e)u + g + \Delta m + a_1 u s + f s$
= $\Delta m + (g + f s - eu).$

Then $\widetilde{m} \cdot t/q = m + (g + fs - eu)t/q$, rounding gives back m.

Homomorphic operations

SH.Add

Given $ct = (c_0, c_1)$ and $ct' = (c'_0, c'_1)$, set the new ciphertext

►
$$\operatorname{ct}_{\operatorname{add}} = (c_0 + c'_0, c_1 + c'_1)$$

= $(a_0(u + u') + (g + g') + \Delta(m + m'), a_1(u + u') + (f + f')).$

SH.Mult

Given $\mathsf{ct} = (c_0, c_1)$ and $\mathsf{ct}' = (c_0', c_1')$,

• compute $(c_0 + c_1 X)(c'_0 + c'_1 X) = c_0 c'_0 + (c_0 c'_1 + c'_0 c_1) X + c_1 c'_1 X^2$ $= e_0 + e_1 X + e_2 X^2$ • ct_{mlt} = (|te_0/q], |te_1/q], |te_2/q])

Encoding integers

encode :
$$\mathbb{Z} \to R_t$$
, $z = \operatorname{sign}(z)(z_s, z_{s-1}, \dots, z_1, z_0)_2$
 $\mapsto m_z = \operatorname{sign}(z)(z_0 + z_1x + \dots + z_sx^s) \mod t$.

- Homomorphic properties w.r.t. R_t , i.e. mod t and $x^d + 1$
- avoid reduction mod t and mod x^d + 1 to ensure meaningful computations
- need t and d large enough (or integers small enough)
- decode : $R_t \to \mathbb{Z}, \ m(x) \mapsto m(2)$
- redundant representation

►
$$m_{11}(x) = 1 + x + x^3, m_{13}(x) = 1 + x^2 + x^3,$$

 $(m_{11} + m_{13})(x) = 2 + x + x^2 + 2x^3, (m_{11} + m_{13})(2) = 24$

DFI-LM experiments

$$(P_1) q = 2^{128}, t = 2^{15}, \sigma = 16, d = 4096$$

SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
156	379	29	52	1	106

Timing in ms in Magma on a single core of an Intel Core i5 CPU650 @ 3.2 GHz. 128-bit security with distinguishing advantage 2^{-64} .

data	# features	algorithm	train	classify
surrogate	2	linear means	230	235
Iris	4	linear means	510	496

not measuring encryption, communication, decryption. "train": time for training phase, i.e. to compute classifier from encrypted training data. "classify": time for classifying a test vector.

Surrogate data set

Fisher's Linear Discriminant classifier

 Same score function as LM, but hyperplane takes into account class-conditional covariance

• change \mathbf{w}^* to $\mathbf{w}^* = C^{-1}(\mathbf{m}_{+1} - \mathbf{m}_{-1}), C = C_{+1} + C_{-1}$

$$\mathbf{C}_{\pm 1} := \frac{1}{m_{\pm 1}} \sum_{x \in T_{\pm 1}} (\mathbf{x} - \mathbf{m}_{\pm 1}) (\mathbf{x}_i - \mathbf{m}_{\pm 1})^T$$

- approximate \mathbf{w}^* by gradient descent when minimizing $E(\mathbf{w}) := \frac{1}{2} ||\mathbf{C}\mathbf{w} (\mathbf{m}_{+1} \mathbf{m}_{-1})||^2$
- gradient of *E* is $\nabla_{\mathbf{w}} E(\mathbf{w}) = \mathbf{C}\mathbf{w} (\mathbf{m}_{+1} \mathbf{m}_{-1})$
- ► iterate $\mathbf{w}_{j+1} = \mathbf{R}\mathbf{w}_j + \mathbf{a}, \ \mathbf{w}_0 = \mathbf{m}_{+1} \mathbf{m}_{-1},$ where $\mathbf{R} := \mathbf{I} - \eta \mathbf{C}, \ \mathbf{a} := \eta(\mathbf{m}_{+1} - \mathbf{m}_{-1})$
- ► can get DFI version working with multiples, numbers grow quickly → t large → q large

DFI-FLD experiments

$(P_2) q = 2^{252}, t = 2^{35}, \sigma = 8, d = 8192$ (128-bit security)					
SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
382	853	98	193	4	370

(P₃) $q = 2^{340}$, $t = 2^{40}$, $\sigma = 8$, d = 8192 (80-bit security)

(- / x					
SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
403	879	118	231	4	446

Surrogate data set, 2 features

algorithm	parameters	train	classify
1-step linear discriminant	(P_2)	58710	1490
2-step linear discriminant	(P_3)	74770	2680

All timings in ms.