ML Confidential Machine Learning on Encrypted Data

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

joint work with
Thore Graepel (MSR Cambridge) and Kristin Lauter

A simple machine learning task

Supervised learning

- Goal: derive a function from labelled training data
- Function can "reasonably" label test data according to the experience learned from the training data

A simple example: binary classification

- Given a set T of m samples of labelled training data $\left(\mathbf{x}, y_{\mathbf{x}}\right) \in \mathbb{R}^{n} \times Y$, where $Y=\{-1,1\}$
- derive a function $f: \mathbb{R}^{n} \rightarrow Y$ that labels a test vector \mathbf{x} by a "reasonable" $y_{\mathbf{x}}=f(\mathbf{x})$

Linear Means classifier

- Divide training data T into classes T_{+1} and T_{-1} according to their label

$$
T_{ \pm 1}=\left\{\mathbf{x} \in T \mid y_{\mathbf{x}}= \pm 1\right\}, \quad m_{ \pm 1}=\left|T_{ \pm 1}\right|
$$

- Compute class-conditional mean vectors

$$
\mathbf{m}_{+1}=\frac{1}{m_{+1}} \sum_{\mathbf{x} \in T_{+1}} \mathbf{x}=\frac{\mathbf{s}_{+1}}{m_{+1}}, \quad \mathbf{m}_{-1}=\frac{1}{m_{-1}} \sum_{\mathbf{x} \in T_{-1}} \mathbf{x}=\frac{\mathbf{s}_{-1}}{m_{-1}}
$$

- Compute difference vector $\mathbf{w}^{*}=\mathbf{m}_{+1}-\mathbf{m}_{-1}$
- and mid-point between means $\mathbf{x}_{0}=\left(\mathbf{m}_{+1}+\mathbf{m}_{-1}\right) / 2$
- define a hyperplane between the means, "separating" the two classes

Linear Means classifier

The score function (given a test vector $\mathrm{x} \in \mathbb{R}^{n}$) is:

$$
f^{*}\left(\mathbf{x} ; \mathbf{w}^{*}, c^{*}\right)=\mathbf{w}^{* T} \mathbf{x}-c^{*}
$$

- where $c^{*}=\mathbf{w}^{* T} \mathbf{x}_{0}$
- classification $y_{\mathbf{x}}=\operatorname{sign}\left(f^{*}\left(\mathbf{x} ; \mathbf{w}^{*}, c^{*}\right)\right)$
- f^{*} is linear in \mathbf{x}, quadratic in training data (considering the numbers m_{+1} and m_{-1} to be constants)

Polynomial learning algorithm

Definition: A learning algorithm

$$
A:\left(\mathbb{R}^{n} \times \mathcal{Y}\right)^{m} \times \mathbb{R}^{n} \rightarrow \mathcal{Y}
$$

is called polynomial of degree d if it is a polynomial of degree d in its arguments (including training data).

- Linear Means classifier is polynomial of degree 2 (if we consider m_{+1} and m_{-1} to be constants) (if we forget about the sign)

In a division-free world

Imagine you haven't yet learned how to divide real numbers. . .
You only know how to add, subtract and multiply.

- Come up with algorithms that avoid division
- multiply through with all denominators
- keep denominators separate
same idea: projective coordinates for elliptic curve arithmetic
- cost: more multiplications

Division-Free Linear Means classifier

- Replace means $\mathbf{m}_{ \pm 1}$ by

$$
m_{-1} \cdot \sum_{\mathbf{x} \in T_{+1}} \mathbf{x}=m_{-1} \mathbf{s}_{+1}, \quad m_{+1} \cdot \sum_{\mathbf{x} \in T_{-1}} \mathbf{x}=m_{+1} \mathbf{s}_{-1}
$$

- and compute $\tilde{\mathbf{w}}^{*}:=m_{-1} \mathbf{s}_{+1}-m_{+1} \cdot \mathbf{s}_{-1}=$

$$
m_{+1} m_{-1}\left(\mathbf{m}_{+1}-\mathbf{m}_{-1}\right)=m_{+1} \cdot m_{-1} \mathbf{w}^{*}
$$

- replace c^{*} by $\tilde{c}^{*}=2 m_{+1}^{2} m_{-1}^{2} c^{*}$ using $\tilde{\mathbf{x}}_{0}:=m_{-1} \mathbf{s}_{+1}+m_{+1} \mathbf{s}_{-1}=2 m_{+1} m_{-1} \mathbf{x}_{0}$
- get new score function

$$
\tilde{f}^{*}\left(\mathbf{x} ; \tilde{\mathbf{w}}^{*}, \tilde{c}^{*}\right):=2 m_{+1} m_{-1} \tilde{\mathbf{w}}^{* T} \mathbf{x}-\tilde{c}^{*}=2 m_{+1}^{2} m_{-1}^{2} f^{*}\left(\mathbf{x} ; \mathbf{w}^{*}, c^{*}\right)
$$

- result has the same sign as original score
- work with suitable multiples of the original values

In an integer world

Imagine you don't know real numbers, only integers...

- Represent all real data by integers
- normalize: shift mean to 0 and divide by standard deviation
- fix required precision
- move decimal point to the right, accordingly
- round to the nearest integer
[18.94, 21.31, 123.6, 1130, 0.09009, 0.1029, 0.108, 0.07951, 0.1582, 0.05461 \downarrow
$[126,43,117,133,-91,-39,-9,41,-113,-123]$

ML Confidential

The world of Somewhat Homomorphic Encryption (SHE)

- Can only use integer messages (polynomials with integer coefficients)
- can not divide
- can not compare
- multiplication is extremely expensive

But can do

- division-free
- integer
- low-degree polynomial
learning algorithms under SHE
(No FHE, because bootstrapping, modulus switching, key switching are too painful and maybe not really necessary)

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

- Consider ring $R=\mathbb{Z}[x] /(f(x)), f(x)=x^{d}+1, d=2^{k}$
- Work in $R_{q}=R / q R, q$ a power of 2
- Message space: $R_{t}=\mathbb{Z}_{t}[x] /(f(x)), t$ a power of 2
- $\Delta=q / t$
- discrete Gaussian $\chi=D_{\mathbb{Z}^{d}, \sigma}$

SH.Keygen

- Sample small $s \leftarrow \chi$, secret key sk $=s$.

Sample RLWE instance:

- Sample $a_{1} \leftarrow R_{q}$ unif. rand., small error $e \leftarrow \chi$.

Public key

- $\mathrm{pk}=\left(a_{0}=-\left(a_{1} s+e\right), a_{1}\right)$.

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

SH.Enc

Given $\mathrm{pk}=\left(a_{0}, a_{1}\right)$ and a message $m \in R_{q}$,

- sample $u \leftarrow \chi$, and $f, g \leftarrow \chi$,

Set ciphertext

- $\mathrm{ct}=\left(c_{0}, c_{1}\right):=\left(a_{0} u+g+\Delta m, a_{1} u+f\right)$.

Somewhat homomorphic encryption

(Fan, Vercauteren, 2012)

SH.Dec

Given sk $=s$ and a ciphertext ct $=\left(c_{0}, c_{1}\right)$,

- compute $\tilde{m}=c_{0}+c_{1} s \in R_{q}$
- lift to integer coefficients, compute $\widetilde{m} \cdot t / q$
- round to nearest integer and reduce $\bmod t$

Correctness:

$$
\begin{aligned}
\tilde{m}=c_{0}+c_{1} s & =\left(a_{0} u+g+\Delta m\right)+\left(a_{1} u+f\right) s \\
& =-\left(a_{1} s+e\right) u+g+\Delta m+a_{1} u s+f s \\
& =\Delta m+(g+f s-e u)
\end{aligned}
$$

Then $\widetilde{m} \cdot t / q=m+(g+f s-e u) t / q$, rounding gives back m.

Homomorphic operations

SH.Add

Given $\mathrm{ct}=\left(c_{0}, c_{1}\right)$ and $\mathrm{ct}^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$, set the new ciphertext

- $\mathrm{ct}_{\mathrm{add}}=\left(c_{0}+c_{0}^{\prime}, c_{1}+c_{1}^{\prime}\right)$

$$
=\left(a_{0}\left(u+u^{\prime}\right)+\left(g+g^{\prime}\right)+\Delta\left(m+m^{\prime}\right), a_{1}\left(u+u^{\prime}\right)+\left(f+f^{\prime}\right)\right)
$$

SH.Mult

Given $\mathrm{ct}=\left(c_{0}, c_{1}\right)$ and $\mathrm{ct}^{\prime}=\left(c_{0}^{\prime}, c_{1}^{\prime}\right)$,

- compute
$\left(c_{0}+c_{1} X\right)\left(c_{0}^{\prime}+c_{1}^{\prime} X\right)=c_{0} c_{0}^{\prime}+\left(c_{0} c_{1}^{\prime}+c_{0}^{\prime} c_{1}\right) X+c_{1} c_{1}^{\prime} X^{2}$ $=e_{0}+e_{1} X+e_{2} X^{2}$
- $\mathrm{ct}_{\mathrm{mlt}}=\left(\left\lfloor t e_{0} / q\right\rceil,\left\lfloor t e_{1} / q\right\rceil,\left\lfloor t e_{2} / q\right\rceil\right)$

Encoding integers

$$
\begin{aligned}
\text { encode }: \mathbb{Z} \rightarrow R_{t}, & z=\operatorname{sign}(z)\left(z_{s}, z_{s-1}, \ldots, z_{1}, z_{0}\right)_{2} \\
& \mapsto m_{z}=\operatorname{sign}(z)\left(z_{0}+z_{1} x+\ldots+z_{s} x^{s}\right) \bmod t
\end{aligned}
$$

- Homomorphic properties w.r.t. R_{t}, i.e. $\bmod t$ and $x^{d}+1$
- avoid reduction $\bmod t$ and $\bmod x^{d}+1$ to ensure meaningful computations
- need t and d large enough (or integers small enough)
- decode : $R_{t} \rightarrow \mathbb{Z}, m(x) \mapsto m(2)$
- redundant representation
- $m_{11}(x)=1+x+x^{3}, m_{13}(x)=1+x^{2}+x^{3}$, $\left(m_{11}+m_{13}\right)(x)=2+x+x^{2}+2 x^{3},\left(m_{11}+m_{13}\right)(2)=24$

DFI-LM experiments

$\left(P_{1}\right) q=2^{128}, t=2^{15}, \sigma=16, d=4096$

SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
156	379	29	52	1	106

Timing in ms in Magma on a single core of an Intel Core i5 CPU650 @ 3.2 GHz. 128-bit security with distinguishing advantage 2^{-64}.

data	\# features	algorithm	train	classify
surrogate	2	linear means	230	235
Iris	4	linear means	510	496

not measuring encryption, communication, decryption. "train": time for training phase, i.e. to compute classifier from encrypted training data. "classify": time for classifying a test vector.

Surrogate data set

Fisher's Linear Discriminant classifier

- Same score function as LM, but hyperplane takes into account class-conditional covariance
- change \mathbf{w}^{*} to $\mathbf{w}^{*}=C^{-1}\left(\mathbf{m}_{+1}-\mathbf{m}_{-1}\right), C=C_{+1}+C_{-1}$

$$
\mathbf{C}_{ \pm 1}:=\frac{1}{m_{ \pm 1}} \sum_{x \in T_{ \pm 1}}\left(\mathbf{x}-\mathbf{m}_{ \pm 1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{ \pm 1}\right)^{T}
$$

- approximate w^{*} by gradient descent when minimizing $E(\mathbf{w}):=\frac{1}{2}\left\|\mathbf{C w}-\left(\mathbf{m}_{+1}-\mathbf{m}_{-1}\right)\right\|^{2}$
- gradient of E is $\nabla_{\mathbf{w}} E(\mathbf{w})=\mathbf{C w}-\left(\mathbf{m}_{+1}-\mathbf{m}_{-1}\right)$
- iterate $\mathbf{w}_{j+1}=\mathbf{R} \mathbf{w}_{j}+\mathbf{a}, \mathbf{w}_{0}=\mathbf{m}_{+1}-\mathbf{m}_{-1}$, where $\mathbf{R}:=\mathbf{I}-\eta \mathbf{C}, \mathbf{a}:=\eta\left(\mathbf{m}_{+1}-\mathbf{m}_{-1}\right)$
- can get DFI version working with multiples, numbers grow quickly $\rightarrow t$ large $\rightarrow q$ large

DFI-FLD experiments

$\left(P_{2}\right) q=2^{252}, t=2^{35}, \sigma=8, d=8192$

SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
382	853	98	193	4	370

$\left(P_{3}\right) q=2^{340}, t=2^{40}, \sigma=8, d=8192$ (80-bit security)

SH.Keygen	SH.Enc	SH.Dec(2)	SH.Dec(3)	SH.Add	SH.Mult
403	879	118	231	4	446

Surrogate data set, 2 features

algorithm	parameters	train	classify
1-step linear discriminant	$\left(P_{2}\right)$	58710	1490
2-step linear discriminant	$\left(P_{3}\right)$	74770	2680

All timings in ms.

