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Pairings are efficient!

» ...even at high security levels.
» They are really fast at the 128-bit level,
» and will soon be really fast at 192-bit and 256-bit levels.



A few numbers

(2010)

on a 254-bit BN curve

openSSL 2048-bit RSA sign 2.6 ms
verify | 0.08 ms

4096-bit RSA sign | 18.8 ms

verify | 0.3 ms

256-bit ECDH 0.7 ms

256-bit ECDSA sign 0.2 ms

256-bit ECDSA verify | 0.8 ms

Beuchat et al. | optimal ate pairing 0.8 ms

single core of an Intel Core i5 650 @ 3.2 GHz running 64-bit Ubuntu 11.10

Aranha et al. (2011) on a similar processor
optimal ate pairing on a 254-bit BN curve: 0.56 ms.




A little ancient history

Pairings on BN curves at roughly 128-bit security

2007 Devigili, Scott, Dahab 23 ms
32-bit Intel Pentium IV @ 3.0 GHZ

2008 Grabher, Grof3schadl, Page 6 ms
64-bit Intel Core 2 Duo @ 2.4 GHz

2008 Hankerson, Menezes, Scott 4.2 ms
64-bit Intel Core 2 @ 2.4 GHz

2010 N., Niederhagen, Schwabe 1.5 ms
64-bit Intel Core 2 Duo @ 2.8 GHz

2010 Beuchatet al. 0.8 ms
64-bit Intel Core i7 @ 2.8 GHz

2011 Aranhaetal. 0.5 ms

64-bit AMD Phenom Il @ 3.0 GHz



Why did pairings get so much faster?

We found better curves,
we found better functions,
we got rid of unnecessary computations,

we learned how to use more of the structure within the
involved mathematical objects,

» computers got faster (well, not really),
» we tailored implementations to architecture specific

instruction sets,

» we learned how to better choose curve parameters,

we adjusted parameters and algorithms to the architecture.



A black-box view on pairings

e:Gl><GQ—>G3

» (1 and G are groups (of points on an elliptic curve),
» (73 is a (multiplicative) group (of finite field elements),
» all groups have prime order r,

» e is bilinear, non-degenerate, efficiently computable

For a real implementation we need more detalils. . .



Optimal ate pairings

Typical setting at higher security levels:

-1

e:Gyx Gy — Gz, (Q,P)r gg(P) 7+

v

Gi = E(F)[r], Gy = E'(Fge)[r], Gs = pr € Fiy,
E/F,: elliptic curve, r prime, r | #E(F,), char(F,) > 3,
with small (even) embedding degree k,

v

v

T\qk—l, rtq' —1fori <k,

v

E'|Fqe: twist of E of degree d | k, e = k/d, v | #E'(Fge),
- group of r-th roots of unity in L

v

v

g¢: function depending on @’ with coefficients in F;k



Components of the pairing algorithm

Pairings are computed with Miller's

algorithm. @
» Miller loop builds functions for Y
g (P) from DBL/ADD steps. I g
Rl + Q/
\ DBL \ ADD | computation
coefficients in Fe,
L e (P) b (P) eval. at P ¢ E(F,)
R — [2|R R — R +@Q" | curve arith. E(Fg)

general squaring,

2, ;DI . O
f—flrpr(P)| ff lrg(P) special mult. in F

» Final exponentiation to the power (¢* — 1)/r can use
arithmetic in special subgroups of sz



Minimal requirements for security

» k should be small, but DLPs must be hard enough.

Security | EC base Extension field ratio
level | point order | size of ¢* (bits) p-k
(bits) r (bits) NIST | ECRYPT | NIST | ECRYPT
112 224 2048 2432 9.1 10.9
128 256 3072 3248 | 12.0 12.7
192 384 7680 7936 | 20.0 | 20.7
256 512 15360 | 15424 | 30.0 | 30.1

NIST/ECRYPT Il recommendations

The p-value of E is defined as p = log(q)/ log(r).

0

pk

log(r)

log(q) = plog(r) |

log(q®) = (pk) log(r)




Balanced security

» If pk is too large, ¢* is larger than necessary.

» If pk is too small, r is larger than necessary.
security

security security
_H_H_min HHmin _H_H_min
r qk’ r qk’ r qk’
good pk pk too large pk too small
0 h
» If pis too large, q is larger than | |
necessary.

log(r)

log(q) = plog(r)

» Sitill, allowing larger p to get smaller £ might be worth
considering.



Pairing-friendly curves

Supersingular curves have small embedding degree
(k <6, large char p > 3: k£ < 2 only).

To find ordinary curves with small embedding degree:
Fix &, find primes r, p and an integer n with the following

conditions:
»n=p+1-—t |t| <27,
> 7| n,
> | pF—1,

» t2 —4dp = Dv? <0, D,v € Z, D < 0, |D| small enough to
compute the Hilbert class polynomial for Q(+/D).

Given such parameters, a corresponding elliptic curve over IF,,
can be constructed using the CM method.



Example 1: BN curves
(Barreto-N., 2005)

Find v € Z such that

p = pu) = 36u+36u+24u® +6u+ 1,
n = n(u) = 36u*+36u> + 18u? + 6u + 1

are both prime. Then there exists an ordinary elliptic curve
with equation E : y> = 23 + b, b € ),

r=n=#E(F,)is prime,i.e. p~ 1,

the embedding degree is k = 12, i.e. pk =~ 12,

t(u)? — 4p(u) = —3(6u? + 4u + 1)2,

there exists a twist £’ : y* = 2® + b/¢ over F,2 of degree 6
with n | #E'(F2).

Nicely fit the 128-bit security level.

vV v.v. v Y



Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicio

Efficient field arithmetic:
» Choose p = 3 (mod 4), i.e. Fj2 = Fy(i), i* = —1. Most
efficient version of I .
» Higher-degree extensions:

Foe =Fe[X]/(X7 —¢€), je€{2,3,6}

Choose ¢ small, e.g. £ =i + 1. Reductions in extensions
are nice.

» Choose p slightly smaller than a multiple of the word size,
i.e. 254 instead of 256 bits. Can use lazy reduction
techniques in field extensions.



Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicio

Miller loop and final exponentiation:

» Choose parameter u extremely sparse (in signed binary
representation). Final expo profits since main cost is 3
exponentiations with .

» Choose 6u + 2 (its abs. value = degree of function g) as
sparse as possible. Less non-zero entries means less
ADD steps in the Miller loop.

Compact representation and twist:

» Choose b = ¢* + d, ¢,d € F}. Then can take £ = ¢* + id®.
This gives field extensions and twist
E':y? =23+ (2 —id?).

» Get compact generators for G; and GY, by: (—d?, ¢?) and
[2p — n](—di,c).



Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicio

Speed record example curve:
u=—-2%+2%41),c=1,d=1
All other information is uniquely determined.
Then
» p=3 (mod 4),
» p has 254 bits,
> 6u 42 = — (264 4 263 4 257 4 256 1 22) has weight 5,
» Byl =23+2 P=(-1,1),
> {=1+1,
> Byt =234 (1—14), Q' = [h](—i,1).



Example 2: BLS curves
Barreto-Lynn-Scott, 2002

Ifu € Z,u=1 (mod 3) such that

p = p) = (u-1°@’ —u" +1)/3+u,
ro=ru) =u®—ut+1

are both prime. Then there exists an ordinary elliptic curve
with equation E : y*> = 23 + b, b € F,,

n=#EF,) =r-(u—1)%/3,

p~1.25,

the embedding degree is k = 24, i.e. pk =~ 30,

t(u)? — 4p(u) = =3 ((u — 1)(2u* —1)/3)?,

there exists a twist E' : y* = 2® + b/¢ over F,q of degree 6
with n | #E'(Fp).

Nicely fit the 256-bit security level.
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Implementation-friendly BLS curves

joint work with C. Costello, K. Lauter

Restrict the parameter « to the following congruences mod 72:

u p(u) n(u) E E’
(mod 72) | (mod 72) | (mod 72)

7 19 12 Vv=23+1 |y =a3+1/v

16 19 3 v =23+4] Y =2+4

31 43 12 v=23+1] y=a23+v

64 19 27 yvr=23-2 ]y =23+£2/v

Efficient field arithmetic:
» p=3 (mod 4), i.e. Fo =Fp(i), i* = -1,
» Canuse Fju =F2(v), v¥ = —(i + 1),
> Foa =Fpa(z), 20 = —v,

» Choose p slightly smaller than multiple of word size.



Implementation-friendly BLS curves

joint work with C. Costello, K. Lauter

u p(u) n(u) E E’
(mod 72) | (mod 72) | (mod 72)

7 19 12 Vv=23+1 |y =a3+1/v

16 19 3 =23 +4] Y =2+

31 43 12 Vv=23+1| y=a3+v

64 19 27 yv=23-2 ]y =23+£2/v

Miller loop and final exponentiation:

» Choose u extremely sparse.

» wu is the degree in the Miller loop function g, and at the
same time used in the final expo, main cost is 9
exponentiations with .

Compact representation and twist:

» For each congruency class for u, can use fixed small b.

» Twist is automatically determined.




Implementation-friendly BLS curves

joint work with C. Costello, K. Lauter

Nice example curve for the 256-bit level:
u=2% -2 42%  p—4

Then
» p=3 (mod 4),
» p has 629 bits (10 x 64), r has 504 bits (8 x 64),
> F:y? =23 44,

> B :y? = 2% 4 4v, where F o = Fp2(v).



Thank you for your attention!

» G.C.C.F. Pereira, M.A. Simplicio Jr., M. Naehrig, P.S.L.M.
Barreto: A Family of Implementation-Friendly BN Elliptic
Curves, J. of Systems and Software, Vol. 84(8), pp.
1319-1326, 2011.

» C. Costello, K. Lauter, M. Naehrig: Attractive Subfamilies of
BLS Curves for Implementing High-Security Pairings,
INDOCRYPT 2011, LNCS Vol. 7107, 320-342, 2011.

» http://www.cryptojedi.org

» michael@cryptojedi.org

There will be a Pairing 2012 conference!
Watch out for the CFP!



