
Pairings at High Security Levels

Michael Naehrig

Eindhoven University of Technology
michael@cryptojedi.org

DoE CRYPTODOC
Darmstadt, 21 November 2011



Pairings are efficient!

◮ . . . even at high security levels.
◮ They are really fast at the 128-bit level,
◮ and will soon be really fast at 192-bit and 256-bit levels.



A few numbers

openSSL 2048-bit RSA sign 2.6 ms
verify 0.08 ms

4096-bit RSA sign 18.8 ms
verify 0.3 ms

256-bit ECDH 0.7 ms
256-bit ECDSA sign 0.2 ms
256-bit ECDSA verify 0.8 ms

Beuchat et al. optimal ate pairing 0.8 ms
(2010) on a 254-bit BN curve

single core of an Intel Core i5 650 @ 3.2 GHz running 64-bit Ubuntu 11.10

Aranha et al. (2011) on a similar processor
optimal ate pairing on a 254-bit BN curve: 0.56 ms.



A little ancient history

Pairings on BN curves at roughly 128-bit security

2007 Devigili, Scott, Dahab 23 ms
32-bit Intel Pentium IV @ 3.0 GHZ

2008 Grabher, Großschädl, Page 6 ms
64-bit Intel Core 2 Duo @ 2.4 GHz

2008 Hankerson, Menezes, Scott 4.2 ms
64-bit Intel Core 2 @ 2.4 GHz

2010 N., Niederhagen, Schwabe 1.5 ms
64-bit Intel Core 2 Duo @ 2.8 GHz

2010 Beuchat et al. 0.8 ms
64-bit Intel Core i7 @ 2.8 GHz

2011 Aranha et al. 0.5 ms
64-bit AMD Phenom II @ 3.0 GHz



Why did pairings get so much faster?

◮ We found better curves,
◮ we found better functions,
◮ we got rid of unnecessary computations,
◮ we learned how to use more of the structure within the

involved mathematical objects,
◮ computers got faster (well, not really),
◮ we tailored implementations to architecture specific

instruction sets,
◮ we learned how to better choose curve parameters,
◮ we adjusted parameters and algorithms to the architecture.



A black-box view on pairings

e : G1 ×G2 → G3

◮ G1 and G2 are groups (of points on an elliptic curve),
◮ G3 is a (multiplicative) group (of finite field elements),
◮ all groups have prime order r,
◮ e is bilinear, non-degenerate, efficiently computable

For a real implementation we need more details. . .



Optimal ate pairings

Typical setting at higher security levels:

e : G′

2 ×G1 → G3, (Q′, P ) 7→ gQ′(P )
qk

−1

r

◮ G1 = E(Fq)[r], G′

2 = E′(Fqe)[r], G3 = µr ⊆ F∗

qk ,

◮ E/Fq: elliptic curve, r prime, r | #E(Fq), char(Fq) > 3,
◮ with small (even) embedding degree k,

r | qk − 1, r ∤ qi − 1 for i < k,

◮ E′/Fqe : twist of E of degree d | k, e = k/d, r | #E′(Fqe),
◮ µr: group of r-th roots of unity in F∗

qk ,

◮ gQ′ : function depending on Q′ with coefficients in F∗

qk .



Components of the pairing algorithm

Pairings are computed with Miller’s
algorithm.

◮ Miller loop builds functions for
gQ′(P ) from DBL/ADD steps.

b Q′

bR′

b

bR′ + Q′

lR′,Q′

vR′+Q′

DBL ADD computation

lR′,R′(P ) lR′,Q′(P )
coefficients in Fqe ,
eval. at P ∈ E(Fq)

R′ ← [2]R′ R′ ← R′ + Q′ curve arith. E(Fqe)

f ← f2 · lR′,R′(P ) f ← f · lR′,Q′(P )
general squaring,
special mult. in Fqk

◮ Final exponentiation to the power (qk − 1)/r can use
arithmetic in special subgroups of F∗

qk .



Minimal requirements for security

◮ k should be small, but DLPs must be hard enough.

Security EC base Extension field ratio
level point order size of qk (bits) ρ · k
(bits) r (bits) NIST ECRYPT NIST ECRYPT

112 224 2048 2432 9.1 10.9
128 256 3072 3248 12.0 12.7
192 384 7680 7936 20.0 20.7
256 512 15360 15424 30.0 30.1

NIST/ECRYPT II recommendations

The ρ-value of E is defined as ρ = log(q)/ log(r).

log(r)

log(q) = ρ log(r)

log(qk) = (ρk) log(r)

0 1 ρ ρk



Balanced security
◮ If ρk is too large, qk is larger than necessary.
◮ If ρk is too small, r is larger than necessary.

r qk

min

security

good ρk

r qk

min

security

ρk too large
r qk

min

security

ρk too small

◮ If ρ is too large, q is larger than
necessary.

log(r)

log(q) = ρ log(r)

0 1 ρ

◮ Still, allowing larger ρ to get smaller k might be worth
considering.



Pairing-friendly curves

Supersingular curves have small embedding degree
(k ≤ 6, large char p > 3: k ≤ 2 only).

To find ordinary curves with small embedding degree:
Fix k, find primes r, p and an integer n with the following
conditions:

◮ n = p + 1− t, |t| ≤ 2
√

q,
◮ r | n,
◮ r | pk − 1,
◮ t2 − 4p = Dv2 < 0, D, v ∈ Z, D < 0, |D| small enough to

compute the Hilbert class polynomial for Q(
√

D).

Given such parameters, a corresponding elliptic curve over Fp

can be constructed using the CM method.



Example 1: BN curves
(Barreto-N., 2005)

Find u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1

are both prime. Then there exists an ordinary elliptic curve

◮ with equation E : y2 = x3 + b, b ∈ Fp,
◮ r = n = #E(Fp) is prime, i. e. ρ ≈ 1,
◮ the embedding degree is k = 12, i.e. ρk ≈ 12,
◮ t(u)2 − 4p(u) = −3(6u2 + 4u + 1)2,
◮ there exists a twist E′ : y2 = x3 + b/ξ over Fp2 of degree 6

with n | #E′(Fp2).

Nicely fit the 128-bit security level.



Implementation-friendly BN curves
joint work with P. Barreto, G. Pereira, M. Simplicío

Efficient field arithmetic:
◮ Choose p ≡ 3 (mod 4), i.e. Fp2 = Fp(i), i2 = −1. Most

efficient version of Fp2.
◮ Higher-degree extensions:

Fp2j = Fp2[X]/(Xj − ξ), j ∈ {2, 3, 6}.

Choose ξ small, e.g. ξ = i + 1. Reductions in extensions
are nice.

◮ Choose p slightly smaller than a multiple of the word size,
i.e. 254 instead of 256 bits. Can use lazy reduction
techniques in field extensions.



Implementation-friendly BN curves
joint work with P. Barreto, G. Pereira, M. Simplicío

Miller loop and final exponentiation:
◮ Choose parameter u extremely sparse (in signed binary

representation). Final expo profits since main cost is 3
exponentiations with u.

◮ Choose 6u + 2 (its abs. value = degree of function g) as
sparse as possible. Less non-zero entries means less
ADD steps in the Miller loop.

Compact representation and twist:
◮ Choose b = c4 + d6, c, d ∈ F∗

p. Then can take ξ = c2 + id3.
This gives field extensions and twist
E′ : y2 = x3 + (c2 − id3).

◮ Get compact generators for G1 and G′

2 by: (−d2, c2) and
[2p − n](−di, c).



Implementation-friendly BN curves
joint work with P. Barreto, G. Pereira, M. Simplicío

Speed record example curve:

u = −(262 + 255 + 1), c = 1, d = 1

All other information is uniquely determined.
Then

◮ p ≡ 3 (mod 4),
◮ p has 254 bits,
◮ 6u + 2 = −(264 + 263 + 257 + 256 + 22) has weight 5,
◮ E : y2 = x3 + 2, P = (−1, 1),
◮ ξ = 1 + i,
◮ E′ : y2 = x3 + (1− i), Q′ = [h](−i, 1).



Example 2: BLS curves
Barreto-Lynn-Scott, 2002

If u ∈ Z, u ≡ 1 (mod 3) such that

p = p(u) = (u− 1)2(u8 − u4 + 1)/3 + u,

r = r(u) = u8 − u4 + 1

are both prime. Then there exists an ordinary elliptic curve

◮ with equation E : y2 = x3 + b, b ∈ Fp,
◮ n = #E(Fp) = r · (u− 1)2/3,
◮ ρ ≈ 1.25,
◮ the embedding degree is k = 24, i.e. ρk ≈ 30,

◮ t(u)2 − 4p(u) = −3
(

(u− 1)(2u4 − 1)/3
)2,

◮ there exists a twist E′ : y2 = x3 + b/ξ over Fp4 of degree 6
with n | #E′(Fp4).

Nicely fit the 256-bit security level.



Implementation-friendly BLS curves
joint work with C. Costello, K. Lauter

Restrict the parameter u to the following congruences mod 72:

u p(u) n(u) E E′

(mod 72) (mod 72) (mod 72)
7 19 12 y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 y2 = x3 + 4 y2 = x3 ± 4v
31 43 12 y2 = x3 + 1 y2 = x3 ± v
64 19 27 y2 = x3 − 2 y2 = x3 ± 2/v

Efficient field arithmetic:
◮ p ≡ 3 (mod 4), i.e. Fp2 = Fp(i), i2 = −1,
◮ Can use Fp4 = Fp2(v), v2 = −(i + 1),
◮ Fp24 = Fp4(z), z6 = −v,
◮ Choose p slightly smaller than multiple of word size.



Implementation-friendly BLS curves
joint work with C. Costello, K. Lauter

u p(u) n(u) E E′

(mod 72) (mod 72) (mod 72)
7 19 12 y2 = x3 + 1 y2 = x3 ± 1/v

16 19 3 y2 = x3 + 4 y2 = x3 ± 4v
31 43 12 y2 = x3 + 1 y2 = x3 ± v
64 19 27 y2 = x3 − 2 y2 = x3 ± 2/v

Miller loop and final exponentiation:
◮ Choose u extremely sparse.
◮ u is the degree in the Miller loop function g, and at the

same time used in the final expo, main cost is 9
exponentiations with u.

Compact representation and twist:
◮ For each congruency class for u, can use fixed small b.
◮ Twist is automatically determined.



Implementation-friendly BLS curves
joint work with C. Costello, K. Lauter

Nice example curve for the 256-bit level:

u = 263 − 247 + 238, b = 4

Then
◮ p ≡ 3 (mod 4),
◮ p has 629 bits (10 × 64), r has 504 bits (8× 64),
◮ E : y2 = x3 + 4,
◮ E′ : y2 = x3 + 4v, where Fp4 = Fp2(v).



Thank you for your attention!

◮ G.C.C.F. Pereira, M.A. Simplicío Jr., M. Naehrig, P.S.L.M.
Barreto: A Family of Implementation-Friendly BN Elliptic
Curves, J. of Systems and Software, Vol. 84(8), pp.
1319–1326, 2011.

◮ C. Costello, K. Lauter, M. Naehrig: Attractive Subfamilies of
BLS Curves for Implementing High-Security Pairings,
INDOCRYPT 2011, LNCS Vol. 7107, 320–342, 2011.

◮ http://www.ryptojedi.org
◮ mihael�ryptojedi.org

There will be a Pairing 2012 conference!
Watch out for the CFP!


