Pairings at High Security Levels

Michael Naehrig

Eindhoven University of Technology
michael@cryptojedi.org

DoE CRYPTODOC
Darmstadt, 21 November 2011

Pairings are efficient!

- ... even at high security levels.
- They are really fast at the 128 -bit level,
- and will soon be really fast at 192-bit and 256-bit levels.

A few numbers

openSSL	2048-bit RSA	sign	2.6 ms
		verify	0.08 ms
	4096 -bit RSA	sign	18.8 ms
		verify	0.3 ms
	256 -bit ECDH		0.7 ms
	256-bit ECDSA	sign	0.2 ms
	256 -bit ECDSA	verify	0.8 ms
Beuchat et al.	optimal ate pairing		0.8 ms
(2010)	on a 254-bit BN curve		

single core of an Intel Core i5 650 @ 3.2 GHz running 64-bit Ubuntu 11.10

Aranha et al. (2011) on a similar processor optimal ate pairing on a 254 -bit BN curve: 0.56 ms .

A little ancient history

Pairings on BN curves at roughly 128 -bit security

2007	Devigili, Scott, Dahab 32-bit Intel Pentium IV @ 3.0 GHz	23 ms
2008	Grabher, Großschädl, Page 64-bit Intel Core 2 Duo @ 2.4 GHz	6 ms
2008	Hankerson, Menezes, Scott 64-bit Intel Core 2 @ 2.4 GHz	4.2 ms
2010	N., Niederhagen, Schwabe 64-bit Intel Core 2 Duo @ 2.8 GHz	1.5 ms
2010	Beuchat et al. 64-bit Intel Core i7 @ 2.8 GHz	0.8 ms
2011	Aranha et al. 64-bit AMD Phenom II @ 3.0 GHz	0.5 ms

Why did pairings get so much faster?

- We found better curves,
- we found better functions,
- we got rid of unnecessary computations,
- we learned how to use more of the structure within the involved mathematical objects,
- computers got faster (well, not really),
- we tailored implementations to architecture specific instruction sets,
- we learned how to better choose curve parameters,
- we adjusted parameters and algorithms to the architecture.

A black-box view on pairings

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

- G_{1} and G_{2} are groups (of points on an elliptic curve),
- G_{3} is a (multiplicative) group (of finite field elements),
- all groups have prime order r,
- e is bilinear, non-degenerate, efficiently computable

For a real implementation we need more details...

Optimal ate pairings

Typical setting at higher security levels:

$$
e: G_{2}^{\prime} \times G_{1} \rightarrow G_{3}, \quad\left(Q^{\prime}, P\right) \mapsto g_{Q^{\prime}}(P)^{\frac{q^{k}-1}{r}}
$$

- $G_{1}=E\left(\mathbb{F}_{q}\right)[r], G_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{q^{e}}\right)[r], G_{3}=\mu_{r} \subseteq \mathbb{F}_{q^{*}}^{*}$,
- E / \mathbb{F}_{q} : elliptic curve, r prime, $r \mid \# E\left(\mathbb{F}_{q}\right)$, $\operatorname{char}\left(\mathbb{F}_{q}\right)>3$,
- with small (even) embedding degree k,

$$
r \mid q^{k}-1, \quad r \nmid q^{i}-1 \text { for } i<k,
$$

- $E^{\prime} / \mathbb{F}_{q^{e}}$: twist of E of degree $d|k, e=k / d, r| \# E^{\prime}\left(\mathbb{F}_{q^{e}}\right)$,
- μ_{r} : group of r-th roots of unity in $\mathbb{F}_{q^{k}}^{*}$,
- $g_{Q^{\prime}}$: function depending on Q^{\prime} with coefficients in $\mathbb{F}_{q^{k}}^{*}$.

Components of the pairing algorithm

Pairings are computed with Miller's algorithm.

- Miller loop builds functions for $g_{Q^{\prime}}(P)$ from DBL/ADD steps.

DBL	ADD	computation
$l_{R^{\prime}, R^{\prime}}(P)$	$l_{R^{\prime}, Q^{\prime}}(P)$	coefficients in \mathbb{F}_{q}, eval. at $P \in E\left(\mathbb{F}_{q}\right)$
$R^{\prime} \leftarrow[2] R^{\prime}$	$R^{\prime} \leftarrow R^{\prime}+Q^{\prime}$	curve arith. $E\left(\mathbb{F}_{q^{e}}\right)$
$f \leftarrow f^{2} \cdot l_{R^{\prime}, R^{\prime}}(P)$	$f \leftarrow f \cdot l_{R^{\prime}, Q^{\prime}}(P)$	general squaring, special mult. in $\mathbb{F}_{q^{k}}$

- Final exponentiation to the power $\left(q^{k}-1\right) / r$ can use arithmetic in special subgroups of $\mathbb{F}_{q^{k}}{ }^{k}$.

Minimal requirements for security

- k should be small, but DLPs must be hard enough.

Security											
level	EC base point order		Extension field size of q^{k} (bits)		ratio (bits)		r (bits)	NIST	ECRYPT	NIST	ECRYPT
112	224	2048	2432	9.1	10.9						
128	256	3072	3248	12.0	12.7						
192	384	7680	7936	20.0	20.7						
256	512	15360	15424	30.0	30.1						

NIST/ECRYPT II recommendations
The ρ-value of E is defined as $\rho=\log (q) / \log (r)$.

Balanced security

- If ρk is too large, q^{k} is larger than necessary.
- If ρk is too small, r is larger than necessary.

security

ρk too large
ρk too small
- If ρ is too large, q is larger than necessary.

- Still, allowing larger ρ to get smaller k might be worth considering.

Pairing-friendly curves

Supersingular curves have small embedding degree ($k \leq 6$, large char $p>3$: $k \leq 2$ only).

To find ordinary curves with small embedding degree:
Fix k, find primes r, p and an integer n with the following conditions:

- $n=p+1-t,|t| \leq 2 \sqrt{q}$,
- $r \mid n$,
- $r \mid p^{k}-1$,
- $t^{2}-4 p=D v^{2}<0, D, v \in \mathbb{Z}, D<0,|D|$ small enough to compute the Hilbert class polynomial for $\mathbb{Q}(\sqrt{D})$.

Given such parameters, a corresponding elliptic curve over \mathbb{F}_{p} can be constructed using the CM method.

Example 1: BN curves

Find $u \in \mathbb{Z}$ such that

$$
\begin{aligned}
& p=p(u)=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1, \\
& n=n(u)=36 u^{4}+36 u^{3}+18 u^{2}+6 u+1
\end{aligned}
$$

are both prime. Then there exists an ordinary elliptic curve

- with equation $E: y^{2}=x^{3}+b, b \in \mathbb{F}_{p}$,
- $r=n=\# E\left(\mathbb{F}_{p}\right)$ is prime, i. e. $\rho \approx 1$,
- the embedding degree is $k=12$, i.e. $\rho k \approx 12$,
- $t(u)^{2}-4 p(u)=-3\left(6 u^{2}+4 u+1\right)^{2}$,
- there exists a twist $E^{\prime}: y^{2}=x^{3}+b / \xi$ over $\mathbb{F}_{p^{2}}$ of degree 6 with $n \mid \# E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$.
Nicely fit the 128 -bit security level.

Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicío

Efficient field arithmetic:

- Choose $p \equiv 3(\bmod 4)$, i.e. $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i), i^{2}=-1$. Most efficient version of $\mathbb{F}_{p^{2}}$.
- Higher-degree extensions:

$$
\mathbb{F}_{p^{2 j}}=\mathbb{F}_{p^{2}}[X] /\left(X^{j}-\xi\right), \quad j \in\{2,3,6\} .
$$

Choose ξ small, e.g. $\xi=i+1$. Reductions in extensions are nice.

- Choose p slightly smaller than a multiple of the word size, i.e. 254 instead of 256 bits. Can use lazy reduction techniques in field extensions.

Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicío
Miller loop and final exponentiation:

- Choose parameter u extremely sparse (in signed binary representation). Final expo profits since main cost is 3 exponentiations with u.
- Choose $6 u+2$ (its abs. value $=$ degree of function g) as sparse as possible. Less non-zero entries means less ADD steps in the Miller loop.
Compact representation and twist:
- Choose $b=c^{4}+d^{6}, c, d \in \mathbb{F}_{p}^{*}$. Then can take $\xi=c^{2}+i d^{3}$. This gives field extensions and twist $E^{\prime}: y^{2}=x^{3}+\left(c^{2}-i d^{3}\right)$.
- Get compact generators for G_{1} and G_{2}^{\prime} by: $\left(-d^{2}, c^{2}\right)$ and $[2 p-n](-d i, c)$.

Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicío

Speed record example curve:

$$
u=-\left(2^{62}+2^{55}+1\right), c=1, d=1
$$

All other information is uniquely determined.
Then

- $p \equiv 3(\bmod 4)$,
- p has 254 bits,
- $6 u+2=-\left(2^{64}+2^{63}+2^{57}+2^{56}+2^{2}\right)$ has weight 5 ,
- $E: y^{2}=x^{3}+2, P=(-1,1)$,
- $\xi=1+i$,
- $E^{\prime}: y^{2}=x^{3}+(1-i), Q^{\prime}=[h](-i, 1)$.

Example 2: BLS curves

Barreto-Lynn-Scott, 2002

If $u \in \mathbb{Z}, u \equiv 1(\bmod 3)$ such that

$$
\begin{aligned}
p & =p(u)=(u-1)^{2}\left(u^{8}-u^{4}+1\right) / 3+u, \\
r & =r(u)=u^{8}-u^{4}+1
\end{aligned}
$$

are both prime. Then there exists an ordinary elliptic curve

- with equation $E: y^{2}=x^{3}+b, b \in \mathbb{F}_{p}$,
- $n=\# E\left(\mathbb{F}_{p}\right)=r \cdot(u-1)^{2} / 3$,
- $\rho \approx 1.25$,
- the embedding degree is $k=24$, i.e. $\rho k \approx 30$,
- $t(u)^{2}-4 p(u)=-3\left((u-1)\left(2 u^{4}-1\right) / 3\right)^{2}$,
- there exists a twist $E^{\prime}: y^{2}=x^{3}+b / \xi$ over $\mathbb{F}_{p^{4}}$ of degree 6 with $n \mid \# E^{\prime}\left(\mathbb{F}_{p^{4}}\right)$.
Nicely fit the 256-bit security level.

Implementation-friendly BLS curves

 joint work with C. Costello, K. LauterRestrict the parameter u to the following congruences mod 72 :

u $(\bmod 72)$	$p(u)$ $(\bmod 72)$	$n(u)$ $(\bmod 72)$	E	E^{\prime}
$\mathbf{7}$	19	12	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm 1 / v$
$\mathbf{1 6}$	19	3	$y^{2}=x^{3}+4$	$y^{2}=x^{3} \pm 4 v$
$\mathbf{3 1}$	43	12	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm v$
$\mathbf{6 4}$	19	27	$y^{2}=x^{3}-2$	$y^{2}=x^{3} \pm 2 / v$

Efficient field arithmetic:

- $p \equiv 3(\bmod 4)$, i.e. $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i), i^{2}=-1$,
- Can use $\mathbb{F}_{p^{4}}=\mathbb{F}_{p^{2}}(v), v^{2}=-(i+1)$,
- $\mathbb{F}_{p^{24}}=\mathbb{F}_{p^{4}}(z), z^{6}=-v$,
- Choose p slightly smaller than multiple of word size.

Implementation-friendly BLS curves

joint work with C. Costello, K. Lauter

u $(\bmod 72)$	$p(u)$ $(\bmod 72)$	$n(u)$ $(\bmod 72)$	E	E^{\prime}
$\mathbf{7}$	19	12	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm 1 / v$
16	19	3	$y^{2}=x^{3}+4$	$y^{2}=x^{3} \pm 4 v$
31	43	12	$y^{2}=x^{3}+1$	$y^{2}=x^{3} \pm v$
$\mathbf{6 4}$	19	27	$y^{2}=x^{3}-2$	$y^{2}=x^{3} \pm 2 / v$

Miller loop and final exponentiation:

- Choose u extremely sparse.
- u is the degree in the Miller loop function g, and at the same time used in the final expo, main cost is 9 exponentiations with u.
Compact representation and twist:
- For each congruency class for u, can use fixed small b.
- Twist is automatically determined.

Implementation-friendly BLS curves

joint work with C. Costello, K. Lauter

Nice example curve for the 256-bit level:

$$
u=2^{63}-2^{47}+2^{38}, \quad b=4
$$

Then

- $p \equiv 3(\bmod 4)$,
- p has 629 bits (10×64), r has 504 bits (8×64),
- $E: y^{2}=x^{3}+4$,
- $E^{\prime}: y^{2}=x^{3}+4 v$, where $\mathbb{F}_{p^{4}}=\mathbb{F}_{p^{2}}(v)$.

Thank you for your attention!

- G.C.C.F. Pereira, M.A. Simplicío Jr., M. Naehrig, P.S.L.M. Barreto: A Family of Implementation-Friendly BN Elliptic Curves, J. of Systems and Software, Vol. 84(8), pp. 1319-1326, 2011.
- C. Costello, K. Lauter, M. Naehrig: Attractive Subfamilies of BLS Curves for Implementing High-Security Pairings, INDOCRYPT 2011, LNCS Vol. 7107, 320-342, 2011.
- http://www.cryptojedi.org
- michael@cryptojedi.org

There will be a Pairing 2012 conference!

Watch out for the CFP!

