
An Analysis of Affine Coordinates
for Pairing Computation

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

joint work with

Kristin Lauter and Peter Montgomery
Microsoft Research

Pairing 2010, Yamanaka Hot Spring, Ishikawa, Japan
13 December 2010



Optimal ate pairings

To efficiently implement pairing-based protocols (at reasonably
high security), one could choose a pairing

e : G′

2 ×G1 → G3, (Q′, P ) 7→ gQ′(P )
qk

−1

r

◮ G1 = E(Fq)[r], G′

2 = E′(Fqe)[r], G3 = µr ⊆ F∗

qk ,

◮ E/Fq: elliptic curve, r prime, r | #E(Fq), char(Fq) > 3,
◮ with small (even) embedding degree k,

r | qk − 1, r ∤ qi − 1 for i < k,

◮ E′/Fqe : twist of E of degree d | k, e = k/d, r | #E′(Fqe),
◮ µr: group of r-th roots of unity in F∗

qk ,

◮ gQ′ : function depending on Q′ with coefficients in F∗

qk .



Possible choices for pairing-friendly curves

E : y2 = x3 + ax + b over Fq, q prime

Freeman, Scott, Teske: A taxonomy of pairing-friendly elliptic curves

security construction curve k d e

128

BN (Ex. 6.8) a = 0 12 6 2
Ex. 6.10 b = 0 8 4 2
Freeman (5.3) a, b 6= 0 10 2 5
Constr. 6.7+ a, b 6= 0 12 2 6

192

BN (Ex. 6.8) a = 0 12 6 2
KSS (Ex. 6.12) a = 0 18 6 3
KSS (Ex. 6.11) b = 0 16 4 4
Constr. 6.3+ a, b 6= 0 14 2 7

256
Constr. 6.6 a = 0 24 6 4
Constr. 6.4 b = 0 28 4 7
Constr. 6.24+ a, b 6= 0 26 2 13



Components of the pairing algorithm

Pairings are computed with Miller’s
algorithm.

◮ Miller loop builds functions for
gQ′(P ) from DBL/ADD steps.

b
Q′

bR′

b

bR′ + Q′

lR′,Q′

vR′+Q′

DBL ADD computation

lR′,R′(P ) lR′,Q′(P )
coefficients in Fqe ,
eval. at P ∈ E(Fq)

R′ ← [2]R′ R′ ← R′ + Q′ curve arith. E(Fqe)

f ← f2 · lR′,R′(P ) f ← f · lR′,Q′(P )
general squaring,
special mult. in Fqk

◮ Final exponentiation to the power (qk − 1)/r needs
arithmetic in the special subgroup µr of F∗

qk .



Choosing coordinates for pairings

◮ affine coordinates: (Fqe = Fq(α))
R′ + Q′ and lR′,Q′(P )

λ′ = (yR′ − yQ′)/(xR′ − xQ′),

xR′+Q′ = λ′2 − xR′ − xQ′ ,

yR′+Q′ = λ′(xR′ − xR′+Q′)− yR′ ,

lR′,Q′(P ) = yP − αλ′xP + α3(λ′xQ′ − yQ′).

b Q′

bR′

b

bR′ + Q′

lR′,Q′

vR′+Q′

◮ DBL/ADD steps in affine coords need one inversion in Fqe ,
◮ projective coordinates avoid the inversion by doing more of

the other operations,
◮ finite field inversion in prime field Fq very expensive,
◮ for plain ECC over Fq: projective always better,
◮ current speed records for pairings at 128-bit security level:

projective formulas.



Affine vs. projective
ab 6= 0, d = 2, e = k/2

Cost for computing [2]R′, lR′,R′(P ) and R′ + Q′, lR′,Q′(P ) resp.

coord. Mq Iqe Mqe Sqe addqe

DBL
affine k/2 1 3 2 10
proj. − − 3 11 23

ADD
affine k/2 1 3 1 8
proj. − − 8 6 23

Cost to avoid the inversion (assuming Sqe ≈ 0.8Mqe ):
◮ DBL: 9Sqe + 13addqe − (k/2)Mq > 6Mqe

◮ ADD: 5Mqe + 5Sqe + 15addqe − (k/2)Mq > 8Mqe



Affine vs. projective
a = 0, d = 6 | k

Cost for computing [2]R′, lR′,R′(P ) and R′ + Q′, lR′,Q′(P ) resp.

coord. Mq Iqe Mqe Sqe addqe

DBL
affine k/6 1 3 2 9
proj. k/3 − 2 7 21

ADD
affine k/6 1 3 1 7
proj. k/3 − 11 2 8

Cost to avoid the inversion (assuming Sqe ≈ 0.8Mqe ):
◮ DBL: (k/6)Mq + 5Sqe + 12addqe − 1Mqe > 3Mqe

◮ ADD: (k/6)Mq + 8Mqe + 1Sqe + 1addqe > 8Mqe



Affine vs. projective

◮ If extra cost to avoid inversions < cost to compute
inversions =⇒ projective coordinates are the better choice.

◮ It all depends on the cost Iqe , or rather on the ratio

Rqe = Iqe/Mqe .

◮ For q prime, Iq >> Mq.

How large is Rqe? How small can it be made in pairing
implementations?
Note:

◮ Pairings based on the ate pairing usually have e > 1, at
least for higher security levels.

◮ Often, multiple pairings or products of pairings need to be
computed.



Extension field inversions

Quadratic extension:
◮ Fq2 = Fq(α) with α2 = ω ∈ F∗

q,
◮

1

b0 + b1α
=

b0 − b1α

b2
0 − b2

1ω
=

b0

b2
0 − b2

1ω
−

b1

b2
0 − b2

1ω
α,

◮ b2
0 − b2

1ω = N(b0 + b1α) ∈ Fq,
◮ compute inversion in Fq2 by inversion in Fq and some other

operations

Iq2 ≤ Iq + 2Mq + 2Sq + M(ω) + subq + negq.

◮ Assume Mq2 ≥ 3Mq and Iq2 ≤ Iq + 6Mq to get

Rq2 = Iq2/Mq2 ≤ (Iq/3Mq) + 2 = Rq/3 + 2.



Extension field inversions

Degree-ℓ extension:
◮ generalization of Itoh-Tsujii inversion,
◮ standard way for inversion in optimal extension fields,
◮ assume Fqℓ = Fq(α) with αℓ = ω ∈ F∗

q,

◮ with v = (qℓ − 1)/(q − 1) = qℓ−1 + · · · + q + 1, compute

β−1 = βv−1 · β−v,

◮ for β ∈ Fqℓ , βv = N(β) ∈ Fq.

Rqℓ ≤ Rq/M(ℓ) + C(ℓ)

ℓ 2 3 4 5 6 7

1/M(ℓ) 1/3 1/6 1/9 1/13 1/17 1/22

C(ℓ) 3.33 4.17 5.33 5.08 6.24 6.05



Simultaneous inversions
Montgomery’s n-th trick...

◮ Idea: To invert a1 and a2, compute a1a2, then (a1a2)
−1 and

a−1
1 = a2 · (a1a2)

−1, a−1
2 = a1 · (a1a2)

−1,

replace 2I by 1I + 3M.
◮ In general for s inversions at once: compute ci = a1 · · · · · ai

for 2 ≤ i ≤ s, then c−1
s and

a−1
s = c−1

s · cs−1, c−1
s−1 = c−1

s · as,

a−1
s−1 = c−1

s−1 · cs−2, c−1
s−2 = c−1

s−1 · as−1, . . .

replace sI by 1I + 3(s− 1)M.
◮ Average I/M is

(sI)/(sM) = I/(sM) + 3(s− 1)/s ≤ R/s + 3.



Affine coordinates for pairings

Affine coordinates can be better than projective

◮ if the used implementation has small Rq = Iq/Mq,

◮ for ate pairings whenever e is large,

◮ at high security levels (when k is large),

◮ when high-degree twists are not being used (d = 2),

◮ for computing several pairings (or products of several
pairings) at once on different point pairs.



Pairings based on Microsoft Research’s bignum
optimal ate pairing on BN curves

Pairing implementation uses MSR bignum for
◮ base field arithmetic (Fp) with Montgomery multiplication,
◮ extension fields based on MSR bignum field extensions,
◮ field inversions use norm trick as described before.

MSR bignum + pairings
◮ is a C implementation (with a little bit of assembly for mod

mul in case of 256-bit prime fields),
◮ is not restricted to specific security level, curves, or

processors,
◮ works under 32-bit and 64-bit Windows.



Pairings based on Microsoft Research’s bignum
field arithmetic performance

Fields over 256-bit BN prime field with
◮ p ≡ 3 (mod 4), i.e. Fp2 = Fp(i), i2 = −1.

Timings on a 3.16 GHz Intel Core 2 Duo E8500,
64-bit Windows 7

M S I I/M
cyc µs cyc µs cyc µs

Fp 414 0.13 414 0.13 9469 2.98 22.87
Fp2 2122 0.67 1328 0.42 11426 3.65 5.38
Fp6 18544 5.81 12929 4.05 40201 12.66 2.17
Fp12 60967 19.17 43081 13.57 103659 32.88 1.70



Pairings based on Microsoft Research’s bignum
pairings on a 256-bit BN curve

Timings on a 3.16 GHz Intel Core 2 Duo E8500,
64-bit Windows 7

operation CPU cycles time

Miller loop 7,572,000 2.36 ms
optimal ate pairing 14,838,000 4.64 ms
20 opt. ate at once (per pairing) 14,443,000 4.53 ms
product of 20 opt. ate (per pairing) 4,833,000 1.52 ms

EC scalar mult in G1 2,071,000 0.64 ms
EC scalar mult in G′

2
8,761,000 2.74 ms


