
Pairings on elliptic curves – parameter
selection and efficient computation

Michael Naehrig

Microsoft Researchmnaehrig�mirosoft.om
Workshop on Elliptic Curve Computation

Redmond, 19 October 2010

Pairings on elliptic curves
parameter selection and efficient computation

Three parts:
◮ Pairings and pairing-friendly curves,
◮ an optimal ate pairing on BN curves using the polynomial

parametrization,
◮ affine coordinates for pairing computation at high security

levels.

The embedding degree

Let E be an elliptic curve over Fq (of characteristic p) and
◮ n = #E(Fq) = q + 1− t, |t| ≤ 2

√
q,

◮ r | n a large prime divisor of n (r 6= p, r ≥ √q).

The embedding degree of E with respect to r is the smallest
positive integer k with

r | qk − 1.

Then
◮ k is the order of q modulo r,
◮ r-th roots of unity µr ⊆ F∗

qk ,

◮ for k > 1, E[r] ⊆ E(Fqk).

The Tate pairing

The Tate-Lichtenbaum pairing

Tr : E(Fqk)[r]×E(Fqk)/[r]E(Fqk) → F∗

qk/(F
∗

qk)r,

(P,Q+ [r]E(Fqk)) 7→ fr,P (DQ)(F∗

qk)r

is a non-degenerate, bilinear map, where
◮ fr,P is a function with divisor (fr,P) = r(P)− r(O),
◮ DQ ∼ (Q)− (O) has support disjoint from {O, P}.

Assume k > 1, can use the reduced Tate pairing

tr : E(Fq)[r]×E(Fqk)[r] → µr,

(P,Q) 7→ fr,P (Q)
qk

−1

r .

Computing Miller functions

To compute fm,P (Q), m ∈ Z, with Miller’s
algorithm use

f2i,P (Q) = fi,P (Q)2
l[i]P,[i]P (Q)

v[2i]P (Q)
,

fi±1,P (Q) = fi,P (Q)
l[i]P,±P (Q)

v[i±1]P (Q)
.

◮ square-&-multiply-like loop,
◮ evaluate at Q on the fly,
◮ update with fraction of line functions,
◮ on Edwards curves, use fraction of

quadratic and line functions.

b P2

bP1

b

bP1 + P2

lP1,P2

vP1+P2

b

b

b

b

b b

P1

P2

P1 + P2 l

C

O

O′

Computations are in E(Fq), E(Fqk) and F∗

qk .

Common group choices, Tate and ate pairing

Arguments usually restricted to groups
◮ G1 = E(Fqk)[r] ∩ ker(φq − [1]) = E(Fq)[r],
◮ G2 = E(Fqk)[r] ∩ ker(φq − [q]).

Get mainly two variants:
◮ reduced Tate pairing

tr : G1 ×G2 → G3, (P,Q) 7→ fr,P (Q)
qk

−1

r ,

◮ ate pairing (T = t− 1, log(T) . log(r)/2)

aT : G2 ×G1 → G3, (Q,P) 7→ fT,Q(P)
qk

−1

r .

Has more efficient variants: optimal ate pairings that are
computed from some fm,Q(P) with log(m) ≈ log(r)/ϕ(k).

Using a twist to represent G2

Let p > 5 and E : y2 = x3 + ax+ b.
Here: A twist E′ of E is a curve isomorphic to E over Fqk .

◮ A twist is given by

E′ : y2 = x3 + (a/ω4)x+ (b/ω6), ω ∈ F∗

qk

with isomorphism ψ : E′ → E, (x′, y′) 7→ (ω2x′, ω3y′).
◮ If E′ is defined over Fqk/d for d | k, and ψ is defined over

Fqk and no smaller field, d is called the degree of E′.
◮ Possible twist degrees: can have d = 2, d = 4 (for b = 0

only), d = 3 and d = 6 (both for a = 0 only).
◮ Let d0 = 6 if a = 0, let d0 = 4 if b = 0, and d0 = 2 otherwise.

Then there exists a unique twist E′ of degree
d = gcd(d0, k) with r | #E′(Fqk/d).

Using a twist to represent G2

Let E′ be the unique twist of degree d with r | #E′(Fqk/d).
◮ Let G′

2 = E′(Fqk/d)[r], then ψ : G′
2 → G2 is a group

isomorphism,
◮ if Fqk = Fqk/d(ω), ψ is very convenient,
◮ points in G2 almost have coefficients in subfield Fqk/d.

E′(Fqk)
ψ

// E(Fqk) G′
1 G2

E′(Fqk/d) E(Fqk/d) G′
2

ψ

88rrrrrrrrrrrrr

E(Fq) G1

ψ−1

]];
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

Minimal requirements for security

◮ k should be small, but DLPs must be hard enough.

Security EC base Extension field ratio
level point order size of qk (bits) ρ · k
(bits) r (bits) NIST ECRYPT NIST ECRYPT

80 160 1024 1248 6.4 7.8
112 224 2048 2432 9.1 10.9
128 256 3072 3248 12.0 12.7
192 384 7680 7936 20.0 20.7
256 512 15360 15424 30.0 30.1

NIST/ECRYPT II recommendations

The ρ-value of E is defined as ρ = log(q)/ log(r).

log(r)

log(q) = ρ log(r)

log(qk) = (ρk) log(r)

0 1 ρ ρk

Balanced security
Do not want to waste recources, so balance the security as
much as possible.

◮ If ρ is too large, q is larger than
necessary.

log(r)

log(q) = ρ log(r)

0 1 ρ

◮ If ρk is too large, qk is larger than necessary.
◮ If ρk is too small, r is larger than necessary.

r qk

min

security

(a) good ρk

r qk

min

security

(b) ρk too large

r qk

min

security

(c) ρk too small

Pairing-friendly curves

Supersingular curves have small embedding degree (k ≤ 6,
large char p > 3: k ≤ 2 only).

To find ordinary curves with small embedding degree:
Fix k and find primes r, p and an integer n with the following
conditions:

◮ n = p+ 1− t, |t| ≤ 2
√
p,

◮ r | n,
◮ r | pk − 1,
◮ t2 − 4p = Dv2 < 0, D, v ∈ Z, D < 0, |D| small enough to

compute the Hilbert class polynomial for Q(
√
D).

Given such parameters, a corresponding elliptic curve over Fp
can be constructed using the CM method.

Pairing-friendly curve construction methods

Freeman, Scott, Teske: A taxonomy of pairing-friendly elliptic
curves

security construction curve k ρ ρk d k/d

128

BN (Ex. 6.8) a = 0 12 1.00 12 6 2
Ex. 6.10 b = 0 8 1.50 12 4 2
Freeman (5.3) a, b 6= 0 10 1.00 10 2 5
Constr. 6.7+ a, b 6= 0 12 1.75 21 2 6

192
KSS (Ex. 6.12) a = 0 18 1.33 24 6 3
KSS (Ex. 6.11) b = 0 16 1.25 20 4 4
Constr. 6.3+ a, b 6= 0 14 1.50 21 2 7

256
Constr. 6.6 a = 0 24 1.25 30 6 4
Constr. 6.4 b = 0 28 1.33 37 4 7
Constr. 6.24+ a, b 6= 0 26 1.17 30 2 13

BN curves
(Barreto-N., 2005)

If u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are both prime, then there exists an ordinary elliptic curve

◮ with equation E : y2 = x3 + b, b ∈ Fp,
◮ r = n = #E(Fp) is prime, i. e. ρ ≈ 1,
◮ the embedding degree is k = 12,
◮ t(u)2 − 4p(u) = −3(6u2 + 4u+ 1)2,
◮ there exists a twist E′ : y2 = x3 + b/ξ over Fp2 of degree 6

with n | #E′(Fp2).

BN curves
(Barreto-N., 2005)

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1,

E : y2 = x3 + b,

E′ : y2 = x3 + b/ξ

Thus we can represent G2 by G′
2 = E′(Fp2)[n].

◮ Replace all points R ∈ G2 by R′ ∈ G′
2 via R = ψ(R′),

◮ curve arithmetic over Fp2 instead of Fp12,
◮ represent field extensions of Fp2 using ξ

Fp2j = Fp2[X]/(Xj − ξ), j ∈ {2, 3, 6}.

An optimal ate pairing on BN curves
Input: P ∈ G1 = E(Fp), Q = ψ(Q′), Q′ ∈ G′

2 ⊆ E′(Fp2),
m = 6u+ 2 = (1,ms−1, . . . ,m0)NAF.

Output: aopt(Q,P).
1: R← Q, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do
3: f ← f2 · lR,R(P), R← [2]R
4: if (mi = ±1) then
5: f ← f · lR,±Q(P), R← R±Q
6: end if
7: end for
8: if u < 0 then
9: f ← 1/f , R← −R

10: end if
11: Q1 = φp(Q), Q2 = φp2(Q)
12: f ← f · lR,Q1

(P), R← R+Q1

13: f ← f · lR,−Q2
(P), R← R−Q2

14: f ← fp6
−1

15: f ← fp2+1

16: f ← f (p4
−p2+1)/n

17: return f

An optimal ate pairing on BN curves
Input: P ∈ G1 = E(Fp), Q = ψ(Q′), Q′ ∈ G′

2 ⊆ E′(Fp2),
m = 6u+ 2 = (1,ms−1, . . . ,m0)NAF.

Output: aopt(Q,P).
1: R← Q, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do
3: f ← f2 · lR,R(P), R← [2]R
4: if (mi = ±1) then
5: f ← f · lR,±Q(P), R← R±Q
6: end if
7: end for
8: if u < 0 then
9: f ← 1/f , R← −R

10: end if
11: Q1 = φp(Q), Q2 = φp2(Q)
12: f ← f · lR,Q1

(P), R← R+Q1

13: f ← f · lR,−Q2
(P), R← R−Q2

14: f ← fp6
−1

15: f ← fp2+1

16: f ← f (p4
−p2+1)/n

17: return f

The importance of suitable curve parameters

The best performance is obtained by choosing
◮ 6u+ 2 as sparse as possible,
◮ u sparse or with a good addition chain,
◮ p ≡ 3 (mod 4), so Fp2 = Fp(i), i2 = −1,
◮ ξ as "small" as possible to make field extension arithmetic

more efficient.

One should also consider non-pairing operations:
◮ elliptic curve scalar multiplication,
◮ square root and cube root computation.

Constrained devices might not even need to compute pairings
in certain pairing-based protocols.

◮ In some scenarios, pairings on Edwards curves could be
the best choice.

Implementation-friendly BN curves
joint work with P. Barreto, G. Pereira, M. Simplicío

Theorem
Given a BN curve E : y2 = x3 + b with b = N(ξ) for ξ ∈ Fp2, then
the sextic twist E′ : y2 = x3 + b/ξ satisfies #E(Fp) | #E′(Fp2).

Suggestions for choosing BN curves:
◮ Choose low-weight u s.t.
◮ 6u+ 2 has low weight, and s.t.
◮ p ≡ 3 (mod 4), i.e. Fp2 = Fp(i), i2 = −1,
◮ choose "small" ξ = c2 + id3, s.t. b = c4 + d6 is small,
◮ get obvious simple generator P = (−d2, c2) of E(Fp),
◮ and point P ′ = (−id, c) ∈ E′(Fp2), that (almost) always

gives a generator Q′ = [h]P ′ of E′(Fp2)[n], where
#E′(Fp2) = hn.

Implementation-friendly BN curves

Example curve:

u = −(262 + 255 + 1), c = 1, d = 1

Then
◮ p ≡ 3 (mod 4),
◮ p has 254 bits,
◮ 6u+ 2 has NAF-weight 5,
◮ E : y2 = x3 + 2, P = (−1, 1),
◮ ξ = 1 + i,
◮ E′ : y2 = x3 + (1− i), Q′ = [h](−i, 1).http://eprint.iar.org/2010/429

http://eprint.iacr.org/2010/429

Modular multiplication
Using the polynomial representation

◮ The pairing algorithm can be improved in all parts by
improving arithmetic in Fp.

◮ Can the polynomial shape

p = 36u4 + 36u3 + 24u2 + 6u+ 1

be used to speed up multiplication modulo p?
◮ Fan, Vercauteren, Verbauwhede (CHES 2009)

demonstrate this for hardware with u = 2l + s, s small.
◮ What about software?

Using the polynomial representation
joint work with P. Schwabe and R. Niederhagen,
inspired by Dan Bernstein’s Curve25519 paper

◮ Consider the ring R = Z[x] ∩ Z[
√

6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√

6ux)4 +
√

6(
√

6ux)3 + 4(
√

6ux)2 +
√

6(
√

6ux) + 1.

Then P (1) = p.
◮ Represent f ∈ Fp as a polynomial F ∈ R

F = f0 + f1 ·
√

6(
√

6ux) + f2 · (
√

6ux)2 + f3 ·
√

6(
√

6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3

such that F (1) = f .
◮ f corresponds to coefficient vector [f0, f1, f2, f3], fi ∈ Z.

Polynomial multiplication and degree reduction

◮ Polynomial multiplication of f and g gives polynomial with 7
coefficients.

f · g = h0 + h1 · (6u)x + h2 · (6u2)x2 + h3 · (36u3)x3

+ h4 · (36u4)x4 + h5 · (216u5)x5 + h6 · (216u6)x6

◮ Reduce modulo P using
(36u4)x4 = −(36u3)x3 − 4(6u2)x2 − (6u)x− 1.

h0

h1

h2

h3

h4

h5

h6

→

h0

h1

h2 − h6

h3 − h6

h4 − 4h6

h5 − h6

0

→ · · ·

h0 − h4 + 6h5 − 2h6

h1 − h4 + 5h5 − h6

h2 − 4h4 + 18h5 − 3h6

h3 − h4 + 2h5 + h6

0
0
0

Four coefficients are not enough

◮ 256-bit numbers in 4 coefficients: Each coefficient 64 bits,
small multiples in the reduction are larger than 128 bits.

◮ Easy to realize in hardware, not in software,
for software we need more coefficients.

◮ Idea: Consider u = v3, use 12 coefficients f0, . . . , f11

f =f0 + 6vf1x+ 6v2f2x
2 + 6v3f3x

3 + 6v4f4x
4

+ 6v5f5x
5 + 6v6f6x

6 + 36v7f7x
7 + 36v8f8x

8

+ 36v9f9x
9 + 36v10f10x

10 + 36v11f11x
11.

v has about 21 bits, product coefficients have about 42 bits.
◮ Double-precision floats have 53-bit mantissa.
◮ Use double-precision floats, still some space to add up

coefficients and compute small multiples.

Reducing coefficients

◮ At some point the coefficients will overflow (become larger
than 53 bits)

◮ Need to do coefficient reduction (carry)
◮ Carry from f0 to f1

c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

◮ Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

◮ f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
◮ Carry from f11 goes to f0, f3, f6, and f9

Implementation on a Core 2 processor

◮ Use fast vector instructions mulpd and addpd,
2 multiplications/ 2 additions in one instruction,
1 mulpd and 1 addpd (and one mov) per cycle.

◮ Problem: Fp arithmetic requires a lot of shuffeling,
combining etc., Solution: Implement arithmetic in Fp2.

◮ Use schoolbook multiplication in Fp2: 4 mults. in Fp,
squaring in Fp2: 2 multiplications in Fp.

◮ Perform 2 Fp multiplications in parallel using vector
instructions.

◮ Only two Fp polynomial reductions and two coefficient
reductions per multiplication in Fp2 (also SIMD).

◮ To decide where to do a reduction, detect overflows,
perform arithmetic on values and in parallel on worst-case
values.

Performance results

◮ On an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles
◮ Comparison: Fastest published pairing benchmark (on one

core) before: 10,000,000 cycles on a Core 2 by
Hankerson, Menezes, Scott, 2008,
Unpublished: 7,850,000 cyc on Core 2 T5500 (Scott 2010).

◮ New paper by Beuchat, González Díaz, Mitsunari,
Okamoto, Rodríguez-Henríquez, and Teruya (Pairing 2010)
claims: 2,330,000 cycles on a Core i7, 2,950,000 cycles on
a Core 2 with Visual Studio 2008.

Cycle counts on a Core 2 Q6600 with gcc-4.3.3

dclxvi [BGM+10]
multiplication in Fp2 ∼ 585 ∼ 588

squaring in Fp2 ∼ 359 ∼ 487

optimal ate pairing ∼ 4, 135, 000 ∼ 3, 269, 000

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in Fp and fast
64× 64-bit integer multiplier.

Three reasons why we are slower

1. Restricted choice of u = v3: need more operations in Fp2.

2. Additional coefficient reductions take quite a bit of time.

3. Multiplication is not (much) faster.

Why is our multiplication not faster?

◮ Always need to perform even number of Fp multiplications,
have to use schoolbook instead of Karatsuba in Fp2,
4 instead of 3 multiplications in Fp.

◮ Using vector instructions still requires quite some
shuffeling, overhead: 60 cycles per Fp2 multiplication.

But still...

◮ Fastest (current) implementation based on
double-precision floating-point arithmetic,

◮ exploits special p,
◮ on Intel (and AMD) processors: integer-based approach

(with Montgomery arithmetic) is faster
◮ But: several architectures have much faster

double-precision floating-point than integer arithmetic.

Paper: http://ryptojedi.org/users/peter/#dlxvi
Software: http://ryptojedi.org/rypto/#dlxvi
(public domain)

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

Affine coordinates for pairings?
joint work with K. Lauter, P. Montgomery

◮ Choose coordinate system for elliptic curve point
operations and line function computation,

◮ projective coordinates avoid inversions by doing more of
the other operations.

Galbraith (2005): “One can use projective coordinates for the
operations in E(Fq). The performance analysis depends on the
relative costs of inversion to multiplication in Fq.... and
experiments show that affine coordinates are faster.”

◮ Finite field inversion in prime field very expensive,
◮ for plain ECC over Fp: projective always better,
◮ current speed records for pairings: projective formulas.

Extension field inversions

Quadratic extension:
◮ Fq2 = Fq(α) with α2 = ω ∈ F∗

q,
◮

1

b0 + b1α
=
b0 − b1α
b20 − b21ω

=
b0

b20 − b21ω
− b1
b20 − b21ω

α,

◮ b20 − b21ω = N(b0 + b1α) ∈ Fq,
◮ compute inversion in Fq2 by inversion in Fq and some other

operations

Iq2 ≤ Iq + 2Mq + 2Sq + M(ω) + subq + negq.

◮ Assume Mq2 ≥ 3Mq and get

Rq2 = Iq2/Mq2 ≤ (Iq/3Mq) + 2 = Rq/3 + 2.

Extension field inversions

Degree-ℓ extension:
◮ generalization of Itoh-Tsujii inversion,
◮ standard way to compute inverses in optimal extension

fields,
◮ assume Fqℓ = Fq(α) with αℓ = ω ∈ F∗

q

◮ with v = (qℓ − 1)/(q − 1) = qℓ−1 + · · · + q + 1, compute

β−1 = βv−1 · β−v,

◮ for β ∈ Fqℓ , βv = N(β) ∈ Fq.

Rqℓ ≤ Rq/M(ℓ) + C(ℓ)

ℓ 2 3 4 5 6 7

1/M(ℓ) 1/3 1/6 1/9 1/13 1/17 1/22

C(ℓ) 3.33 4.17 5.33 5.08 6.24 6.05

Simultaneous inversions
Montgomery’s n-th trick...

◮ Idea: To invert a and b, compute ab, then (ab)−1 and

a−1 = b · (ab)−1, b−1 = a · (ab)−1,

replace 2I by 1I + 3M.
◮ In general for s inversions at once: compute ci = a1 · · · · · ai

for 2 ≤ i ≤ s, then c−1
s and

c−1
s−1 = c−1

s as, a−1
s−1 = cs−2c

−1
s−1, . . .

replace sI by 1I + 3(s− 1)M.
◮ Average I/M is

(sI)/(sM) = I/(sM) + 3(s− 1)/s ≤ R/s + 3.

Affine coordinates for pairings

Affine coordinates can be better than projective
◮ if the used implementation has small I/M,
◮ for ate pairings on curves with larger embedding degree,

i.e. at high security levels (the ate pairing needs arithmetic
in E′(Fqk/d), I/M gets smaller in larger extensions),

◮ when high-degree twists are not being used (s.t. k/d is
large),

◮ for computing several pairings (or products of several
pairings) at once on independent point pairs.

Pairings based on Microsoft’s bignum
optimal ate pairing on a 256-bit BN curve

Use MS bignum for
◮ base field arithmetic (Fp) with Montgomery multiplication,
◮ 256-bit integers are split into 4 pieces of 64 bits,
◮ extension fields based on MS bignum field extensions, with

inversions based on norm trick.

MS bignum + pairings
◮ is a C implementation (w/ little bit of assembly for mod mul

on AMD64),
◮ not restricted to specific security level, curves, or

processors,
◮ works under 32-bit and 64-bit Windows.

Pairings based on Microsoft’s bignum
field arithmetic performance

Fields over 256-bit BN prime field with
◮ p ≡ 3 (mod 4), i.e. Fp2 = Fp(i), i2 = −1.

Timings on a 3.16 GHz Intel Core 2 Duo E8500,
64-bit Windows 7

M S I I/M
cyc µs cyc µs cyc µs

Fp 414 0.13 414 0.13 9469 2.98 22.87
Fp2 2122 0.67 1328 0.42 11426 3.65 5.38
Fp6 18544 5.81 12929 4.05 40201 12.66 2.17
Fp12 60967 19.17 43081 13.57 103659 32.88 1.70

Pairings based on Microsoft’s bignum

Pairings on a 256-bit BN curve with
◮ sparse parameter u (HW 7), sparse 6u+ 2 (HW 8).

Timings on a 3.16 GHz Intel Core 2 Duo E8500,
64-bit Windows 7

operation CPU cycles time
Miller loop 7,572,000 2.36 ms
optimal ate pairing 14,838,000 4.64 ms
20 opt. ate at once 14,443,000 4.53 ms
product of 20 opt. ate 4,833,000 1.52 ms

EC scalar mult in G1 2,071,000 0.64 ms
EC scalar mult in G2 8,761,000 2.74 mshttp://eprint.iar.org/2010/363

http://eprint.iacr.org/2010/363

