Pairings on elliptic curves — parameter
selection and efficient computation

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

Workshop on Elliptic Curve Computation
Redmond, 19 October 2010

Pairings on elliptic curves

parameter selection and efficient computation

Three parts:
» Pairings and pairing-friendly curves,
» an optimal ate pairing on BN curves using the polynomial
parametrization,

» affine coordinates for pairing computation at high security
levels.

The embedding degree

Let £/ be an elliptic curve over F, (of characteristic p) and

> n=H#EF,) =q+1—t, |[t|<2,/7,

» r | n alarge prime divisor of n (r # p, r > \/q).
The embedding degree of E with respect to r is the smallest
positive integer k& with

rl ¢ —1.

Then

» k is the order of ¢ modulo r,

» r-th roots of unity u, C sz

» for k > 1, Elr] C E(Fqk).

The Tate pairing

The Tate-Lichtenbaum pairing

T, : E(Fp)[r] x E(Fp)/[r]E(Fp) — F;k/(F;k)r,
(P,Q+[r|E(Fx)) = frp(Do)(F)"

is a non-degenerate, bilinear map, where
» fppis afunction with divisor (f, p) = r(P) — r(O),
» Do ~ (Q) — (O) has support disjoint from {O, P}.

Assume k > 1, can use the reduced Tate pairing

by : E(Fq)[r] X E(Fqk)[r] - Hr,

(P,Q) = frr(@) = .

Computing Miller functions

To compute f,, p(Q), m € Z, with Miller's
algorithm use

S\

2

| _ ¢t ooplarap(@) P
fQZ,P(Q) - fl,P(Q) QZ]P(Q) bl
oy lip+p(Q) Lp1,Py
fit1,P(Q) = fz,P(Q) v (Q)

» square-&-multiply-like loop,
» evaluate at @ on the fly,
» update with fraction of line functions, ¢ 2

P+ P

P+ P

/

» on Edwards curves, use fraction of
guadratic and line functions.

Computations are in E(F,), E(F,.) and F},.

<

Common group choices, Tate and ate pairing

Arguments usually restricted to groups
> Gi = B(F)] Nker(g, — [1]) = B(E,)[r],
> Gy = E(F)[r] Nker(¢q — [q)).

Get mainly two variants:
» reduced Tate pairing

qk 1

tv‘:Gl XG2_>G3’ (P’Q)'_)fT,P(Q) r_ ’

» ate pairing (T' =t — 1, log(T) < log(r)/2)

"1

ar : Ga x Gy — G3, (Q,P) — fro(P) = .

Has more efficient variants: optimal ate pairings that are
computed from some f,,, o(P) with log(m) ~ log(r)/¢(k).

Using a twist to represent G,

Letp>5and E : y? = 23 4+ ax + b.
Here: A twist E' of E is a curve isomorphic to £ over F ..

» A twist is given by
E oy =2+ (ajw)z + (b)w®),w € F

with isomorphism ¢ : B — E, (¢/,y') — (w?2',w%y).

» If £’ is defined over F ,q for d | k, and ¢ is defined over
F and no smaller field, d is called the degree of E’.

» Possible twist degrees: can have d =2, d =4 (forb =0
only), d = 3 and d = 6 (both for a = 0 only).

> Letdy =6ifa=0,letdy =4if b =0, and dy = 2 otherwise.
Then there exists a unique twist £’ of degree
d = ged(do, k) with 7 | #£E'(F x/a).

Using a twist to represent G,

Let £ be the unique twist of degree d with r | #E'(F ju/a).
> Let Gy = E'(F k/4)[r], then ¢ : Gy — G is a group
isomorphism,
> if Fgr = F r/a(w), 1 is very convenient,
> points in G, almost have coefficients in subfield F /.

E’(Fqk) T) E(Fqk) G/l Go
\ \ ¢

-1
E'Fpa) BFgu) AN

E(F,) G1

Minimal requirements for security

» k should be small, but DLPs must be hard enough.

Security | EC base | Extension field ratio
level point order | size of ¢* (bits) p-k
(bits) r (bits) NIST | ECRYPT | NIST | ECRYPT

80 160 1024 | 1248 | 6.4 7.8
112 224 2048 | 2432 | 9.1 10.9
128 256 3072 | 3248 | 12.0| 127
192 384 7680 | 7936 | 20.0 | 20.7
256 512 15360 | 15424 | 30.0 | 30.1

NIST/ECRYPT Il recommendations

The p-value of E is defined as p = log(q)/ log(r).
0 1 p pk

log(r)
log(q) = plog(r) |
log(q®) = (pk) log(r) |

Balanced security

Do not want to waste recources, so balance the security as
much as possible.

0 1
» If pis too large, g is larger than

log(r)
necessary.

log(q) = plog(r)

» If pk is too large, ¢* is larger than necessary.
» If pk is too small, r is larger than necessary.

security security security
_H_H_min HHmin _H_H_min
r qk r qk r qk
(a) good pk

(b) pk too large (c) pk too small

Pairing-friendly curves

Supersingular curves have small embedding degree (k < 6,
large char p > 3: k£ < 2 only).

To find ordinary curves with small embedding degree:
Fix k£ and find primes r, p and an integer n with the following

conditions:
»n=p+1—t [t <2,p,
> 7| n,
> | pf -1,

» t2 —4p = Dv? <0, D,v € Z, D < 0, |D| small enough to
compute the Hilbert class polynomial for Q(+/D).

Given such parameters, a corresponding elliptic curve over I,
can be constructed using the CM method.

Pairing-friendly curve construction methods

Freeman, Scott, Teske: A taxonomy of pairing-friendly elliptic

curves
| security | construction curve |k p pk d k/d]
BN (Ex. 6.8) a=0 [12 1.00 12 6 2
128 Ex. 6.10 b=20 8 150 12 4 2
Freeman(5.3) a,b#0 |10 1.00 10 2 5
Constr. 6.7+ a,b#0|12 175 21 2 6
KSS (Ex. 6.12) a=0 |18 133 24 6 3
192 KSS (Ex. 6.11) b=0 |16 125 20 4 4
Constr. 6.3+ a,b#0|14 150 21 2 7
Constr. 6.6 a=0 |24 125 30 6 4
256 Constr. 6.4 b=0 |28 133 37 4 7
Constr. 6.24+ a,b#0 |26 1.17 30 2 13

BN curves
(Barreto-N., 2005)

If w € Z such that

p = plu) = 36u’+ 36u> + 24u” + 6u + 1,
n 36u’ + 36u” + 18u® + 6u + 1

I
=
£

are both prime, then there exists an ordinary elliptic curve
» with equation £ : y?> = 2® + b, b € F,
» r=n=#E(F,)is prime,i.e. p~ 1,
» the embedding degreeis k£ = 12,
> t(u)? — 4p(u) = —3(6u? + 4u +1)2,

» there exists a twist £ : y? = 23 + b/¢ over [, of degree 6
with n | #E'(F2).

BN curves
(Barreto-N., 2005)

p = pu) = 36u’+36u + 24u® + 6u+ 1,
n = n(u) = 36u®+36u® +18u? + 6u + 1,
E:y? = 23+,

E':y® = 2’ +b/¢

<

Thus we can represent G by G, = E'(F2)[n].
» Replace all points R € G2 by R’ € G, via R = ¢(R'),
» curve arithmetic over . instead of F 2,
» represent field extensions of I, using £

Foa =Fe[X]/(X7 —¢€), je€{2,3,6}

An optimal ate pairing on BN curves
Input: P e Gy =E(F,), Q=¢(Q), Q' € G5 C E'(F,2),
m=06u+2= (l,ms_l, ce ,mo)NAF.
Output: aps(Q, P).
TR—Q, f—1
cfor(ie—s—1;4>0;i——)do
fe > lrr(P), R 2R
if (m; = +1) then
f=flrs(P), R —R+Q
end if
end for
if u<0then
f<1/f,R——-R
end if
P Q1= 0p(Q), Q2 = ¢2(Q)
f [lrg(P), R—R+Q
fefrlr-q,(P), R—R—Qs
fe gt
e
D f e f(p4—p2+1)/n
: return f

NGk whR

N o e
Nk wNMRE OO

An optimal ate pairing on BN curves
Input: P e Gy =E(F,), Q=¢(Q), Q' € G5 C E'(F,2),

m=06u+2= (l,ms_l, .. .,mo)NAF.
Output: aps(Q, P).
L R—Q,f<1
2. for(i—s—1;i>0;i——)do
3 fef*irr(P), R 2R
4 if (m; = +1) then
5: f—flptq(P),R—R+Q
6: end if
7: end for
8: if u < 0then
9 f<1/f,.R—-R
10: end if
11: Q1 = ¢p(Q), Q2 = ¢,2(Q)
12: f— f-lpg,(P),R+— R+ Q1
13: f — flp—q,(P), R R~ Qs
14; f — fP°-1
15: f « fPiH1

[EnY
@

. f P f(p47p2+1)/n
: return f

Iy
~

The importance of suitable curve parameters

The best performance is obtained by choosing
» Gu + 2 as sparse as possible,
» wu sparse or with a good addition chain,
> p=3 (mod 4), 50 F2 = Fp,(i), i* = —1,
» £ as "small" as possible to make field extension arithmetic
more efficient.
One should also consider non-pairing operations:
» elliptic curve scalar multiplication,
» square root and cube root computation.
Constrained devices might not even need to compute pairings
in certain pairing-based protocols.
» In some scenarios, pairings on Edwards curves could be
the best choice.

Implementation-friendly BN curves

joint work with P. Barreto, G. Pereira, M. Simplicio

Theorem
Givena BN curve E : y? = 23+ bwith b = N (&) for £ € F 2, then
the sextic twist E' : y* = 2% + b/¢ satisfies #E(F,) | #E'(F2).

Suggestions for choosing BN curves:

» Choose low-weight u s.t.

» 6u + 2 has low weight, and s.t.

> p=3 (mod 4), i.e. Fj2 =Fp(i), i* = —1,

» choose "small" £ = ¢® +id3, s.t. b= c* + d° is small,
» get obvious simple generator P = (—d?, ¢?) of E(F,),
>

and point P’ = (—id, c) € E'(F,2), that (almost) always
gives a generator Q' = [h]P’ of E'(F,2)[n], where
#E'(F,2) = hn.

Implementation-friendly BN curves
Example curve:
u=—-2%4+2%4+1),c=1,d=1

Then
» p=3 (mod 4),
» p has 254 bits,
» 6u + 2 has NAF-weight 5,
> B2 =a3+2,P=(-1,1),
> £=1+41,
> Byt =234 (1—14), Q = [h](—i,1).

http://eprint.iacr.org/2010/429

http://eprint.iacr.org/2010/429

Modular multiplication

Using the polynomial representation

» The pairing algorithm can be improved in all parts by
improving arithmetic in F,,.
» Can the polynomial shape

p = 36u* + 36u® + 24u? + 6u + 1

be used to speed up multiplication modulo p?

» Fan, Vercauteren, Verbauwhede (CHES 2009)
demonstrate this for hardware with u = 2! + s, s small.

» What about software?

Using the polynomial representation

joint work with P. Schwabe and R. Niederhagen,
inspired by Dan Bernstein's Curve25519 paper

» Consider the ring R = Z[r] N Z[v/6uz] and the element

P = 36u'z* + 36u23 + 24u2® + 6ux + 1
= (V6uz)! + vV6(V6uz)® + 4(V6uzr)? + vV6(v6uz) + 1.
Then P(1) = p.

» Represent f € F,, as a polynomial F' € R

F = fo+ fi-V6(V6uz) + fo- (V6uz)? + f3-V6(vV6uz)?
= fo+ f1- 6wz + fo- (6u®)2® + f3- (36u3)z>

such that F'(1) = f.
» f corresponds to coefficient vector [fo, f1, f2, f3], fi € Z.

Polynomial multiplication and degree reduction

» Polynomial multiplication of f and g gives polynomial with 7
coefficients.

f-g = ho+hi-(6u)z+ hy - (6u?)2? + hy - (36u°)2>
+ Ry (36uM)xt + hs - (216u°)2® + hg - (216u5)2®

» Reduce modulo P using
(36ut)xt = —(36u3)z® — 4(6u?)x? — (6u)z — 1.

ho ho [ho — ha + 6hs — 2hg]
h1 hy hi —hq+5hs — hg
ho ho — hg ho — 4hy 4 18hs — 3hg
hs| — | hg—hg | — -+ | hs—hg+2hs+ hg
hy hy — 4hg 0

hs hs — hg 0

| he | L 0) L 0)

Four coefficients are not enough

» 256-bit numbers in 4 coefficients: Each coefficient 64 bits,
small multiples in the reduction are larger than 128 bits.

» Easy to realize in hardware, not in software,
for software we need more coefficients.

» ldea: Consider v = v3, use 12 coefficients fo, ..., fi1

f =fo+ 6vfiz + 6v% fox? + 603 f323 + 60 fua
+ 60° fsa® 4 60° fox® + 3607 fra” + 360° fya®
+ 36’[)9f9.1‘9 + 36’[)10f1033‘10 + 36vllf1133‘11.

v has about 21 bits, product coefficients have about 42 bits.
» Double-precision floats have 53-bit mantissa.

» Use double-precision floats, still some space to add up
coefficients and compute small multiples.

Reducing coefficients

» At some point the coefficients will overflow (become larger
than 53 bits)

Need to do coefficient reduction (carry)
Carry from fy to f;
¢ « round(fo/6v)
fo < fo—c-6v
fie=fitec
Carry from f; to fo
¢ < round(f1/v)
fie=fi—cv
Joe—fatec
fo € [-3v,30], f1 € [-v/2,v/2]
Carry from f1; goes to fo, fs3, fs, and fo

v

v

v

v

v

Implementation on a Core 2 processor

» Use fast vector instructions mulpd and addpd,
2 multiplications/ 2 additions in one instruction,
1 mulpd and 1 addpd (and one mov) per cycle.

» Problem: [, arithmetic requires a lot of shuffeling,
combining etc., Solution: Implement arithmetic in F ..

» Use schoolbook multiplication in [F,2: 4 mults. in [F,
squaring in F,»: 2 multiplications in IF,,.

» Perform 2 IF, multiplications in parallel using vector
instructions.

» Only two F,, polynomial reductions and two coefficient
reductions per multiplication in . (also SIMD).

» To decide where to do a reduction, detect overflows,
perform arithmetic on values and in parallel on worst-case
values.

Performance results

» On an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles

» Comparison: Fastest published pairing benchmark (on one
core) before: 10,000,000 cycles on a Core 2 by
Hankerson, Menezes, Scott, 2008,

Unpublished: 7,850,000 cyc on Core 2 T5500 (Scott 2010).

» New paper by Beuchat, Gonzalez Diaz, Mitsunari,
Okamoto, Rodriguez-Henriquez, and Teruya (Pairing 2010)
claims: 2,330,000 cycles on a Core i7, 2,950,000 cycles on
a Core 2 with Visual Studio 2008.

Cycle counts on a Core 2 Q6600 with gcc-4.3.3

dclxvi [BGM+10]
multiplication in I ,» ~ 585 ~ 588
squaring in . ~ 359 ~ 487
optimal ate pairing | ~ 4,135,000 | ~ 3,269,000

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in F,, and fast
64 x 64-bit integer multiplier.

Three reasons why we are slower

1. Restricted choice of u = v3: need more operations in Fpe.
2. Additional coefficient reductions take quite a bit of time.
3. Multiplication is not (much) faster.

Why is our multiplication not faster?

» Always need to perform even number of F,, multiplications,
have to use schoolbook instead of Karatsuba in Fp2,
4 instead of 3 multiplications in IF,,.

» Using vector instructions still requires quite some
shuffeling, overhead: 60 cycles per [F,,. multiplication.

But still...

» Fastest (current) implementation based on
double-precision floating-point arithmetic,

» exploits special p,

» on Intel (and AMD) processors: integer-based approach
(with Montgomery arithmetic) is faster

» But: several architectures have much faster
double-precision floating-point than integer arithmetic.

Paper: http://cryptojedi.org/users/peter/#dclxvi
Software: http://cryptojedi.org/crypto/#dclxvi
(public domain)

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

Affine coordinates for pairings?

joint work with K. Lauter, P. Montgomery

» Choose coordinate system for elliptic curve point
operations and line function computation,

» projective coordinates avoid inversions by doing more of
the other operations.

Galbraith (2005): “One can use projective coordinates for the
operations in £(F,). The performance analysis depends on the
relative costs of inversion to multiplication in [F,.... and
experiments show that affine coordinates are faster.”

» Finite field inversion in prime field very expensive,
» for plain ECC over IF,,: projective always better,
» current speed records for pairings: projective formulas.

Extension field inversions

Quadratic extension:
> F2 = Fy(a) with o® = w € F;,
>
1 bo — b« bo by
= = — O[,
bo+biae B3 —blw B3 —bw B3 —blw
> b% — b%w = N(bo + bla) S Fq,
» compute inversion in IF 2 by inversion in F, and some other
operations

I <I,+2M,+2S,+ M, + sub, + neg,.
» Assume M > > 3M, and get

Ry =12/Mp < (I,/3M,) + 2 = Ry/3 + 2.

Extension field inversions

Degree-¢ extension:
» generalization of Itoh-Tsujii inversion,

» standard way to compute inverses in optimal extension
fields,

> assume F = Fy(a) with o* = w € F;
» withv = (¢* —1)/(¢g—1) =¢" 1 +--- + ¢+ 1, compute

pt=pt g,
» for g € Fy, 8Y = N(B) € F,.

R, < Ry/M(0) +C(0)

¢ | 2 3 4 5 6 7

/M) | 1/3 1/6 1/9 1/13 1/17 1/22

c(0) 3.33 4.17 5.33 5.08 6.24 6.05

Simultaneous inversions
Montgomery'’s n-th trick...

» Idea: To invert ¢ and b, compute ab, then (ab)~! and
at=b-(ab)”t, b l=a-(ab)7?,

replace 2I by 11 + 3M.
» In general for s inversions at once: compute ¢; = ay - --- - a;
for2 <i < s, then c;! and

-1 -1 -1 _ —1
Cs—1 = Cs Qsy, Qg 7 = Cs—2C5_1,

replace sI by 1I + 3(s — 1)M.
» Average I/M is

(s1)/(sM) =1/(sM) +3(s —1)/s < R/s + 3.

Affine coordinates for pairings

Affine coordinates can be better than projective
» if the used implementation has small I/M,

» for ate pairings on curves with larger embedding degree,
i.e. at high security levels (the ate pairing needs arithmetic
in E'(F x/a), I/M gets smaller in larger extensions),

» when high-degree twists are not being used (s.t. k/d is
large),

» for computing several pairings (or products of several
pairings) at once on independent point pairs.

Pairings based on Microsoft’s bignum

optimal ate pairing on a 256-bit BN curve

Use MS bignum for
» base field arithmetic (FF,,) with Montgomery multiplication,
» 256-bit integers are split into 4 pieces of 64 bits,

» extension fields based on MS bignum field extensions, with
inversions based on norm trick.

MS bignum + pairings
» is a C implementation (w/ little bit of assembly for mod mul
on AMDG64),
» not restricted to specific security level, curves, or
processors,

» works under 32-bit and 64-bit Windows.

Pairings based on Microsoft’s bignum

field arithmetic performance

Fields over 256-bit BN prime field with
» p=3 (mod 4), i.e. Fo = Fp(i), i* = —1.

Timings on a 3.16 GHz Intel Core 2 Duo E8500,

64-bit Windows 7

M S I /M

cyc | ps cyc | ps cyc | ps
F, 414 | 013 | 414] 013 | 9469 | 2.98 || 22.87
Fe | 2122 | 067 | 1328 | 042 | 11426 | 3.65]| 5.38
F, || 18544 | 581 | 12920 | 4.05 | 40201 | 12.66 || 2.17
F,i» || 60967 | 19.17 || 43081 | 13.57 || 103659 | 32.88 1.70

Pairings based on Microsoft’s bignum

Pairings on a 256-bit BN curve with
» sparse parameter u (HW 7), sparse 6u + 2 (HW 8).

Timings on a 3.16 GHz Intel Core 2 Duo E8500,
64-bit Windows 7

| operation | CPU cycles | time |
Miller loop 7,572,000 | 2.36 ms
optimal ate pairing 14,838,000 | 4.64 ms

20 opt. ate at once 14,443,000 | 4.53 ms
product of 20 opt. ate 4,833,000 | 1.52 ms
EC scalar mult in G, 2,071,000 | 0.64 ms
EC scalar mult in G4 8,761,000 | 2.74 ms

http://eprint.iacr.org/2010/363

http://eprint.iacr.org/2010/363

