New software speed records for cryptographic pairings

Michael Naehrig

Microsoft Research
mnaehrig@microsoft.com

Montreal, 13 April 2010
joint work with Peter Schwabe (TU/e) and Ruben Niederhagen (TU/e, NTU)

Implementing pairings for crypto

For implementing pairings for use in pairing-based cryptographic protocols we usually use variants of the Tate pairing on elliptic curves.
We need:

- suitable curves, i.e. pairing-friendly elliptic curves,
- efficient algorithms to compute pairings as fast as possible.

Notation

Let E be an elliptic curve over $\mathbb{F}_{p}(p>3$ prime) with

- $n=\# E\left(\mathbb{F}_{p}\right)=p+1-t, \quad|t| \leq 2 \sqrt{p}$,
- $r \mid n$ a large prime divisor of $n(r \neq p, r \geq \sqrt{p})$,
- and embedding degree $k>1$.

The embedding degree of E w.r.t. r is the smallest integer k with $r \mid p^{k}-1$.

- $G_{1}=E\left(\mathbb{F}_{p}\right)[r]$,
- $G_{2}=E\left(\mathbb{F}_{p^{k}}\right)[r] \cap \operatorname{ker}\left(\phi_{p}-[p]\right)$,
- ate pairing:

$$
a_{T}: G_{2} \times G_{1} \rightarrow G_{3}, a_{T}(Q, P)=f_{T, Q}(P)^{\left(p^{k}-1\right) / r}
$$

$T=t-1, G_{3} \subseteq \mathbb{F}_{p^{k}}^{*}$ group of r-th roots of unity.

Security and parameter size

- k should be small,
- DLPs must be hard in all three groups G_{1}, G_{2}, and G_{3},
- for efficiency reasons balance the security.

Security level (bits)	Extension field size p^{k} (bits)	EC base point order r (bits)	ratio $\rho \cdot k$
	G_{3}	G_{1}, G_{2}	
80	1248	160	7.8
112	2432	224	10.9
128	3248	256	12.7
192	7936	384	20.7
256	15424	512	30.1

ECRYPT II recommendations (2009), $\rho=\log (p) / \log (r)$.

BN curves

(Barreto-N., 2005)

- Security requirements and key size recommendations fix optimal value for $\rho \cdot k$ for given security level.
- BN curves are (nearly) ideal for the 128-bit security level.
- If $u \in \mathbb{Z}$ such that

$$
\begin{array}{r}
p=p(u)=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1 \\
n=n(u)=36 u^{4}+36 u^{3}+18 u^{2}+6 u+1
\end{array}
$$

are both prime, then there exists an ordinary elliptic curve

- $E: y^{2}=x^{3}+b, b \in \mathbb{F}_{p}$ with
- $r=n=\# E\left(\mathbb{F}_{p}\right)$ prime, i. e. $\rho \approx 1$,
- and embedding degree $k=12$.

An optimal ate pairing on BN curves $(u>0)$

Input: $P \in G_{1}, Q \in G_{2}, 6 u+2=\left(1, m_{s-1}, \ldots, m_{0}\right)_{2}$.
Output: $a_{\text {opt }}(Q, P)$.

$$
\text { 1: } R \leftarrow Q, f \leftarrow 1
$$

2: for $(i \leftarrow s-1 ; i \geq 0 ; i--)$ do
3: $\quad f \leftarrow f^{2} \cdot l_{R, R}(P), R \leftarrow[2] R$
4: if $\left(m_{i}=1\right)$ then
5: $\quad f \leftarrow f \cdot l_{R, Q}(P), R \leftarrow R+Q$
6: end if
7: end for
8: $Q_{1}=\phi_{p}(Q), Q_{2}=\phi_{p^{2}}(Q)$
9: $f \leftarrow f \cdot l_{R, Q_{1}}(P), R \leftarrow R+Q_{1}$
10: $f \leftarrow f \cdot l_{R,-Q_{2}}(P), R \leftarrow R-Q_{2}$
11: $f \leftarrow f^{p^{6}-1}$
12: $f \leftarrow f^{p^{2}+1}$
13: $f \leftarrow f^{\left(p^{4}-p^{2}+1\right) / n}$
14: return f

Using twists of degree 6

There exists a twist $E^{\prime} / \mathbb{F}_{p^{2}}$ of degree 6 with

- $n \mid E^{\prime}\left(\mathbb{F}_{p^{2}}\right)$,
- isomorphism

$$
\psi: E^{\prime} \rightarrow E,\left(x^{\prime}, y^{\prime}\right) \mapsto\left(\xi^{1 / 3} x^{\prime}, \xi^{1 / 2} y^{\prime}\right)
$$

where $E^{\prime}: y^{2}=x^{3}+b / \xi$.
Thus we can represent G_{2} by

$$
G_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{p^{2}}\right)[n]
$$

and $\psi: G_{2}^{\prime} \rightarrow G_{2}$ is a group isomorphism.

- Replace all points $R \in G_{2}$ by $R^{\prime} \in G_{2}^{\prime}$ via $R=\psi\left(R^{\prime}\right)$,
- points are much smaller,
- curve arithmetic over $\mathbb{F}_{p^{2}}$ instead of $\mathbb{F}_{p^{12}}$.

Modular multiplication

- The pairing algorithm can be improved in all parts by improving arithmetic in \mathbb{F}_{p}.
- Can the polynomial shape

$$
p=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1
$$

be used to speed up multiplication modulo p ?

- Fan, Vercauteren, Verbauwhede (2009) demonstrate this for hardware.
- More efficient because uses specially sized multipliers.
- What about software?

Using the polynomial representation

(Inspired by Bernstein's Curve25519 paper)
Consider the ring $R=\mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\sqrt{6} u x]$ and the element

$$
\begin{aligned}
P & =36 u^{4} x^{4}+36 u^{3} x^{3}+24 u^{2} x^{2}+6 u x+1 \\
& =(\sqrt{6} u x)^{4}+\sqrt{6}(\sqrt{6} u x)^{3}+4(\sqrt{6} u x)^{2}+\sqrt{6}(\sqrt{6} u x)+1 .
\end{aligned}
$$

Then $P(1)=p$. Represent $f \in \mathbb{F}_{p}$ by a polynomial $F \in R$ as

$$
\begin{aligned}
F & =f_{0}+f_{1} \cdot \sqrt{6}(\sqrt{6} u x)+f_{2} \cdot(\sqrt{6} u x)^{2}+f_{3} \cdot \sqrt{6}(\sqrt{6} u x)^{3} \\
& =f_{0}+f_{1} \cdot(6 u) x+f_{2} \cdot\left(6 u^{2}\right) x^{2}+f_{3} \cdot\left(36 u^{3}\right) x^{3}
\end{aligned}
$$

such that $F(1)=f$.

$$
f \leftrightarrow\left[f_{0}, f_{1}, f_{2}, f_{3}\right], f_{i} \in \mathbb{Z}
$$

Polynomial multiplication and degree reduction

$$
\begin{aligned}
f & =f_{0}+f_{1} \cdot(6 u) x+f_{2} \cdot\left(6 u^{2}\right) x^{2}+f_{3} \cdot\left(36 u^{3}\right) x^{3}, \\
g & =g_{0}+g_{1} \cdot(6 u) x+g_{2} \cdot\left(6 u^{2}\right) x^{2}+g_{3} \cdot\left(36 u^{3}\right) x^{3}, \\
f \cdot g & =h_{0}+h_{1} \cdot(6 u) x+h_{2} \cdot\left(6 u^{2}\right) x^{2}+h_{3} \cdot\left(36 u^{3}\right) x^{3} \\
& +h_{4} \cdot\left(36 u^{4}\right) x^{4}+h_{5} \cdot\left(216 u^{5}\right) x^{5}+h_{6} \cdot\left(216 u^{6}\right) x^{6}
\end{aligned}
$$

Reduce modulo P :

$$
\begin{aligned}
& \left(216 u^{6}\right) x^{6}=-\left(216 u^{5}\right) x^{5}-4\left(36 u^{4}\right) x^{4}-\left(36 u^{3}\right) x^{3}-\left(6 u^{2}\right) x^{2} \\
& \left(216 u^{5}\right) x^{5}=-6\left(36 u^{4}\right) x^{4}-4\left(36 u^{3}\right) x^{3}-6\left(6 u^{2}\right) x^{2}-(6 u) x \\
& \left(36 u^{4}\right) x^{4}=-\left(36 u^{3}\right) x^{3}-4\left(6 u^{2}\right) x^{2}-(6 u) x-1 \\
& {\left[\begin{array}{l}
h_{0} \\
h_{1} \\
h_{2} \\
h_{3} \\
h_{4} \\
h_{5} \\
h_{6}
\end{array}\right] \rightarrow\left[\begin{array}{c}
h_{0} \\
h_{1} \\
h_{2}-h_{6} \\
h_{3}-h_{6} \\
h_{4}-4 h_{6} \\
h_{5}-h_{6} \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
h_{0} \\
h_{1}-\left(h_{5}-h_{6}\right) \\
h_{2}-h_{6}-6\left(h_{5}-h_{6}\right) \\
h_{3}-h_{6}-4\left(h_{5}-h_{6}\right) \\
h_{4}-4 h_{6}-6\left(h_{5}-h_{6}\right) \\
0 \\
0
\end{array}\right] \cdots\left[\begin{array}{c}
h_{0}-h_{4}+6 h_{5}-2 h_{6} \\
h_{1}-h_{4}+5 h_{5}-h_{6} \\
h_{2}-4 h_{4}+18 h_{5}-3 h_{6} \\
h_{3}-h_{4}+2 h_{5}+h_{6} \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Four coefficients are not enough

Using this for a 256 -bit BN prime p :

- element in \mathbb{F}_{p} is represented by 4 coefficients, some can be larger than 64 bits,
- only have $64 \times 64 \rightarrow 128$ multiplier on amd64 architecture.

Idea: more coefficients and use

- fast double precision floating point arithmetic,
- SIMD instructions (SSE, SSE2, SSE3) to do two 64-bit floating point multiplications or additions at once.
Represent elements in \mathbb{F}_{p} with coefficients that fit into a 53 -bit mantissa of a 64-bit floating point value (double precision).

Representing integers with 12 coefficients

Now assume $u=v^{3}$ for some $v \in \mathbb{Z}$. Let $\delta=\sqrt[6]{6}$, then $(\delta v x)^{3}=\sqrt{6} u x^{3}$. Consider $R=\mathbb{Z}[x] \cap \overline{\mathbb{Z}}[\delta v x]$, and

$$
\begin{aligned}
P & =36 u^{4} x^{12}+36 u^{3} x^{9}+24 u^{2} x^{6}+6 u x^{3}+1 \\
& =36 v^{12} x^{12}+36 v^{9} x^{9}+24 v^{6} x^{6}+6 v^{3} x^{3}+1 \\
& =(\delta v x)^{12}+\delta^{3}(\delta v x)^{9}+4(\delta v x)^{6}+\delta^{3}(\delta v x)^{3}+1
\end{aligned}
$$

Represent $f \in \mathbb{F}_{p}$ by a polynomial $F \in R$ as

$$
\begin{aligned}
F= & f_{0}+f_{1}(6 v) x+f_{2}\left(6 v^{2}\right) x^{2}+f_{3}\left(6 v^{3}\right) x^{3} \\
& +f_{4}\left(6 v^{4}\right) x^{4}+f_{5}\left(6 v^{5}\right) x^{5}+f_{6}\left(6 v^{6}\right) x^{6}+f_{7}\left(36 v^{7}\right) x^{7} \\
& +f_{8}\left(36 v^{8}\right) x^{8}+f_{9}\left(36 v^{9}\right) x^{9}+f_{10}\left(36 v^{10}\right) x^{10}+f_{11}\left(36 v^{11}\right) x^{11}
\end{aligned}
$$

such that $F(1)=f$.

$$
f \leftrightarrow\left[f_{0}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}\right]
$$

Multiplication and degree reduction

Multiplication of two elements

$$
\begin{aligned}
f & \leftrightarrow\left[f_{0}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}\right] \\
g & \leftrightarrow\left[g_{0}, g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}, g_{7}, g_{8}, g_{9}, g_{10}, g_{11}\right]
\end{aligned}
$$

gives 23 coefficients. Reduce the degree of the polynomial as before via

$$
\begin{aligned}
(\delta v x)^{12} & =-\delta^{3}(\delta v x)^{9}-4(\delta v x)^{6}-\delta^{3}(\delta v x)^{3}-1 \\
\left(36 v^{12}\right) x^{12} & =-\left(36 v^{9}\right) x^{9}-4\left(6 v^{6}\right) x^{6}-\left(6 v^{3}\right) x^{3}-1
\end{aligned}
$$

By multiplications, additions, reduction etc. the absolute values of the coefficients grow. Need to reduce them once in a while.

Coefficient reduction

$$
F=f_{0}+f_{1}(6 v) x+f_{2}\left(6 v^{2}\right) x^{2}+\ldots
$$

- replace f_{0} by $\left(f_{0} \bmod 6 v\right)$ and add quotient to f_{1},
- use rounding $r=\operatorname{round}\left(f_{0} /(6 v)\right)$, then

$$
f_{0} \leftarrow f_{0}-r \cdot(6 v), f_{1} \leftarrow f_{1}+r,
$$

- $r=\operatorname{round}\left(f_{1} / v\right), f_{1} \leftarrow f_{1}-r \cdot v, f_{2} \leftarrow f_{2}+r$,
- gives $f_{0} \in[-3 v, 3 v], f_{1} \in[-v / 2, v / 2]$,
- carry from f_{11} goes to $f_{0}, f_{3}, f_{6}, f_{9}$.

Reduced representation and comparison

An element $f \in \mathbb{F}_{p}$ with representation $\left[f_{0}, f_{1}, \ldots, f_{11}\right]$ is reduced if

$$
\left|f_{0}\right|,\left|f_{6}\right| \leq 3 v,\left|f_{i}\right| \leq v / 2, i \neq 0,6
$$

- product of two reduced elements is (almost) reduced after degree and coefficient reduction,
- $[0,0, \ldots, 0]$ is the unique reduced representation for 0 ,
- it is even a unique representation for 0 among elements with

$$
\left|f_{0}\right|,\left|f_{6}\right|<6 v,\left|f_{i}\right|<v, i \neq 0,6
$$

- For comparing two \mathbb{F}_{p}-elements, subtract them and reduce the result.

The curve

- We need u to be a third power and $6 u+2$ to have low Hamming weight.
- There are about 12000 primes p that lead to BN curves s.t. u is a third power and p has 256 or 257 bits.
- Lowest Hamming weight $(h(6 u+2)=9)$ for

$$
\begin{aligned}
v & =1966080(21 \text { bits }) \\
u=v^{3} & =7599824371187712000(63 \text { bits }) \\
6 u+2 & =45598946227126272002(66 \text { bits }) \\
p & =36 u^{4}+36 u^{3}+24 u^{2}+6 u+1(257 \text { bits })
\end{aligned}
$$

- Curve equation: $E: y^{2}=x^{3}+17$ over \mathbb{F}_{p},
- $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i), i^{2}=-7$,
- Twist: $E^{\prime}: y^{2}=x^{3}+17 / \xi$ over $\mathbb{F}_{p^{2}}, \xi=i+6$.

Arithmetic in $\mathbb{F}_{p^{2}}$

The (optimal) ate pairing needs fast $\mathbb{F}_{p^{2}}$-arithmetic.

- Mainly optimize computations in $\mathbb{F}_{p^{2}}$,
- use SIMD instructions addpd, mulpd,
- can do one mulpd and one addpd in one cycle, i.e. 4 floating point operations,
- only do full reductions when absolutely necessary,
- often short coefficient reduction is sufficient.

High-level implementation

- Field extensions: $\mathbb{F}_{p^{12}}$ is built as a tower on $\mathbb{F}_{p^{2}}$ as

$$
\mathbb{F}_{p^{6}}=\mathbb{F}_{p^{2}}(\tau), \tau^{3}=\xi, \quad \mathbb{F}_{p^{12}}=\mathbb{F}_{p^{6}}(\omega), \omega^{2}=\tau
$$

- Miller loop:
- Jacobian coordinates on twist for curve arithmetic,
- explicit formulas for line function computation,
- special multiplication of $\mathbb{F}_{p^{12}}$-element with sparse line function value.
- Final exponentiation:
- uses method from Scott et al. (2009),
- hard part done with 3 exponentiations to the power u, and addition-chain to build special exponent (polynomial parametrization),
- special squaring functions for elements in the cyclotomic subgroup (Granger, Scott, 2009).

Timings

- Optimal ate pairing on a single core of a 2.4 GHz Core 2 Quad Q6600 in less than 4,500,000 cycles (<2 ms).

no function	63
$\mathbb{F}_{p^{2}} \times \mathbb{F}_{p^{2}}$ multiplication	693
$\mathbb{F}_{p^{2}}$ squaring	531
$\mathbb{F}_{p^{2}} \times \mathbb{F}_{p}$ multiplication	432
$\mathbb{F}_{p^{2}}$ short coefficient reduction	135
$\mathbb{F}_{p^{2}}$ inversion	127,152
Miller loop	$2,267,343$
optimal ate pairing	$4,455,954$

- Previous fastest published timings of an implementation by Mike Scott: 10,000,000 cycles on some Core 2 for the R-ate pairing (Hankerson, Menezes, Scott, 2008),
- Mike's implementation now: 7,850,000 cycles on a Core 2 T5500.

Thanks for your attention

- For more details see:
M. N., Ruben Niederhagen, Peter Schwabe, New software speed records for cryptographic pairings http://eprint.iacr.org/2010/186
- Implementation (Niederhagen/Schwabe): http://www.cryptojedi.org/crypto/\#dclxvi

mnaehrig@microsoft.com

Coefficient reduction

Input: Coefficient vector $\left(h_{0}, h_{1}, \ldots, h_{11}\right) \in \mathbb{Z}^{12}$.
Output: Reduced coefficient vector ($h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{11}^{\prime}$).

1: for $(i \in\{1,4,7\})$ do

2: $\quad r \leftarrow \operatorname{round}\left(h_{i} / v\right), h_{i} \leftarrow h_{i}-r v, h_{i+1} \leftarrow h_{i+1}+r$
3: $\quad r \leftarrow \operatorname{round}\left(h_{i+1} / v\right), h_{i+1} \leftarrow h_{i+1}-r v, h_{i+2} \leftarrow h_{i+2}+r$

4: end for

5: $r \leftarrow \operatorname{round}\left(h_{10} / v\right), h_{10} \leftarrow h_{10}-r v, h_{11} \leftarrow h_{11}+r$
6: $r \leftarrow \operatorname{round}\left(h_{11} / v\right), h_{11} \leftarrow h_{11}-r v$
7: $h_{9} \leftarrow h_{9}-r, h_{6} \leftarrow h_{6}-4 r, h_{3} \leftarrow h_{3}-r, h_{0} \leftarrow h_{0}-r$
8: $r \leftarrow \operatorname{round}\left(h_{0} /(6 v)\right), h_{0} \leftarrow h_{0}-r \cdot 6 v, h_{1} \leftarrow h_{1}+r$
9: $r \leftarrow \operatorname{round}\left(h_{3} / v\right), h_{3} \leftarrow h_{3}-r v, h_{4} \leftarrow h_{4}+r$
10: $r \leftarrow \operatorname{round}\left(h_{6} /(6 v)\right), h_{6} \leftarrow h_{6}-r \cdot 6 v, h_{7} \leftarrow h_{7}+r$
11: $r \leftarrow \operatorname{round}\left(h_{9} / v\right), h_{9} \leftarrow h_{9}-r v, h_{10} \leftarrow h_{10}+r$
12: for $(i \in\{1,4,7,10\})$ do
13: $\quad r \leftarrow \operatorname{round}\left(h_{i} / v\right), h_{i} \leftarrow h_{i}-r v, h_{i+1} \leftarrow h_{i+1}+r$
14: end for
15: return $\left(h_{0}^{\prime}, h_{1}^{\prime}, \ldots, h_{11}^{\prime}\right)$.

