Pairings for Cryptography

Michael Naehrig

Technische Universiteit Eindhoven michael@cryptojedi.org

Nijmegen, 11 December 2009

Pairings

A pairing is a bilinear, non-degenerate map

 $e: G_1 \times G_2 \to G_3,$

where $(G_1, +), (G_2, +), (G_3, \cdot)$ are abelian groups.

bilinear.

$$\begin{aligned} e(P_1+P_2,Q_1) &= e(P_1,Q_1)e(P_2,Q_1), \\ e(P_1,Q_1+Q_2) &= e(P_1,Q_1)e(P_1,Q_2), \end{aligned}$$

i.e. $e(aP,Q) = e(P,Q)^a = e(P,aQ)$, $a \in \mathbb{Z}$.

 non-degenerate: given 0 ≠ P ∈ G₁ there is a Q ∈ G₂ with e(P,Q) ≠ 1.

Cryptographic applications require e to be efficiently computable and the DLPs in G_1 , G_2 , G_3 to be hard.

Applications of pairings in cryptography

- Attack DL-based cryptography on elliptic curves (Menezes-Okamoto-Vanstone-1993, Frey-Rück-1994).
- Construct crypto systems with certain special properties:
 - One-round tripartite key agreement (Joux-2000),
 - Identity-based, non-interactive key agreement (Ohgishi-Kasahara-2000),
 - Identity-based encryption (Boneh-Franklin-2001),
 - Hierarchical IBE (Gentry-Silverberg-2002),
 - Short signatures (Boneh-Lynn-Shacham-2001),
 - Searchable encryption (Boneh-Di Crescenzo-Ostrovsky-Persiano-2004),
 - Non-interactive proof systems (Groth-Sahai-2008),
 - much more ...

Elliptic curves

Take an elliptic curve E over \mathbb{F}_q (char(\mathbb{F}_q) = p > 3) with

Weierstrass equation

$$E: y^2 = x^3 + ax + b,$$

•
$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\},\$$

$$\blacktriangleright n = \#E(\mathbb{F}_q) = q + 1 - t, \quad |t| \le 2\sqrt{q},$$

▶ and $r \mid n$ a large prime divisor of $n \ (r \neq p)$.

► For
$$\mathbb{F} \supseteq \mathbb{F}_q$$
:
 $E(\mathbb{F}) = \{(x, y) \in \mathbb{F}^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\},\$

- $E = E(\overline{\mathbb{F}_q}), \overline{\mathbb{F}_q}$ an algebraic closure of \mathbb{F}_q .
- ► E is an abelian group (written additively) with neutral element O.

Torsion points and embedding degree

The set of r-torsion points on E is

$$E[r] = \{P \in E \mid [r]P = \mathcal{O}\} \cong \mathbb{Z}/r\mathbb{Z} \times Z/r\mathbb{Z}.$$

Since $r \mid \#E(\mathbb{F}_q)$, we have $E(\mathbb{F}_q)[r] \neq \emptyset$. The embedding degree of E w.r.t. r is the smallest integer k with

$$r \mid q^k - 1.$$

For k > 1 we have

$$E[r] \subset E(\mathbb{F}_{q^k}),$$

i.e. $E(\mathbb{F}_q)[r] \subseteq E(\mathbb{F}_{q^k})[r] = E[r].$

The reduced Tate pairing

Let k > 1. The reduced Tate pairing

$$\begin{split} t_r : E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k}) / [r] E(\mathbb{F}_{q^k}) &\to \quad \mu_r \subseteq \mathbb{F}_{q^k}^*, \\ (P,Q) &\mapsto \quad f_{r,P}(Q)^{\frac{q^k-1}{r}} \end{split}$$

is a non-degenerate, bilinear map, where

- $f_{r,P}$ is a function with divisor $(f_{r,P}) = r(P) r(\mathcal{O})$,
- μ_r is the subgroup of *r*-th roots of unity in $\mathbb{F}_{a^k}^*$.

The computation of the pairing has two stages:

- evaluation of the Miller function $f_{r,P}$ at Q,
- the final exponentiation to the power $(q^k 1)/r$.

Specific parameters for crypto

- k should be small,
- DLPs in all groups must be hard,
- for efficiency reasons balance the security.

	Security	Extension field	EC base point	ratio	
	level (bits)	size of q^k (bits)	order r (bits)	$ ho \cdot k$	
	80 1248		160	7.8	
	112	2432	224	10.9	
	128 3248		256	12.7	
	192	7936	384	20.7	
	256	15424	512	30.1	
Е	ECRYPT II recommendations (2009), $\rho = \log(q) / \log(r)$.				

Small embedding degree

The embedding degree condition says

$$r \mid q^k - 1, \ r \nmid q^m - 1, \ m < k$$

or

$$q^k \equiv 1 \pmod{r}, \ q^m \not\equiv 1 \pmod{r}, \ m < k.$$

This means:

• k is the (multiplicative) order of q modulo r,

▶
$$k \mid r - 1$$
.

There are only $\varphi(k) < k$ elements of order $k \mod r$. Given r and q, it is very unlikely that q is one of them. (Note: r has at least 160 bits.)

Pairing-friendly curves

Fix a suitable value for k and find primes r, p and a number n with the following conditions:

▶
$$n = p + 1 - t$$
, $|t| \le 2\sqrt{p}$,

- ▶ r | n,
- ▶ $r | p^k 1$,
- t² 4p = Dv² < 0, D, v ∈ Z, D < 0 squarefree, |D| small enough to compute the Hilbert class polynomial in Q(√D).

Given such parameters, a corresponding elliptic curve over \mathbb{F}_p can be constructed by the CM method.

See Freeman, Scott, and Teske (*A taxonomy of pairing-friendly elliptic curves*) for an overview of construction methods and recommendations.

MNT curves and Freeman curves

• MNT curves (2001): $\rho \approx 1$ and $k \in \{3, 4, 6\}$.

k	p(u)	t(u)
	$12u^2 - 1$	$-1\pm 6u$
4	$u^2 + u + 1$	-u or u+1
6	$4u^2 + 1$	$1 \pm 2u$

Freeman curves (2006): $\rho \approx 1$ and k = 10.

$$p(u) = 25u^4 + 25u^3 + 25u^2 + 10u + 3,$$

$$t(u) = 10u^2 + 5u + 3.$$

- In both families, curves are very rare. Need to solve a Pell equation to find curves.
- D is variable.

BN curves (Barreto-N., 2005)

If $u \in \mathbb{Z}$ such that

$$p = p(u) = 36u^4 + 36u^3 + 24u^2 + 6u + 1,$$

$$n = n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$$

are both prime, then there exists an ordinary elliptic curve

- with equation $E: y^2 = x^3 + b, b \in \mathbb{F}_p$,
- $r = n = \#E(\mathbb{F}_p)$ is prime, i. e. $\rho \approx 1$,
- the embedding degree is k = 12,

►
$$t^2 - 4p(u) = -3(6u^2 + 4u + 1)^2$$
.

BN curves are ideal for the 128-bit security level.

Specific parameters

Security	Family	r	k	ρ	$\rho \cdot k$	p^k
level (bits)		(bits)				(bits)
80	MNT	208	6	1.00	6	1248
112	Fre	244	10	1.00	10	2440
128	BN	256	12	1.00	12	3072
192	KSS	384	16	1.25	20	7680
192	KSS	384	18	1.33	24	9216
256	Сус	512	24	1.25	30	15360

Three groups

In practice, restrict the arguments of the Tate pairing to groups of prime order r.

Assume $r^2 || \# E(\mathbb{F}_{p^k})$, k > 1. Define:

► $G_1 = E(\mathbb{F}_{p^k})[r] \cap \ker(\phi_p - [1]) = E(\mathbb{F}_p)[r]$,

•
$$G_2 = E(\mathbb{F}_{p^k})[r] \cap \ker(\phi_p - [p]),$$

$$\blacktriangleright G_3 = \mu_r \subset \mathbb{F}_{p^k}^*.$$

 ϕ_p is the *p*-power Frobenius on *E*, i. e. $\phi_p(x, y) = (x^p, y^p)$. It is $E(\mathbb{F}_{p^k})[r] = G_1 \oplus G_2$.

- If $P \in E(\mathbb{F}_p)[r]$, then $t_r(P, P) = 1$. Take $Q \notin \langle P \rangle = G_1$.
- Can compute the Tate pairing on $G_1 \times G_2$ or on $G_2 \times G_1$.

Two choices

The reduced Tate pairing:

$$\begin{array}{rccc} t_r:G_1 \times G_2 & \to & G_3, \\ (P,Q) & \mapsto & f_{r,P}(Q)^{\frac{p^k-1}{r}}. \end{array}$$

• The ate pairing: Let T = t - 1.

$$a_T : G_2 \times G_1 \quad \to \quad G_3,$$

$$(Q, P) \quad \mapsto \quad f_{T,Q}(P)^{\frac{p^k - 1}{r}}.$$

Miller's algorithm (Tate)

Input:
$$P \in G_1, Q \in G_2, r = (r_m, \dots, r_0)_2$$

Output: $t_r(P,Q) = f_{r,P}(Q)^{\frac{p^k-1}{r}}$
 $R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1; i \ge 0; i--)$ do
 $f \leftarrow f^2 \frac{l_{R,R}(Q)}{v_{[2]R}(Q)}$
 $R \leftarrow [2]R$
if $(r_i = 1)$ then
 $f \leftarrow f \frac{l_{R,P}(Q)}{v_{R+P}(Q)}$
 $R \leftarrow R + P$
end if
end for
 $f \leftarrow f \frac{p^k-1}{r}$
return f

Miller's algorithm (ate)

Input:
$$P \in G_1, Q \in G_2, T = (t_m, \dots, t_0)_2$$

Output: $a_T(P,Q) = f_{T,Q}(P)^{\frac{p^k-1}{r}}$
 $R \leftarrow Q, f \leftarrow 1$
for $(i \leftarrow m-1; i \ge 0; i--)$ do
 $f \leftarrow f^2 \frac{l_{R,R}(P)}{v_{[2]R}(P)}$
 $R \leftarrow [2]R$
if $(t_i = 1)$ then
 $f \leftarrow f \frac{l_{R,Q}(P)}{v_{R+Q}(P)}$
 $R \leftarrow R + Q$
end if
end for
 $f \leftarrow f^{\frac{p^k-1}{r}}$
return f

Line functions

- Line functions correspond to the lines in the point doubling/addition,
- *l*_{P1,P2}: line through P₁ and P₂, tangent if P₁ = P₂, vP₃: vertical line through P₃ = P₁ + P₂.

The final exponentiation

Let Φ_d be the *d*-th cyclotomic polynomial.

We have

$$X^k - 1 = \prod_{d|k} \Phi_d(X).$$

►
$$r \mid p^k - 1, \ r \nmid p^d - 1 \text{ for } d < k \iff r \mid \Phi_k(p).$$

Write the final exponent as:

$$\frac{p^k - 1}{r} = \prod_{d|k, \ d \neq k} \Phi_d(p) \cdot \frac{\Phi_k(p)}{r}.$$

Let $e \mid k, e \neq k$, then $\alpha^{(p^k-1)/r} = 1$ for all $\alpha \in \mathbb{F}_{p^e}$ since $(p^e - 1) \mid \prod_{d \mid k, d \neq k} \Phi_d(p)$.

Factors in proper subfields of \mathbb{F}_{p^k} are mapped to 1 by the final exponentiation.

The final exponentiation (k even)

$$\frac{p^k - 1}{r} = (p^{k/2} - 1)\frac{p^{k/2} + 1}{\Phi_k(p)} \cdot \frac{\Phi_k(p)}{r}.$$

- ► Use $\mathbb{F}_{p^k} = \mathbb{F}_{p^{k/2}}(\alpha)$, $\alpha^2 = \beta$, β a non-square in $\mathbb{F}_{p^{k/2}}$. For $f = f_0 + f_1 \alpha \in \mathbb{F}_{p^k}$: $(f_0 + f_1 \alpha)^{p^{k/2}} = f_0 - f_1 \alpha$, and $(f_0 + f_1 \alpha)^{p^{k/2} - 1} = (f_0 - f_1 \alpha)/(f_0 + f_1 \alpha)$.
- (p^{k/2} + 1)/Φ_k(p) is a sum of p-powers, use the p-power Frobenius automorphism.
 k = 12 : f^{(p⁶+1)/r} = f^{(p²+1).p⁴-p²+1}/r = ((f^p)^p · f)^{(p⁴-p²+1)/r}.
- ► The last part is done with multi-exponentiation or by finding a good addition chain for Φ_k(p)/r.

Using a twist to represent G_2

Here: A twist E' of E is a curve isomorphic to E over \mathbb{F}_{p^k} .

► A twist is given by $E': y^2 = x^3 + (a/\omega^4)x + (b/\omega^6), \ \omega \in \mathbb{F}_{p^k}$ with isomorphism

$$\psi: E' \to E, \ (x', y') \mapsto (\omega^2 x', \omega^3 y').$$

- If E' is defined over 𝔽_{p^{k/d}</sub> and ψ is defined over 𝔽_{p^k} and no smaller field, d is called the degree of E'.</sub>}
- ▶ Define $G'_2 := E'(\mathbb{F}_{p^{k/d}})[r]$, then $\psi : G'_2 \to G_2$ is a group isomorphism.
- Points in G_2 have a special form.

Maximal possible twist degrees

d	j(E)	fields of definition
	a, b	for powers of ω
2	$\notin \{0, 1728\}$	$\omega^2 \in \mathbb{F}_{q^{k/2}}$
	$a \neq 0$, $b \neq 0$	$\omega^3 \in \mathbb{F}_{q^k} \setminus \mathbb{F}_{q^{k/2}}$
4	1728	$\omega^4 \in \mathbb{F}_{q^{k/4}}$, $\omega^2 \in \mathbb{F}_{q^{k/2}}$
	a eq 0, $b = 0$	$\omega^3 \in \mathbb{F}_{q^k} \setminus \mathbb{F}_{q^{k/2}}$
6	0	$\omega^{6}\in\mathbb{F}_{q^{k/6}}$, $\omega^{3}\in\mathbb{F}_{q^{k/3}}$
	a=0, $b eq 0$	$\omega^2 \in \mathbb{F}_{q^{k/2}}$

$$E': y^2 = x^3 + (a/\omega^4)x + (b/\omega^6)$$
$$\psi: E' \to E, \ (x', y') \mapsto (\omega^2 x', \omega^3 y')$$

Advantages of using twists

- If E has a twist of degree d and $d \mid k$:
 - ► Replace all curve arithmetic in G₂ (over 𝔽_{p^k}) by curve arithmetic in G'₂ (over 𝔽_{p^{k/d}</sub>)</sub>}
 - For d > 2, curve arithmetic is faster since a = 0 or b = 0.
 - ► For even k, the x-coordinates of points in G₂ lie in 𝔽_{p^{k/2}}, i. e. the vertical line function values v_{P3}(Q) = x_Q - x₃ lie in 𝔽_{p^{k/2}} and can be omitted.
 - Can use the twisted ate pairing
 (e = k/d and T_e = (t − 1)^e mod r):

$$\eta_{T_e}: G_1 \times G_2 \to G_3, \ (P,Q) \mapsto f_{T_e,P}(Q)^{(p^k-1)/r}$$

For d > 2, can have $\log(T_e) < \log(r)$.

Loop shortening

There are several possibilities to reduce the number of iterations in Miller's algorithm:

- ► Can take T^j_e mod r for 1 ≤ j ≤ d − 1 instead of T_e in the twisted ate pairing. Choose the shortest non-trivial power.
- ► For the ate pairing, can replace T by $T^j \mod r$ for $1 \le j \le k-1$ to possibly get a shorter loop.
- ► More combinations are possible, often leading to optimal pairings with a minimal loop length of log(r)/φ(k).
- ► For BN curves, the R-ate pairing is optimal:

$$R(Q,P) = \left(f_{c,Q}(P)(f_{c,Q}(P)l_{[c]Q,Q}(P))^p \cdot l_{\phi_p([c]Q+Q),[c]Q}(P) \right)^{(p^{12}-1)/n},$$

where c = 6u + 2.

Line functions for ate pairings

$$f \leftarrow f \cdot l_{R,Q}(P), \quad R \leftarrow R + Q$$

Do curve arithmetic in Miller's algorithm in G'_2 . Replace points $R, Q \in G_2$ by corresponding points $R', Q' \in G'_2$.

Using the slope on the twist:

$$\lambda = \frac{y_R - y_Q}{x_R - x_Q} = \frac{\omega^3 y_{R'} - \omega^3 y_{Q'}}{\omega^2 x_{R'} - \omega^2 x_{Q'}} = \omega \frac{y_{R'} - y_{Q'}}{x_{R'} - x_{Q'}} = \omega \lambda'$$

Computing the line function on the twist:

$$\begin{aligned} l_{R,Q}(P) &= y_R - y_P - \lambda (x_R - x_P) \\ &= \omega^3 y_{R'} - \omega^3 y_{P'} - \omega \lambda' (\omega^2 x_{R'} - \omega^2 x_{P'}) \\ &= \omega^3 (y_{R'} - y_{P'} - \lambda (x_{R'} - x_{P'})) = \omega^3 \cdot l_{R',Q'}(P') \end{aligned}$$

Choice of coordinates

For "real" implementations, one tries to avoid inversions by using projective coordinates.

- Can do pairing computation with only 1 finite field inversion (needed in the final exponentiation).
- Can avoid inversions completely when using compressed representation of pairing values.
- The best choice of coordinates is different for different classes of curves.
- For the fastest explicit formulas to compute the DBL and ADD steps in Miller's algorithm on curves with twists of degree d > 2, see preprint Faster Pairing Computations on Curves with High-Degree Twists (joint work with Craig Costello and Tanja Lange, will be out soon).

Thanks for your attention

Database and web interface to get and compute parameters of BN curves:

http://www.ti.rwth-aachen.de/research/cryptography/bncurves.php

C-Implementation of several pairings on BN curves: http://www.cryptojedi.org/crypto

michael@cryptojedi.org