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Notation

Take an elliptic curve E over F, (of characteristic p > 3)
with

»n=#EF,)=q+1-1t, [t] <2/,

» r | n alarge prime divisor of n (r { ¢, 7 > \/q),

» and embedding degree k£ > 1.

The embedding degree of E w.r.t. r is the smallest integer
k with

r|q"—1.
Then
» k is the order of ¢ modulo r,
» r-th roots of unity p, C Foe,
» Er] C E(Fu).



The Tate pairing

The Tate pairing

tr: E(Fg)[r] x E(Fg)/[rE(Fg) — Foo/(Fp)",
(P,Q) = [frp(Dg).
is a non-degenerate, bilinear map, where

» fpis afunction with divisor (f,. p) = r(P) —r(O),

» Dy ~ (Q) — (O) is a divisor with support disjoint from
{0, P}

For P € E(F,)[r], we have ¢,(P, P) = 1, take Q ¢ (P).



The reduced Tate pairing

Assume r? t #E(F,). The reduced Tate pairing is

k

triG1XG2 — Gg,
(P,Q) — fp(@QF

for cyclic groups (of prime order r)
> Gy = E(Fg)[r] Nker(¢q — [1]) = E(F,)[r],
> Gy = E(F,)[r] Nker (e, — [g)),
» G35 = p, C sz

We have E(F)[r] = G1 @ G,, and ¢, is the g-power
Frobenius on E, ¢,(x,y) = (27, y9).




Miller’s algorithm (£ even)

Input: PGGl,QEGQ,T:(T’m,...,To)Q

-1

Output: ¢.(P,Q) = f.p(Q) +
R+ P, f — 1
for(t —m—1;i>0; i——)do
f— f*1rr(Q)
R «— [Q]R
if (r;, =1) then
f—F-lrp(@Q)
R— R+ P
end if
end for;;
f e

return f




Specific parameters for crypto

» k should be small,
» DLPs must be hard in all three groups G1, G2, and G,
» for efficiency reasons balance the security.

Security | Extension field | EC base point | ratio
level (bits) | size of ¢* (bits) | order r (bits) | p- k
G G1,Gy

80 1248 160 7.8
112 2432 224 10.9
128 3248 256 12.7
192 7936 384 20.7
256 15424 512 30.1

ECRYPT Il recommendations (2009), p = log(q)/ log(r).



Pairing-friendly curves

Fix a suitable value for £ and find primes r,p and a
number n with the following conditions:

»n=p+1—t,|t| <2/,
> r|n,

> pf =1,

>

t* —4p = Dv?* <0, D,v € Z, D < 0 squarefree, | D|
small enough to compute the Hilbert class polynomial
in Q(v'D).

Given such parameters, a corresponding elliptic curve
over I, can be constructed by the CM method.



BN curves
(Barreto-N., 2005)

If w € Z such that

p = plu) = 36u’+ 36u®+ 24u* + 6u + 1,
n = 36u’ + 36u® + 18u* + 6u + 1

I
=
S

are both prime, then there exists an ordinary elliptic curve
» with equation F : y?> =23 + b, b € F,,
» r=n=#E(F,)is prime,i.e. p~ 1,
» the embedding degree is k£ = 12.

BN curves are ideal for the 128-bit security level.



BN curves

Let &, be the k-th cyclotomic polynomial. Then
» k is the embedding degree of £ w.r.t. r,
> iff r | $p(t —1).

Galbraith, McKee, Valenga:

D15 (62%) = n(x)n(—x),

with n(z) = 362* 4 362° + 182% + 6z + 1.

» Choose n(u) = 36u* 4+ 36u® + 18u® + 6u + 1,
t(u) = 6u? + 1.

» Then p(u) = n(u) + t(u) — 1,

> 12— dp(u) = —3(6u? + 4u + 1)%



Distribution of prime pairs

(Bateman-Horn conjecture, 1962)

For large N € N, we heuristically expect the number of
positive integers v with 1 < u < N for which p(u), n(u) are
both prime to be

c o

-I(-5) (=)

the product is taken over all primes ¢, and w(q) is the
number of solutions of p(z)n(z) =0 (mod q).

where



Distribution of prime pairs

Heuristics

up | ug—ui+1 | R [ Q)] [ rr-102 bits

1 72621324 250565 277429 0.34503 < 109
448869734239 4008033 5794 6142 0.14456 160
114911668072285 9977856 9952 10501 0.09974 192
29417389567148395 13774482 10011 10567 0.07268 224
7530851732698370160 17949966 10097 10481 0.05625 256
1927898043575355590045 22521445 9961 10343 0.04423 288
493541899155296768986804 27819263 10127 10311 0.03640 320
126346726183755979948643811 34034872 10109 10394 0.02970 352
32344761903041530875525863096 40428318 10048 10349 0.02485 384

» R(I): number of prime pairs (p(u), n(u)) where
u e I =luy,us,

» Q(I): estimate for R(I) from Bateman-Horn,

» ;= R(I)/(ug —uy + 1)



“Constructing” BN curves

For a given desired bitsize of p and n

1. choose integers v of suitable size until p(u) and n(u)
are prime and have the desired bitsize,

2. choose b € FF,,, and a point (z,y) € F> on the curve
y* =23 + b until [n](z,y) = O.

We can restrict to u with special properties in first step:
» e.g. v odd, then p =3 mod 4,

» or u with very low Hamming weight, s.t. n has low
Hamming weight.

Second step is done to choose the twist with the right
order (out of 6 possibilities).



Nice properties

» Curve arithmetic is very efficient, since parameter
a = 0 in curve equation E : 3% = 23 + ax + b.

» Often can choose P = (1,2) € G, (E : y* = 2° + 3).
» Have efficient endomorphisms: e.g. if @ € G, then

$p(Q) = [6u7]Q.

Can use Gallant-Lambert-Vanstone or
Galbraith-Scott methods.



Using twists of degree 6

There exists a twist £’ /F,2 of degree 6 with
» n | E'(Fu),
» isomorphism

VB = B (' y) = (€, 6y,

where E' : y* = 2 + b/¢.
Thus we can represent G5 by

Gy = E'(Fp2)[n]

and ¢ : G, — G is a group isomorphism.



The R-ate pairing on BN curves

» The ate pairing (Hess, Smart, Vercauteren)
ar . G2 X Gl — G3, (Q, P) — fT’Q(P)(qk_l)/r

comes from the Tate pairing on GG, x GG1, has shorter
loop (1" =t — 1) in Miller’s algorithm.
» The R-ate pairing (Lee, Lee, Park)

(p*2-1)/n
R(Q,P) = (fa,Q(P)(fa,Q(P)l[a]Q,Q(P))p 'l¢p([a]Q+Q),[a]Q(P)> ;

has even shorter loop (a = 6u + 2).



What about the prime field arithmetic?

» Improving the arithmetic in F, improves the whole
pairing computation.

» Can we use the special form of p to make things
faster?
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What about the prime field arithmetic?

» Improving the arithmetic in F, improves the whole
pairing computation.

» Can we use the special form of p to make things
faster?

» Yes, see Fan, Vercauteren, Verbauwhede
(improve modular multiplication in hardware).

The following is work in progress with P. Schwabe (TU/e).
...there is no “real” implementation yet
to see how efficient it is.



Arithmetic modulo p

(Following ideas in Bernstein’s Curve25519 paper)
Consider the ring
R = Z[z] N Z[V6uzx].
and the element

P = 36u*z* + 36ul2® + 24u’2? + 6ux + 1

= (V6uz)* + vV6(vV6uz)® + 4(vV6uz)® + vV6(vV6uz) + 1.

Then P(1) = p and

» R—TF, F— F(1) modp,

» R/(P) — F,, F+(P)+— F(1) modp
are ring homomorphisms.



Arithmetic modulo p

Representing integers

Represent f € I, by a polynomial F' € R as

F = fo+ iv6(Véur) + fo(V6uz)® + f3v6(v6ux)?
= fo+ fi(6ux) + fo6uPs?) + f3(36uz?)

such that F'(1) = f.

f « [f07f17f27f3]



Arithmetic modulo p

Multiplication

f=fot iv6(Vouz) + fo(V6uz)® + f3V6(V6uz)?,
9= g0+ nV6(Vbuzr) + go(vV6uzx)® + g3V6(V6uz)?

Then

fg = h() + hl\/é(\/éux) + hQ(\/6U$)2 + hg\/é(\/éﬂl‘f'
+ h4(\/6ux)4 + h5\/6(\/6ﬂ$)5 + hﬁ(\/éux)ﬁ

ho
h1
ha
h3
ha
hs
he

fogo

fog1 + f1g90

fog2 +6f191 + fago

fogs + fig2 + f201 + f3go
6f193 + f292 + 6f391
f293 + f392

61393



Arithmetic modulo p

Degree reduction

Reduce modulo P:

(Vour)® = —V6(V6uz)® —4(V6uz)* — V6(V6uz)® — (V6uz)?
V6(Ve6ur)® = —6(V6uz)* — 4vV6(V6uz)® — 6(v6ux)? — vV6(v6uz)
(Vouz)* = —v6(V6uz)® —4(vV6uz)? — V6(V6uz) — 1
ho ho ho ho — hg + 6hs — 2hg
hi h1 h1 — (hs — he) hi — ha + 5hs — he
ho ho — hg ho — hg — 6(h5 — h6) ho — 4hy + 18hs — 3hg
h3| — | ha —heg | — h3—h6—4(h5—h6) h3 — ha + 2hs + he
ha hi — 4hg ha — 4hg — 6(hs — he) 0
hs hs — hg 0 0

he 0 0 0



Hm...

» To reduce coefficients need to reduce mod 6u and .
» When p has 256 bits, 6u is larger than 64 bits.

» Probably no advantage over Montgomery
multiplication/reduction.



Arithmetic modulo p

Now assume u = v3 for some v € Z. Let § = /6, then
(6vx)? = Vouz®.

Consider B
R = Z[x] N Z]dvx].

and the element
P = 36u'z'?+ 36u3x9 + 240?25 4 6uz® + 1

= 360"z + 36072 + 240°2° + 60°2” + 1
= (6vx)"? + &*(Svz)? + 4(6vz)® + 6*(Svz)® + 1.



Arithmetic modulo p

Representing integers with 12 coefficients

Let a = dvx.
Represent f € F, by a polynomial ' € R as

F fo+ fid®a + fo6'a® + f36°a° 4+ f10%a* + fz0a°

+  fea® + f26°a” + f0ta® + fo0%a” + f100%a 4 fri6at
= fo+ fi(6vz) + fo(6v32?) + f3(6v°2?)

4+ fa(6v'z) 4+ f5(60°2°) + f(60°2°%) + f7(360727)

+  £3(360%2%) + fo(36072%) + f10(360"°21) + f11 (360 2'T)

such that F(1) = f.

I o, fu, fo, f35 fa, fo f6, f7. [35 fos Jro, f1]



Arithmetic modulo p

Multiplying integers with 12 coefficients

Multiplication of two elements

f = [f()vf17f27f37f47f57f67f77f87f97f107f11]
g < [907917927g3ug479579679779879979107911]

gives 23 coefficients. Reduce the degree of the
polynomial via

(bvx)? = —&(dvz)? — 4(0vz) — &3 (Svx)® — 1,
8 (bvr)? = —66*(6vz)'’ — 46°(dvx)" — 66%(ovx)* — 6°(Svw),

2 (6vxr)*?2 = —0°(Svx)'? — 462 (bvx)'® — 6°(dvx)'? — 6% (dvx)™.



Arithmetic modulo p

Advantages

We hope it will be efficient (on 64-bit processor) since

» coefficients fit in double precision floating-point
numbers,

even after multiplication,
even after degree reduction,
we allow negative numbers as well,

coefficient reduction can be done by multiplying
floating point numbers,

» can use SIMD instructions, i.e. do two such
multiplications per cycle.

vV v v v



Arithmetic modulo p

Advantages

We hope it will be efficient (on 64-bit processor) since

» coefficients fit in double precision floating-point
numbers,

even after multiplication,
even after degree reduction,
we allow negative numbers as well,

coefficient reduction can be done by multiplying
floating point numbers,

» can use SIMD instructions, i.e. do two such
multiplications per cycle.

Now we need a good implementation to check ...

vV v v v



Thanks for your attention

» Database and web interface to get and compute
parameters of BN curves:
http://www.ti.rwth-aachen.de/research/cryptography/bncurves.php

» C-Implementation of several pairings on BN curves:
http://www.cryptojedi.org/crypto

michael@cryptojedi.org
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