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Pairings

A pairing is a map

e : G1 ×G2 → G3

((G1,+), (G2,+), (G3, ·) finite abelian groups), which is
I bilinear,

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2),

I non-degenerate, given 0 6= P ∈ G1 there is a Q ∈ G2

with
e(P,Q) 6= 1,

I efficiently computable.



Applications of pairings

I Attack DL-based cryptography on elliptic curves
(Menezes-Okamoto-Vanstone-1993,
Frey-Rück-1994) .

I Construct crypto systems with certain special
properties:

I One-round tripartite key agreement (Joux-2000),
I Identity-based, non-interactive key agreement

(Ohgishi-Kasahara-2000),
I Identity-based encryption (Boneh-Franklin-2001),
I Hierarchical IBE (Gentry-Silverberg-2002),
I Short signatures (Boneh-Lynn-Shacham-2001).
I Non-interactive proof systems (Groth-Sahai-2008)
I much more ...



Tripartite key agreement (Joux-2000)
Alice, Bob, and Charlie choose secrets a, b, and c.
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e([a]P, [b]Q)c = e([b]P, [c]Q)a = e([a]P, [c]Q)b = e(P,Q)abc



BLS signatures
(Boneh-Lynn-Shacham-2001)

I System parameters:

e : G1 ×G2 → G3,

elements P ∈ G1, Q ∈ G2 s.t. e(P,Q) 6= 1,
and a hash function H : {0, 1}∗ → G1.

I Alice’s private key: xA ∈ Z, public key: QA = [xA]Q.
I Signature of a message M ∈ {0, 1}∗: σ = [xA]H(M).
I Verification e(σ,Q) = e(H(M), QA).
I Correctness: e(σ,Q) = e([xA]H(M), Q) =
e(H(M), [xA]Q) = e(H(M), QA).
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Elliptic Curves



Elliptic curves

Take an elliptic curve E over Fp (p > 3) with
I Weierstrass equation

E : y2 = x3 + ax+ b,

I E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + ax+ b} ∪ {O},

I n = #E(Fp) = p+ 1− t, |t| ≤ 2
√
p,

I and r | n a large prime divisor of n (r 6= p).
I For F ⊇ Fp:
E(F) = {(x, y) ∈ F2 : y2 = x3 + ax+ b} ∪ {O},

I E = E(Fp), Fp an algebraic closure of Fp.
I E is an abelian group (written additively).



Torsion points and embedding degree

The set of r-torsion points on E is

E[r] = {P ∈ E | [r]P = O}.

Since r | #E(Fp), we have E(Fp)[r] 6= ∅.
The embedding degree of E w.r.t. r is the smallest integer
k with

r | pk − 1.

For k > 1 we have

E[r] ⊂ E(Fpk),

i. e. E(Fp)[r] ⊆ E(Fpk)[r] = E[r].



Pairings on Elliptic Curves



The reduced Tate pairing

The reduced Tate pairing

tr : E(Fpk)[r]× E(Fpk)/[r]E(Fpk) → µr ⊂ F∗pk ,

(P,Q) 7→ fr,P (Q)
pk−1

r .

defines a non-degenerate, bilinear map, where
I µr is the group of r-th roots of unity in F∗

pk ,
I fr,P is a function with divisor (fr,P ) = r(P )− r(O).

For P ∈ E(Fp)[r], we have tr(P, P ) = 1, take Q /∈ 〈P 〉.



Three groups
Assume r2 - #E(Fp), k > 1. Define the following groups:

I G1 = E(Fpk)[r] ∩ ker(φp − [1]) = E(Fp)[r],
I G2 = E(Fpk)[r] ∩ ker(φp − [p]),
I G3 = µr ⊂ F∗

pk .
φp is the p-power Frobenius on E, i. e. φp(x, y) = (xp, yp).
Let

G1 = 〈P 〉, G2 = 〈Q〉.

We have E(Fpk)[r] = G1 ⊕G2, and we compute the Tate
pairing as

tr : G1 ×G2 → G3,

(P,Q) 7→ fr,P (Q)
pk−1

r .

G1, G2, and G3 are cyclic groups of prime order r.



Computation of
Pairings on Elliptic Curves



Computing the pairing

There are two parts:
1. compute fr,P (Q),
2. the final exponentiation to the power (pk − 1)/r.

For the first part, consider Miller functions fi,P , i ∈ Z.
These are functions with divisor

I (fi,P ) = i(P )− ([i]P )− (i− 1)(O).

Then
I (fr,P ) = r(P )− ([r]P )− (r − 1)(O) = r(P )− r(O).



Miller functions and line functions
Miller functions can be computed recursively with

I f1,P = 1,
I f2i,P = f 2

i,P · l[i]P,[i]P/v[2i]P ,
I fi+1,P = fi,P · l[i]P,P/v[i+1]P ,

where
I lP1,P2 : line through P1 and P2, tangent if P1 = P2,
vP1: vertical line through P1.



Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← f

pk−1
r

return f



Specific parameters – pairing-friendly curves
I The embedding degree k needs to be small

(1 < k ≤ 50), to be able to do computations at all.
I DLPs must be hard in all three groups.
I For efficiency reasons balance the security as much

as possible.
I Define ρ = log(p)/ log(r).

Security Extension field EC base point ratio
level (bits) size of pk (bits) order r (bits) ρ · k

80 1024 160 6.40
112 2048 224 9.14
128 3072 256 12.00
192 7680 384 20.00
256 15360 512 30.00

NIST recommendations



My favorite examples... BN curves
(Barreto-N., 2005)

BN curves can be found easily and are ideal for the
128-bit security level.
If u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are both prime, then there exists an elliptic curve

I with equation E : y2 = x3 + b, b ∈ Fp,
I r = n = #E(Fp) is prime, i. e. ρ ≈ 1,
I the embedding degree is k = 12.
I BNtiny: u = −1, p = 19, n = 13, E : y2 = x3 + 3.
P = (1, 2) ∈ E(Fp).
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Final exponentiation (easy part)

I Choose k even, then the final exponent is

pk − 1

r
= (pk/2 − 1)

pk/2 + 1

r
.

Note that r - pk/2 − 1, therefore r | pk/2 + 1.

I Represent the field extension Fpk = Fpk/2(α), α2 = β,
where β is a non-square in Fpk/2.

I Then f = f0 + f1α with f0, f1 ∈ Fpk/2, computing
(f0 + f1α)pk/2

= f0 − f1α is almost for free,
I and (f0 + f1α)pk/2−1 = (f0 − f1α)/(f0 + f1α).
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Denominator elimination

I Since k is even, all points Q ∈ G2 have a special
form, in particular the x-coordinate xQ ∈ Fpk/2.

I The value of the vertical line function
vR(Q) = xQ − xR ∈ Fpk/2.

I The first part of the final exponentiation thus gives

vR(Q)pk/2−1 = 1.

I Remove all denominators in Miller’s algorithm.
I Similarly, all values in proper subfields of Fpk are

mapped to 1 by the final exponentiation.
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Doubling and addition steps

DBL : f ← f 2 · lR,R(Q), R← [2]R

ADD : f ← f · lR,P (Q), R← R + P

These steps include multiplications/squarings in Fpk ,
computations in Fp for the line coefficients, and curve
arithmetic in E(Fp).

I Line functions correspond to the lines in the point
doubling/addition,

I reuse intermediate results of point additions for line
function coefficients,

I use projective coordinates to avoid inversions.



What about Edwards curves?
Edwards curves provide extremely fast curve arithmetic.
Can we use this advantage for pairings?

Ed : x2 + y2 = 1 + dx2y2

I Edwards group law

(x1, y1) + (x2, y2) = (x3, y3),

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − x1x2

1− dx1x2y1y2

.

I Neutral element is O = (0, 1), −(x1, y1) = (−x1, y1).
O′ = (0,−1) has order 2; (1, 0), (−1, 0) have order 4.

I Two points at infinity Ω1 = (1 : 0 : 0), Ω2 = (0 : 1 : 0)
with multiplicity 2.



Pairings on Edwards curves
I Line functions do not work: Edwards equation has

degree 4, so expect 4 intersection points.
I Quadratic functions: 8 intersection points.
I Replace line by the conic C passing through the 5

points P1, P2,O′,Ω1, and Ω2.
Only one more intersection point.
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Pairings on Edwards curves

I Can do Miller’s algorithm as before,
I only replace line functions by quadratic functions

described by the above conic.
I Comparison of costs for computing the coefficients of

lines or conics and the double or sum of points:

DBL mADD ADD
Jacobian coord. 1m + 11s + 1ma 6m + 6s 15m + 6s
Jacobian (a = −3) 6m + 5s 6m + 6s 15m + 6s
Jacobian (a = 0, e.g. BN curves) 3m + 8s 6m + 6s 15m + 6s
Edwards 6m + 5s 12m 14m



Miller’s algorithm
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R← P , f ← 1
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f ← f 2 · lR,R(Q)
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The Miller loop
I If possible, choose r with low hamming weight.
I If not, maybe use Non-Adjacent-Form (NAF):
r = (rm+1, . . . , r0)NAF, ri ∈ {−1, 0, 1}

for (i← m; i ≥ 0; i−−) do
f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
if (ri = −1) then

f ← f · lR,−P (Q)
R← R− P

end if
end for



Loop shortening - eta pairing

Suppose E has a twist of degree δ and δ | k. Let e = k/δ
and Te = (t− 1)e mod r.

I It turns out that the map

ηTe : G1 ×G2 → G3,

(P,Q) 7→ fTe,P (Q)(pk−1)/r.

is a pairing, called the eta pairing.
I One can take T j

e mod r for 1 ≤ j ≤ δ − 1 instead of
Te. Choose the shortest non-trivial power.



Loop shortening - ate pairing

Let T = t− 1.
I The map

aT : G2 ×G1 → G3,

(Q,P ) 7→ fT,Q(P )(pk−1)/r.

is a pairing, called the ate pairing.
I As for the eta pairing, we can replace T by T j mod r

for 1 ≤ j ≤ k − 1 to possibly get a shorter loop.
I Note that groups are swapped. Curve arithmetic in

Miller’s algorithm must now be done over a field
extension.
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Final exponentiation (hard part)

Let Φk be the kth cyclotomic polynomial.
I The embedding degree condition

r | pk − 1, r - pm − 1 for m < k

is equivalent to r | Φk(p).
I Φk(p) | pk/2 + 1.
I The second part of the final exponent can be written

as
pk/2 + 1

r
=
pk/2 + 1

Φk(p)
· Φk(p)

r
.



Final exponentiation (hard part)
k Φk(p) (pk/2 + 1)/Φk(p)

6 p2 − p+ 1 p+ 1
10 p4 − p3 + p2 − p+ 1 p+ 1
12 p4 − p2 + 1 p2 + 1
16 p8 + 1 1
18 p6 − p3 + 1 p3 + 1
24 p8 − p4 + 1 p4 + 1
30 p8 + p7 − p5 − p4 p7 − p6 + p5

−p3 + p+ 1 +p2 − p+ 1

I Example k = 12:

p6 + 1

r
= (p2 + 1) · p

4 − p2 + 1

r
.

I Compute f (p6+1)/r = ((fp)p · f)(p4−p2+1)/r.
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p-power Frobenius
Example BN curves with k = 12:
note p ≡ 1 (mod 6).

I Fp2 = Fp(α), α2 = β
Then an element f ∈ Fp2 can be written as
f = f0 + f1α with f0, f1 ∈ Fp, thus

fp = (f0 + f1α)p = f0 − f1α.

I Fp6 = Fp2(w), w3 = ξ for ξ ∈ Fp2 not a cube, not a
square
Write f = f0 + f1w + f2w

2 with f0, f1, f2 ∈ Fp2. Then

fp = fp
0 + fp

1wpw + fp
2w

2
pw

2,

where wp = wp−1 = ξ
p−1
3 ∈ Fp2.
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p-power Frobenius

I Fp12 = Fp6(α), α2 = w
Write f ∈ Fp12 as f = f0 + f1α with f0, f1 ∈ Fp6, thus

fp = (f0 + f1α)p = fp
0 + fp

1αpα,

where αp = αp−1 = w
p−1
2 = ξ

p−1
6 ∈ Fp2.

I One p-power Frobenius f 7→ fp for an element in Fp12

can be done with 7 multiplications in Fp2.
I A plain square-and-multiply exponentiation needs at

least log(p) squarings in Fp12.
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The new hard part

It remains to compute a power to the exponent Φk(p)
r

.
For BN curves:

Φk(p)

n
=
p4 − p2 + 1

n
= p3 + l2p

2 + l1p+ l0,

with

l2 = 6u2 + 1,

l1 = −36u3 − 18u2 − 12u+ 1,

l0 = −36u3 − 30u2 − 18u+ 2.



Multi-exponentiation

To compute f (p4−p2+1)/n,
I first obtain fp, fp2

, fp3 by three Frobenius
applications,

I then compute

f l0+l1p+l2p2

= f l0(fp)l1(fp2

)l2

with a multi-exponentiation,
I and finally

f l0+l1p+l2p2+p3

= f l0(fp)l1(fp2

)l2fp3

.



The final slide... cheap pairings...

michael@cryptojedi.org


