
Efficient Computation of
Pairings on Elliptic Curves

Michael Naehrig, TU/e

EIDMA/DIAMANT Cryptography Working Group
2 October 2009

Pairings

A pairing is a map

e : G1 ×G2 → G3

((G1,+), (G2,+), (G3, ·) finite abelian groups), which is
I bilinear,

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2),

I non-degenerate, given 0 6= P ∈ G1 there is a Q ∈ G2

with
e(P,Q) 6= 1,

I efficiently computable.

Applications of pairings

I Attack DL-based cryptography on elliptic curves
(Menezes-Okamoto-Vanstone-1993,
Frey-Rück-1994) .

I Construct crypto systems with certain special
properties:

I One-round tripartite key agreement (Joux-2000),
I Identity-based, non-interactive key agreement

(Ohgishi-Kasahara-2000),
I Identity-based encryption (Boneh-Franklin-2001),
I Hierarchical IBE (Gentry-Silverberg-2002),
I Short signatures (Boneh-Lynn-Shacham-2001).
I Non-interactive proof systems (Groth-Sahai-2008)
I much more ...

Tripartite key agreement (Joux-2000)
Alice, Bob, and Charlie choose secrets a, b, and c.

[c]Q

��

[c]Q

~~

[b]P,[b]Q

>>

[b]P,[b]Q
--

[a]P

[[

[a]P

mm

e([a]P, [b]Q)c = e([b]P, [c]Q)a = e([a]P, [c]Q)b = e(P,Q)abc

BLS signatures
(Boneh-Lynn-Shacham-2001)

I System parameters:

e : G1 ×G2 → G3,

elements P ∈ G1, Q ∈ G2 s.t. e(P,Q) 6= 1,
and a hash function H : {0, 1}∗ → G1.

I Alice’s private key: xA ∈ Z, public key: QA = [xA]Q.
I Signature of a message M ∈ {0, 1}∗: σ = [xA]H(M).
I Verification e(σ,Q) = e(H(M), QA).
I Correctness: e(σ,Q) = e([xA]H(M), Q) =
e(H(M), [xA]Q) = e(H(M), QA).

Schedule of this talk

(4) Efficient
(3) Computation of
(2) Pairings on
(1) Elliptic Curves

Schedule of this talk

(4) Efficient
(3) Computation of
(2) Pairings on

(1) Elliptic Curves

Schedule of this talk

(4) Efficient
(3) Computation of

(2) Pairings on
(1) Elliptic Curves

Schedule of this talk

(4) Efficient

(3) Computation of
(2) Pairings on
(1) Elliptic Curves

Schedule of this talk

(4) Efficient
(3) Computation of
(2) Pairings on
(1) Elliptic Curves

Elliptic Curves

Elliptic curves

Take an elliptic curve E over Fp (p > 3) with
I Weierstrass equation

E : y2 = x3 + ax+ b,

I E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + ax+ b} ∪ {O},

I n = #E(Fp) = p+ 1− t, |t| ≤ 2
√
p,

I and r | n a large prime divisor of n (r 6= p).
I For F ⊇ Fp:
E(F) = {(x, y) ∈ F2 : y2 = x3 + ax+ b} ∪ {O},

I E = E(Fp), Fp an algebraic closure of Fp.
I E is an abelian group (written additively).

Torsion points and embedding degree

The set of r-torsion points on E is

E[r] = {P ∈ E | [r]P = O}.

Since r | #E(Fp), we have E(Fp)[r] 6= ∅.
The embedding degree of E w.r.t. r is the smallest integer
k with

r | pk − 1.

For k > 1 we have

E[r] ⊂ E(Fpk),

i. e. E(Fp)[r] ⊆ E(Fpk)[r] = E[r].

Pairings on Elliptic Curves

The reduced Tate pairing

The reduced Tate pairing

tr : E(Fpk)[r]× E(Fpk)/[r]E(Fpk) → µr ⊂ F∗pk ,

(P,Q) 7→ fr,P (Q)
pk−1

r .

defines a non-degenerate, bilinear map, where
I µr is the group of r-th roots of unity in F∗

pk ,
I fr,P is a function with divisor (fr,P) = r(P)− r(O).

For P ∈ E(Fp)[r], we have tr(P, P) = 1, take Q /∈ 〈P 〉.

Three groups
Assume r2 - #E(Fp), k > 1. Define the following groups:

I G1 = E(Fpk)[r] ∩ ker(φp − [1]) = E(Fp)[r],
I G2 = E(Fpk)[r] ∩ ker(φp − [p]),
I G3 = µr ⊂ F∗

pk .
φp is the p-power Frobenius on E, i. e. φp(x, y) = (xp, yp).
Let

G1 = 〈P 〉, G2 = 〈Q〉.

We have E(Fpk)[r] = G1 ⊕G2, and we compute the Tate
pairing as

tr : G1 ×G2 → G3,

(P,Q) 7→ fr,P (Q)
pk−1

r .

G1, G2, and G3 are cyclic groups of prime order r.

Computation of
Pairings on Elliptic Curves

Computing the pairing

There are two parts:
1. compute fr,P (Q),
2. the final exponentiation to the power (pk − 1)/r.

For the first part, consider Miller functions fi,P , i ∈ Z.
These are functions with divisor

I (fi,P) = i(P)− ([i]P)− (i− 1)(O).

Then
I (fr,P) = r(P)− ([r]P)− (r − 1)(O) = r(P)− r(O).

Miller functions and line functions
Miller functions can be computed recursively with

I f1,P = 1,
I f2i,P = f 2

i,P · l[i]P,[i]P/v[2i]P ,
I fi+1,P = fi,P · l[i]P,P/v[i+1]P ,

where
I lP1,P2 : line through P1 and P2, tangent if P1 = P2,
vP1: vertical line through P1.

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← f

pk−1
r

return f

Specific parameters – pairing-friendly curves
I The embedding degree k needs to be small

(1 < k ≤ 50), to be able to do computations at all.
I DLPs must be hard in all three groups.
I For efficiency reasons balance the security as much

as possible.
I Define ρ = log(p)/ log(r).

Security Extension field EC base point ratio
level (bits) size of pk (bits) order r (bits) ρ · k

80 1024 160 6.40
112 2048 224 9.14
128 3072 256 12.00
192 7680 384 20.00
256 15360 512 30.00

NIST recommendations

My favorite examples... BN curves
(Barreto-N., 2005)

BN curves can be found easily and are ideal for the
128-bit security level.
If u ∈ Z such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are both prime, then there exists an elliptic curve

I with equation E : y2 = x3 + b, b ∈ Fp,
I r = n = #E(Fp) is prime, i. e. ρ ≈ 1,
I the embedding degree is k = 12.
I BNtiny: u = −1, p = 19, n = 13, E : y2 = x3 + 3.
P = (1, 2) ∈ E(Fp).

Efficient Computation of
Pairings on Elliptic Curves

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← f

pk−1
r

return f

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← f

pk−1
r

return f

Final exponentiation (easy part)

I Choose k even, then the final exponent is

pk − 1

r
= (pk/2 − 1)

pk/2 + 1

r
.

Note that r - pk/2 − 1, therefore r | pk/2 + 1.

I Represent the field extension Fpk = Fpk/2(α), α2 = β,
where β is a non-square in Fpk/2.

I Then f = f0 + f1α with f0, f1 ∈ Fpk/2, computing
(f0 + f1α)pk/2

= f0 − f1α is almost for free,
I and (f0 + f1α)pk/2−1 = (f0 − f1α)/(f0 + f1α).

Final exponentiation (easy part)

I Choose k even, then the final exponent is

pk − 1

r
= (pk/2 − 1)

pk/2 + 1

r
.

Note that r - pk/2 − 1, therefore r | pk/2 + 1.
I Represent the field extension Fpk = Fpk/2(α), α2 = β,

where β is a non-square in Fpk/2.

I Then f = f0 + f1α with f0, f1 ∈ Fpk/2, computing
(f0 + f1α)pk/2

= f0 − f1α is almost for free,
I and (f0 + f1α)pk/2−1 = (f0 − f1α)/(f0 + f1α).

Final exponentiation (easy part)

I Choose k even, then the final exponent is

pk − 1

r
= (pk/2 − 1)

pk/2 + 1

r
.

Note that r - pk/2 − 1, therefore r | pk/2 + 1.
I Represent the field extension Fpk = Fpk/2(α), α2 = β,

where β is a non-square in Fpk/2.
I Then f = f0 + f1α with f0, f1 ∈ Fpk/2, computing

(f0 + f1α)pk/2
= f0 − f1α is almost for free,

I and (f0 + f1α)pk/2−1 = (f0 − f1α)/(f0 + f1α).

Miller’s algorithm
Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Miller’s algorithm
Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Denominator elimination

I Since k is even, all points Q ∈ G2 have a special
form, in particular the x-coordinate xQ ∈ Fpk/2.

I The value of the vertical line function
vR(Q) = xQ − xR ∈ Fpk/2.

I The first part of the final exponentiation thus gives

vR(Q)pk/2−1 = 1.

I Remove all denominators in Miller’s algorithm.
I Similarly, all values in proper subfields of Fpk are

mapped to 1 by the final exponentiation.

Miller’s algorithm
Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Doubling and addition steps

DBL : f ← f 2 · lR,R(Q), R← [2]R

ADD : f ← f · lR,P (Q), R← R + P

These steps include multiplications/squarings in Fpk ,
computations in Fp for the line coefficients, and curve
arithmetic in E(Fp).

I Line functions correspond to the lines in the point
doubling/addition,

I reuse intermediate results of point additions for line
function coefficients,

I use projective coordinates to avoid inversions.

What about Edwards curves?
Edwards curves provide extremely fast curve arithmetic.
Can we use this advantage for pairings?

Ed : x2 + y2 = 1 + dx2y2

I Edwards group law

(x1, y1) + (x2, y2) = (x3, y3),

x3 =
x1y2 + y1x2

1 + dx1x2y1y2

and y3 =
y1y2 − x1x2

1− dx1x2y1y2

.

I Neutral element is O = (0, 1), −(x1, y1) = (−x1, y1).
O′ = (0,−1) has order 2; (1, 0), (−1, 0) have order 4.

I Two points at infinity Ω1 = (1 : 0 : 0), Ω2 = (0 : 1 : 0)
with multiplicity 2.

Pairings on Edwards curves
I Line functions do not work: Edwards equation has

degree 4, so expect 4 intersection points.
I Quadratic functions: 8 intersection points.
I Replace line by the conic C passing through the 5

points P1, P2,O′,Ω1, and Ω2.
Only one more intersection point.

Pairings on Edwards curves
I Line functions do not work: Edwards equation has

degree 4, so expect 4 intersection points.
I Quadratic functions: 8 intersection points.
I Replace line by the conic C passing through the 5

points P1, P2,O′,Ω1, and Ω2.
Only one more intersection point.

Pairings on Edwards curves

I Can do Miller’s algorithm as before,
I only replace line functions by quadratic functions

described by the above conic.
I Comparison of costs for computing the coefficients of

lines or conics and the double or sum of points:

DBL mADD ADD
Jacobian coord. 1m + 11s + 1ma 6m + 6s 15m + 6s
Jacobian (a = −3) 6m + 5s 6m + 6s 15m + 6s
Jacobian (a = 0, e.g. BN curves) 3m + 8s 6m + 6s 15m + 6s
Edwards 6m + 5s 12m 14m

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

The Miller loop
I If possible, choose r with low hamming weight.
I If not, maybe use Non-Adjacent-Form (NAF):
r = (rm+1, . . . , r0)NAF, ri ∈ {−1, 0, 1}

for (i← m; i ≥ 0; i−−) do
f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
if (ri = −1) then

f ← f · lR,−P (Q)
R← R− P

end if
end for

Loop shortening - eta pairing

Suppose E has a twist of degree δ and δ | k. Let e = k/δ
and Te = (t− 1)e mod r.

I It turns out that the map

ηTe : G1 ×G2 → G3,

(P,Q) 7→ fTe,P (Q)(pk−1)/r.

is a pairing, called the eta pairing.
I One can take T j

e mod r for 1 ≤ j ≤ δ − 1 instead of
Te. Choose the shortest non-trivial power.

Loop shortening - ate pairing

Let T = t− 1.
I The map

aT : G2 ×G1 → G3,

(Q,P) 7→ fT,Q(P)(pk−1)/r.

is a pairing, called the ate pairing.
I As for the eta pairing, we can replace T by T j mod r

for 1 ≤ j ≤ k − 1 to possibly get a shorter loop.
I Note that groups are swapped. Curve arithmetic in

Miller’s algorithm must now be done over a field
extension.

Miller’s algorithm

Input: P ∈ G1, Q ∈ G2, r = (rm, . . . , r0)2

Output: tr(P,Q) = fr,P (Q)
pk−1

r

R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 · lR,R(Q)
R← [2]R
if (ri = 1) then

f ← f · lR,P (Q)
R← R + P

end if
end for
f ← fpk/2−1 = fpk/2

/f

f ← f
pk/2+1

r

return f

Final exponentiation (hard part)

Let Φk be the kth cyclotomic polynomial.
I The embedding degree condition

r | pk − 1, r - pm − 1 for m < k

is equivalent to r | Φk(p).
I Φk(p) | pk/2 + 1.
I The second part of the final exponent can be written

as
pk/2 + 1

r
=
pk/2 + 1

Φk(p)
· Φk(p)

r
.

Final exponentiation (hard part)
k Φk(p) (pk/2 + 1)/Φk(p)

6 p2 − p+ 1 p+ 1
10 p4 − p3 + p2 − p+ 1 p+ 1
12 p4 − p2 + 1 p2 + 1
16 p8 + 1 1
18 p6 − p3 + 1 p3 + 1
24 p8 − p4 + 1 p4 + 1
30 p8 + p7 − p5 − p4 p7 − p6 + p5

−p3 + p+ 1 +p2 − p+ 1

I Example k = 12:

p6 + 1

r
= (p2 + 1) · p

4 − p2 + 1

r
.

I Compute f (p6+1)/r = ((fp)p · f)(p4−p2+1)/r.

Final exponentiation (hard part)
k Φk(p) (pk/2 + 1)/Φk(p)

6 p2 − p+ 1 p+ 1
10 p4 − p3 + p2 − p+ 1 p+ 1
12 p4 − p2 + 1 p2 + 1
16 p8 + 1 1
18 p6 − p3 + 1 p3 + 1
24 p8 − p4 + 1 p4 + 1
30 p8 + p7 − p5 − p4 p7 − p6 + p5

−p3 + p+ 1 +p2 − p+ 1

I Example k = 12:

p6 + 1

r
= (p2 + 1) · p

4 − p2 + 1

r
.

I Compute f (p6+1)/r = ((fp)p · f)(p4−p2+1)/r.

p-power Frobenius
Example BN curves with k = 12:
note p ≡ 1 (mod 6).

I Fp2 = Fp(α), α2 = β
Then an element f ∈ Fp2 can be written as
f = f0 + f1α with f0, f1 ∈ Fp, thus

fp = (f0 + f1α)p = f0 − f1α.

I Fp6 = Fp2(w), w3 = ξ for ξ ∈ Fp2 not a cube, not a
square
Write f = f0 + f1w + f2w

2 with f0, f1, f2 ∈ Fp2. Then

fp = fp
0 + fp

1wpw + fp
2w

2
pw

2,

where wp = wp−1 = ξ
p−1
3 ∈ Fp2.

p-power Frobenius
Example BN curves with k = 12:
note p ≡ 1 (mod 6).

I Fp2 = Fp(α), α2 = β
Then an element f ∈ Fp2 can be written as
f = f0 + f1α with f0, f1 ∈ Fp, thus

fp = (f0 + f1α)p = f0 − f1α.

I Fp6 = Fp2(w), w3 = ξ for ξ ∈ Fp2 not a cube, not a
square
Write f = f0 + f1w + f2w

2 with f0, f1, f2 ∈ Fp2. Then

fp = fp
0 + fp

1wpw + fp
2w

2
pw

2,

where wp = wp−1 = ξ
p−1
3 ∈ Fp2.

p-power Frobenius

I Fp12 = Fp6(α), α2 = w
Write f ∈ Fp12 as f = f0 + f1α with f0, f1 ∈ Fp6, thus

fp = (f0 + f1α)p = fp
0 + fp

1αpα,

where αp = αp−1 = w
p−1
2 = ξ

p−1
6 ∈ Fp2.

I One p-power Frobenius f 7→ fp for an element in Fp12

can be done with 7 multiplications in Fp2.
I A plain square-and-multiply exponentiation needs at

least log(p) squarings in Fp12.

p-power Frobenius

I Fp12 = Fp6(α), α2 = w
Write f ∈ Fp12 as f = f0 + f1α with f0, f1 ∈ Fp6, thus

fp = (f0 + f1α)p = fp
0 + fp

1αpα,

where αp = αp−1 = w
p−1
2 = ξ

p−1
6 ∈ Fp2.

I One p-power Frobenius f 7→ fp for an element in Fp12

can be done with 7 multiplications in Fp2.
I A plain square-and-multiply exponentiation needs at

least log(p) squarings in Fp12.

The new hard part

It remains to compute a power to the exponent Φk(p)
r

.
For BN curves:

Φk(p)

n
=
p4 − p2 + 1

n
= p3 + l2p

2 + l1p+ l0,

with

l2 = 6u2 + 1,

l1 = −36u3 − 18u2 − 12u+ 1,

l0 = −36u3 − 30u2 − 18u+ 2.

Multi-exponentiation

To compute f (p4−p2+1)/n,
I first obtain fp, fp2

, fp3 by three Frobenius
applications,

I then compute

f l0+l1p+l2p2

= f l0(fp)l1(fp2

)l2

with a multi-exponentiation,
I and finally

f l0+l1p+l2p2+p3

= f l0(fp)l1(fp2

)l2fp3

.

The final slide... cheap pairings...

michael@cryptojedi.org

