## Pairings on Edward's Curves

Michael Naehrig

Technische Universiteit Eindhoven michael@cryptojedi.org

> ECC 2009 Rump Session Calgary, 2009-08-24

# Pairings on Edwards curves

# Pairings on Edward's curves















 $E_d: x^2 + y^2 = 1 + dx^2 y^2$ 





Weierstrass Werewolf





$$E: y^2 = x^3 + ax^2 + b$$

## Group law on Jacob's curves

Does not work at full moon...



 $E: y^2 = x^3 + ax^2 + b$ 

Works only at night...



 $E_d: x^2 + y^2 = 1 + dx^2 y^2$ 

Works only at night...



 $E_d: x^2 + y^2 = 1 + dx^2y^2$ 

Works only at night...



 $E_d: x^2 + y^2 = 1 + dx^2y^2$ 

Works during the day as well...



Correctly driving through one of Edward's curves over  $\mathbb{R}$  for 0 < d < 1.

## Looking for a good pairing...



## Pairings on Jacob's curves

- Jacob uses BN curves,
- Miller's algorithm,
- by using line functions that occur in the group law.
- ► He can use cool things such as the R-ate pairing.



## Pairings on Edward's curves

- Edward can't use BN curves,
- he uses other pairing-friendly curves
- (in Edward's projective coordinates).



## Pairings on Edward's curves

- Edward can't use BN curves,
- he uses other pairing-friendly curves
- (in Edward's projective coordinates).
- But he can use Miller's algorithm,
- by replacing the line functions with the conic section occuring in the group law.
- Many people didn't believe this...



## Comparison of operation counts



|               | DBL                                                     | mADD                        | ADD          |
|---------------|---------------------------------------------------------|-----------------------------|--------------|
| Jacob         | $1\mathbf{m} + 11\mathbf{s} + 1\mathbf{m}_{\mathbf{a}}$ | $6\mathbf{m} + 6\mathbf{s}$ | 15m + 6s     |
| J. $(a = -3)$ | 6m + 5s                                                 | $6\mathbf{m} + 6\mathbf{s}$ | 15m + 6s     |
| Jacob (BN)    | 3m + 8s                                                 | $6\mathbf{m} + 6\mathbf{s}$ | 15m + 6s     |
| Edward        | $6\mathbf{m} + 5\mathbf{s} + 1\mathbf{m_a}$             | $12m + 1m_a$                | $14m + 1m_a$ |



For all details, explicit formulas and Edward's curve examples look at preprint

```
http://eprint.iacr.org/2009/155
```

joint work with Christophe Arène (IML), Tanja Lange (TU/e), Christophe Ritzenthaler (IML), and

