Computing Pairings on Elliptic Curves

Michael Naehrig

17 July 2009

Pairings

A pairing is a map

$$
e: G_{1} \times G_{2} \rightarrow G_{3}
$$

$\left(\left(G_{1},+\right),\left(G_{2},+\right),\left(G_{3}, \cdot\right)\right.$ finite abelian groups), which is

- bilinear,

$$
\begin{aligned}
e\left(P_{1}+P_{2}, Q_{1}\right) & =e\left(P_{1}, Q_{1}\right) e\left(P_{2}, Q_{1}\right), \\
e\left(P_{1}, Q_{1}+Q_{2}\right) & =e\left(P_{1}, Q_{1}\right) e\left(P_{1}, Q_{2}\right),
\end{aligned}
$$

- non-degenerate, given $0 \neq P \in G_{1}$ there is a $Q \in G_{2}$ with

$$
e(P, Q) \neq 1
$$

- efficiently computable.

Pairing-friendly elliptic curves

Take an elliptic curve over $\mathbb{F}_{p}(p>3)$ with

- Weierstrass equation $E: y^{2}=x^{3}+a x+b$,
- $E\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+a x+b\right\} \cup\{\mathcal{O}\}$,
- $n=\# E\left(\mathbb{F}_{p}\right)=p+1-t, \quad|t| \leq 2 \sqrt{p}$,
- $r \mid n$ a large prime divisor of $n(r \neq p, r \geq \sqrt{p})$,
- and embedding degree $1<k \leq 50$.

The embedding degree of E w.r.t. r is the smallest integer k with

$$
r \mid p^{k}-1
$$

The reduced Tate pairing

Assume $r^{2} \nmid \# E\left(\mathbb{F}_{p}\right)$. The reduced Tate pairing

$$
\begin{aligned}
t_{r}: E\left(\mathbb{F}_{p}\right)[r] \times E\left(\mathbb{F}_{p^{k}}\right)[r] & \rightarrow \mu_{r} \subset \mathbb{F}_{p^{k}}^{*}, \\
(P, Q) & \mapsto f_{r, P}(Q)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

defines a non-degenerate, bilinear map, where

- $E\left(\mathbb{F}_{p}\right)[r] \subset E\left(\mathbb{F}_{p^{k}}\right)[r]=\left\{P \in E\left(\mathbb{F}_{p^{k}}\right) \mid[r] P=\mathcal{O}\right\}$,
- μ_{r} is the group of r-th roots of unity in $\mathbb{F}_{p^{k}}^{*}$,
- $f_{r, P}$ is a function with divisor $\left(f_{r, P}\right)=r(P)-r(\mathcal{O})$,
- for $P \in E\left(\mathbb{F}_{p}\right)[r]$, we have $t_{r}(P, P)=1$,
- take $Q \notin\langle P\rangle$, i. e. from $E\left(\mathbb{F}_{p^{k}}\right)[r] \backslash E\left(\mathbb{F}_{p}\right)[r]$.

Three groups

Define the following groups:

- $G_{1}=E\left(\mathbb{F}_{p^{k}}\right)[r] \cap \operatorname{ker}\left(\phi_{p}-[1]\right)=E\left(\mathbb{F}_{p}\right)[r]$,
- $G_{2}=E\left(\mathbb{F}_{p^{k}}\right)[r] \cap \operatorname{ker}\left(\phi_{p}-[p]\right)$,
- $G_{3}=\mu_{r} \subset \mathbb{F}_{p^{k}}^{*}$.
ϕ_{p} is the p-power Frobenius on E, i. e. $\phi_{p}(x, y)=\left(x^{p}, y^{p}\right)$. Let

$$
G_{1}=\langle P\rangle, \quad G_{2}=\langle Q\rangle .
$$

We have $E\left(\mathbb{F}_{p^{k}}\right)[r]=G_{1} \oplus G_{2}$, and we compute the Tate pairing as

$$
\begin{aligned}
t_{r}: G_{1} \times G_{2} & \rightarrow G_{3}, \\
(P, Q) & \mapsto f_{r, P}(Q)^{\frac{p^{k}-1}{r}} .
\end{aligned}
$$

Specific parameters

- DLPs must be hard in all three groups.
- For efficiency reasons balance the security as much as possible.
- Define $\rho=\log (p) / \log (r)$.

Security level (bits)	Extension field size of p^{k} (bits)	EC base point order r (bits)	ratio $\rho \cdot k$
80	1024	160	6.40
112	2048	224	9.14
128	3072	256	12.00
192	7680	384	20.00
256	15360	512	30.00

NIST recommendations

My favorite examples... BN curves

If $u \in \mathbb{Z}$ such that

$$
\begin{aligned}
& p=p(u)=36 u^{4}+36 u^{3}+24 u^{2}+6 u+1 \\
& n=n(u)=36 u^{4}+36 u^{3}+18 u^{2}+6 u+1
\end{aligned}
$$

are both prime, then there exists an elliptic curve

- with equation $E: y^{2}=x^{3}+b, b \in \mathbb{F}_{p}$,
- $r=n=\# E\left(\mathbb{F}_{p}\right)$ is prime, i. e. $\rho \approx 1$,
- the embedding degree is $k=12$.

BN curves can be found easily.

- BNtiny: $u=-1, p=19, n=13, E: y^{2}=x^{3}+3$.

$$
P=(1,2) \in E\left(\mathbb{F}_{p}\right)
$$

Computing the pairing

There are two parts:

1. compute $f_{r, P}(Q)$,
2. the final exponentiation to the power $\left(p^{k}-1\right) / r$.

For the first part, consider Miller functions $f_{i, P}, i \in \mathbb{Z}$. These are functions with divisor

- $\left(f_{i, P}\right)=i(P)-([i] P)-(i-1)(\mathcal{O})$.

Then

- $\left(f_{r, P}\right)=r(P)-([r] P)-(r-1)(\mathcal{O})=r(P)-r(\mathcal{O})$.

Miller functions and line functions

Miller functions can be computed recursively with

- $f_{1, P}=1$,
- $f_{2 i, P}=f_{i, P}^{2} \cdot l_{[i] P,[i] P} / v_{[2 i] P}$,
- $f_{i+1, P}=f_{i, P} \cdot l_{[i] P, P} / v_{[i+1] P}$,
where
- $l_{R, S}$: line through R and S, tangent if $R=S$, v_{R} : vertical line through R.
Evaluate at $Q=\left(x_{Q}, y_{Q}\right)$:
- $l_{R, S}(Q)=y_{Q}-y_{R}-\lambda\left(x_{Q}-x_{1}\right)$,
- $v_{R}(Q)=x_{Q}-x_{R}$,
with $R=\left(x_{R}, y_{R}\right)$ and the line has slope λ.

Miller's algorithm

Input: $P \in G_{1}, Q \in G_{2}, r=\left(r_{m}, \ldots, r_{0}\right)_{2}$
Output: $t_{r}(P, Q)=f_{r, P}(Q)^{\frac{p^{k}-1}{r}}$
$R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do
$f \leftarrow f^{2} \frac{l_{R, R}(Q)}{v_{[2] R}(Q)}$
$R \leftarrow[2] R$
if $\left(r_{i}=1\right)$ then
$f \leftarrow f \frac{l_{R, P}(Q)}{v_{R+P}(Q)}$
$R \leftarrow R+P$
end if
end for
$f \leftarrow f \frac{p^{k}-1}{r}$
return f

Some improvements

- If possible, choose r with low Hamming-weight.
- Choose k even, then the final exponentiation is

$$
\frac{p^{k}-1}{r}=\left(p^{k / 2}-1\right) \frac{p^{k / 2}+1}{r} .
$$

Note that $r \nmid p^{k / 2}-1$.

- Represent the field extension $\mathbb{F}_{p^{k}}=\mathbb{F}_{p^{k / 2}}(\alpha), \alpha^{2}=\beta$, where β is a non-square in $\mathbb{F}_{p^{k / 2}}$.
- Then $f=f_{0}+f_{1} \alpha$ with $f_{0}, f_{1} \in \mathbb{F}_{p^{k / 2}}$, computing $\left(f_{0}+f_{1} \alpha\right)^{p^{k / 2}}=f_{0}-f_{1} \alpha$ is for free,
- and $\left(f_{0}+f_{1} \alpha\right)^{p^{k / 2}-1}=\left(f_{0}-f_{1} \alpha\right) /\left(f_{0}+f_{1} \alpha\right)$.
- And ask Peter Montgomery for good exponentiation methods and field arithmetic!

Representation of G_{2}

- Let $\delta=6$ if $a=0, \delta=4$ if $b=0$, and $\delta=2$ else.
- If $\delta \mid k$, there exists a unique twist E^{\prime} of E of degree δ with $r \mid \# E^{\prime}\left(\mathbb{F}_{p^{k / \delta}}\right)$.
- Define $G_{2}^{\prime}=E^{\prime}\left(\mathbb{F}_{p^{k / \delta}}\right)[r]$.
- There exists an element $\xi \in \mathbb{F}_{p^{k / \delta}}$, not a δ-th power, s.t. the $\operatorname{map} \psi: G_{2}^{\prime} \rightarrow G_{2}$,

$$
\begin{array}{ll}
Q^{\prime}=\left(x_{Q^{\prime}}, y_{Q^{\prime}}\right) \mapsto\left(\xi x_{Q^{\prime}}, \xi^{3 / 2} y_{Q^{\prime}}\right) & \text { if } \delta=2, \\
Q^{\prime}=\left(x_{Q^{\prime}}, y_{Q^{\prime}}\right) \mapsto\left(\xi^{1 / 2} x_{Q^{\prime}}, \xi^{3 / 4} y_{Q^{\prime}}\right) & \text { if } \delta=4, \\
Q^{\prime}=\left(x_{Q^{\prime}}, y_{Q^{\prime}}\right) \mapsto\left(\xi^{1 / 3} x_{Q^{\prime}}, \xi^{1 / 2} y_{Q^{\prime}}\right) & \text { if } \delta=6,
\end{array}
$$

is a group isomorphism.

Denominator elimination

- All points $Q \in G_{2}$ have a special form, in particular the x-coordinate $x_{Q}=\xi^{2 / \delta} x_{Q^{\prime}} \in \mathbb{F}_{p^{k / 2}}$.
- The value of the vertical line function $v_{R}(Q)=x_{Q}-x_{R} \in \mathbb{F}_{p^{k / 2}}$.
- The first part of the final exponentiation thus gives

$$
v_{R}(Q)^{p^{k / 2}-1}=1
$$

- Remove all denominators in Miller's algorithm.
- Similarly, all values in proper subfields of $\mathbb{F}_{p^{k}}$ are mapped to 1 by the final exponentiation.

Improved Miller

Input: $P \in G_{1}, Q \in G_{2}, r=\left(r_{m}, \ldots, r_{0}\right)_{2}$
Output: $t_{r}(P, Q)=f_{r, P}(Q)^{\frac{p^{k}-1}{r}}$
$R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1 ; i \geq 0 ; i--)$ do $f \leftarrow f^{2} \cdot l_{R, R}(Q)$
$R \leftarrow[2] R$
if $\left(r_{i}=1\right)$ then

$$
\begin{aligned}
& f \leftarrow f \cdot l_{R, P}(Q) \\
& R \leftarrow R+P
\end{aligned}
$$

end if
end for
$f \leftarrow f^{p^{k / 2}-1}$
$f \leftarrow f^{\frac{p^{k / 2}+1}{r}}$
return f

Loop shortening - eta pairing

Let $e=k / \delta$ and $T_{e}=(t-1)^{e} \bmod r$.

- It turns out that the map

$$
\begin{aligned}
\eta_{T_{e}}: G_{1} \times G_{2} & \rightarrow G_{3}, \\
(P, Q) & \mapsto f_{T_{e}, P}(Q)^{\left(p^{k}-1\right) / r} .
\end{aligned}
$$

is a pairing, called the eta pairing.

- One can take $T_{e}^{j} \bmod r$ for $1 \leq j \leq \delta-1$ instead of T_{e}. Choose the shortest non-trivial power.

Loop shortening - ate pairing

Let $T=t-1$.

- The map

$$
\begin{aligned}
a_{T}: G_{2} \times G_{1} & \rightarrow G_{3} \\
(Q, P) & \mapsto f_{T, Q}(P)^{\left(p^{k}-1\right) / r}
\end{aligned}
$$

is a pairing, called the ate pairing.

- As for the eta pairing, we can replace T by $T^{j} \bmod r$ for $1 \leq j \leq k-1$ to possibly get a shorter loop.
- Note that groups are swapped. Curve arithmetic in Miller's algorithm must now be done over a field extension. Use G_{2}^{\prime}.

The final exponentiation

Let Φ_{k} be the k th cyclotomic polynomial.

- The embedding degree condition

$$
r \mid p^{k}-1, r \nmid p^{m}-1 \text { for } m<k
$$

is equivalent to $r \mid \Phi_{k}(p)$.

- $\Phi_{k}(p) \mid p^{k / 2}+1$.
- The second part of the final exponent can be written as

$$
\frac{p^{k / 2}+1}{r}=\frac{p^{k / 2}+1}{\Phi_{k}(p)} \cdot \frac{\Phi_{k}(p)}{r} .
$$

The final exponentiation

- $\frac{p^{k / 2}+1}{\Phi_{k}(p)}$ is a polynomial in p with very small coefficients, and can be computed with some applications of the p-power Frobenius automorphism and some multiplications.
- Example $k=12$:

$$
\frac{p^{6}+1}{r}=\left(p^{2}+1\right) \cdot \frac{p^{4}-p^{2}+1}{r} .
$$

- Compute $f^{\left(p^{6}+1\right) / r}=\left(\left(f^{p}\right)^{p} \cdot f\right)^{\left(p^{4}-p^{2}+1\right) / r}$.

The final slide... cheap pairings...

