Computing Pairings on Elliptic Curves

Michael Naehrig

17 July 2009

Pairings

A pairing is a map

$$e:G_1 \times G_2 \to G_3$$

 $((G_1, +), (G_2, +), (G_3, \cdot)$ finite abelian groups), which is • *bilinear*,

$$\begin{array}{rcl} e(P_1+P_2,Q_1) &=& e(P_1,Q_1)e(P_2,Q_1),\\ e(P_1,Q_1+Q_2) &=& e(P_1,Q_1)e(P_1,Q_2), \end{array}$$

▶ *non-degenerate*, given $0 \neq P \in G_1$ there is a $Q \in G_2$ with

$$e(P,Q) \neq 1,$$

efficiently computable.

Pairing-friendly elliptic curves

Take an elliptic curve over \mathbb{F}_p (p > 3) with

• Weierstrass equation $E: y^2 = x^3 + ax + b$,

▶
$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\},\$$

$$\blacktriangleright n = \#E(\mathbb{F}_p) = p + 1 - t, \quad |t| \le 2\sqrt{p},$$

- ▶ $r \mid n$ a large prime divisor of $n \ (r \neq p, r \ge \sqrt{p})$,
- and embedding degree $1 < k \le 50$.

The embedding degree of E w.r.t. r is the smallest integer k with

$$r \mid p^k - 1.$$

The reduced Tate pairing

Assume $r^2 \nmid \#E(\mathbb{F}_p)$. The reduced Tate pairing

$$t_r : E(\mathbb{F}_p)[r] \times E(\mathbb{F}_{p^k})[r] \to \mu_r \subset \mathbb{F}_{p^k}^*,$$

(P,Q) $\mapsto f_{r,P}(Q)^{\frac{p^k-1}{r}}$

defines a non-degenerate, bilinear map, where

- $\blacktriangleright E(\mathbb{F}_p)[r] \subset E(\mathbb{F}_{p^k})[r] = \{ P \in E(\mathbb{F}_{p^k}) \mid [r]P = \mathcal{O} \},\$
- μ_r is the group of *r*-th roots of unity in $\mathbb{F}_{p^k}^*$,
- $f_{r,P}$ is a function with divisor $(f_{r,P}) = r(P) r(\mathcal{O})$,
- for $P \in E(\mathbb{F}_p)[r]$, we have $t_r(P,P) = 1$,
- ► take $Q \notin \langle P \rangle$, i. e. from $E(\mathbb{F}_{p^k})[r] \setminus E(\mathbb{F}_p)[r]$.

Three groups

Define the following groups:

$$\blacktriangleright \ G_1 = E(\mathbb{F}_{p^k})[r] \cap \ker(\phi_p - [1]) = E(\mathbb{F}_p)[r],$$

►
$$G_2 = E(\mathbb{F}_{p^k})[r] \cap \ker(\phi_p - [p]),$$

 $\blacktriangleright G_3 = \mu_r \subset \mathbb{F}_{p^k}^*.$

 ϕ_p is the p-power Frobenius on E, i. e. $\phi_p(x,y)=(x^p,y^p).$ Let

$$G_1 = \langle P \rangle, \quad G_2 = \langle Q \rangle.$$

We have $E(\mathbb{F}_{p^k})[r] = G_1 \oplus G_2$, and we compute the Tate pairing as

$$t_r: G_1 \times G_2 \quad \to \quad G_3,$$

$$(P,Q) \quad \mapsto \quad f_{r,P}(Q)^{\frac{p^k-1}{r}}.$$

Specific parameters

- DLPs must be hard in all three groups.
- For efficiency reasons balance the security as much as possible.

• Define
$$\rho = \log(p) / \log(r)$$
.

Security	Extension field	EC base point	ratio
level (bits)	size of p^k (bits)	order r (bits)	$\rho \cdot k$
80	1024	160	6.40
112	2048	224	9.14
128	3072	256	12.00
192	7680	384	20.00
256	15360	512	30.00

NIST recommendations

My favorite examples... BN curves

If $u \in \mathbb{Z}$ such that

$$p = p(u) = 36u^4 + 36u^3 + 24u^2 + 6u + 1,$$

$$n = n(u) = 36u^4 + 36u^3 + 18u^2 + 6u + 1$$

are both prime, then there exists an elliptic curve

- with equation $E: y^2 = x^3 + b, \ b \in \mathbb{F}_p$,
- $r = n = \#E(\mathbb{F}_p)$ is prime, i. e. $\rho \approx 1$,
- the embedding degree is k = 12.

BN curves can be found easily.

• BNtiny:
$$u = -1, p = 19, n = 13, E : y^2 = x^3 + 3.$$

 $P = (1, 2) \in E(\mathbb{F}_p).$

Computing the pairing

There are two parts:

1. compute $f_{r,P}(Q)$,

2. the final exponentiation to the power $(p^k - 1)/r$.

For the first part, consider Miller functions $f_{i,P}$, $i \in \mathbb{Z}$. These are functions with divisor

•
$$(f_{i,P}) = i(P) - ([i]P) - (i-1)(\mathcal{O}).$$

Then

•
$$(f_{r,P}) = r(P) - ([r]P) - (r-1)(\mathcal{O}) = r(P) - r(\mathcal{O}).$$

Miller functions and line functions

Miller functions can be computed recursively with

•
$$f_{1,P} = 1$$
,
• $f_{2i,P} = f_{i,P}^2 \cdot l_{[i]P,[i]P}/v_{[2i]P}$,
• $f_{i+1,P} = f_{i,P} \cdot l_{[i]P,P}/v_{[i+1]P}$,

where

*l*_{*R,S*}: line through *R* and *S*, tangent if *R* = *S*,
 *v*_{*R*}: vertical line through *R*.

Evaluate at $Q = (x_Q, y_Q)$:

►
$$l_{R,S}(Q) = y_Q - y_R - \lambda(x_Q - x_1),$$

$$\blacktriangleright v_R(Q) = x_Q - x_R,$$

with $R = (x_R, y_R)$ and the line has slope λ .

Miller's algorithm

Input:
$$P \in G_1, Q \in G_2, r = (r_m, \dots, r_0)_2$$

Output: $t_r(P,Q) = f_{r,P}(Q)^{\frac{p^k-1}{r}}$
 $R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1; i \ge 0; i - -)$ do
 $f \leftarrow f^2 \frac{l_{R,R}(Q)}{v_{[2]R}(Q)}$
 $R \leftarrow [2]R$
if $(r_i = 1)$ then
 $f \leftarrow f \frac{l_{R,P}(Q)}{v_{R+P}(Q)}$
 $R \leftarrow R + P$
end if
end for
 $f \leftarrow f \frac{p^k-1}{r}$
return f

Some improvements

- ▶ If possible, choose *r* with low Hamming-weight.
- Choose k even, then the final exponentiation is

$$\frac{p^k - 1}{r} = (p^{k/2} - 1)\frac{p^{k/2} + 1}{r}$$

Note that $r \nmid p^{k/2} - 1$.

- ► Represent the field extension 𝔽_{p^k} = 𝔽_{p^{k/2}}(α), α² = β, where β is a non-square in 𝔽_{p^{k/2}}.
- ► Then $f = f_0 + f_1 \alpha$ with $f_0, f_1 \in \mathbb{F}_{p^{k/2}}$, computing $(f_0 + f_1 \alpha)^{p^{k/2}} = f_0 f_1 \alpha$ is for free,
- and $(f_0 + f_1 \alpha)^{p^{k/2} 1} = (f_0 f_1 \alpha)/(f_0 + f_1 \alpha)$.
- And ask Peter Montgomery for good exponentiation methods and field arithmetic!

Representation of G_2

- Let $\delta = 6$ if a = 0, $\delta = 4$ if b = 0, and $\delta = 2$ else.
- If δ | k, there exists a unique twist E' of E of degree δ with r | #E'(𝔽_{p^{k/δ}}).
- Define $G'_2 = E'(\mathbb{F}_{p^{k/\delta}})[r]$.
- There exists an element ξ ∈ 𝔽_{p^{k/δ}, not a δ-th power, s.t. the map ψ : G'₂ → G₂,</sub>}

$$\begin{aligned} Q' &= (x_{Q'}, y_{Q'}) \mapsto (\xi x_{Q'}, \xi^{3/2} y_{Q'}) & \text{if } \delta = 2, \\ Q' &= (x_{Q'}, y_{Q'}) \mapsto (\xi^{1/2} x_{Q'}, \xi^{3/4} y_{Q'}) & \text{if } \delta = 4, \\ Q' &= (x_{Q'}, y_{Q'}) \mapsto (\xi^{1/3} x_{Q'}, \xi^{1/2} y_{Q'}) & \text{if } \delta = 6, \end{aligned}$$

is a group isomorphism.

Denominator elimination

- All points Q ∈ G₂ have a special form, in particular the *x*-coordinate x_Q = ξ^{2/δ}x_{Q'} ∈ 𝔽_{p^{k/2}}.
- ► The value of the vertical line function $v_R(Q) = x_Q x_R \in \mathbb{F}_{p^{k/2}}.$
- The first part of the final exponentiation thus gives

$$v_R(Q)^{p^{k/2}-1} = 1.$$

- Remove all denominators in Miller's algorithm.
- ► Similarly, all values in proper subfields of F_{pk} are mapped to 1 by the final exponentiation.

Improved Miller

Input:
$$P \in G_1, Q \in G_2, r = (r_m, \dots, r_0)_2$$

Output: $t_r(P,Q) = f_{r,P}(Q)^{\frac{p^k-1}{r}}$
 $R \leftarrow P, f \leftarrow 1$
for $(i \leftarrow m-1; i \ge 0; i - -)$ do
 $f \leftarrow f^2 \cdot l_{R,R}(Q)$
 $R \leftarrow [2]R$
if $(r_i = 1)$ then
 $f \leftarrow f \cdot l_{R,P}(Q)$
 $R \leftarrow R + P$
end if
end for
 $f \leftarrow f^{\frac{p^{k/2}-1}{r}}$
 $f \leftarrow f^{\frac{p^{k/2}+1}{r}}$
return f

Loop shortening - eta pairing

Let
$$e = k/\delta$$
 and $T_e = (t-1)^e \mod r$.

It turns out that the map

$$\begin{array}{rccc} \eta_{T_e}:G_1\times G_2 & \to & G_3, \\ (P,Q) & \mapsto & f_{T_e,P}(Q)^{(p^k-1)/r} \end{array}$$

is a pairing, called the eta pairing.

One can take T^j_e mod r for 1 ≤ j ≤ δ − 1 instead of T_e. Choose the shortest non-trivial power.

Loop shortening - ate pairing

Let T = t - 1.

The map

$$a_T : G_2 \times G_1 \quad \to \quad G_3,$$

(Q, P)
$$\mapsto \quad f_{T,Q}(P)^{(p^k - 1)/r}.$$

is a pairing, called the ate pairing.

- ► As for the eta pairing, we can replace T by T^j mod r for 1 ≤ j ≤ k − 1 to possibly get a shorter loop.
- Note that groups are swapped. Curve arithmetic in Miller's algorithm must now be done over a field extension. Use G'₂.

The final exponentiation

Let Φ_k be the *k*th cyclotomic polynomial.

The embedding degree condition

$$r \mid p^k - 1, \ r \nmid p^m - 1 \text{ for } m < k$$

is equivalent to $r \mid \Phi_k(p)$.

- $\Phi_k(p) \mid p^{k/2} + 1.$
- The second part of the final exponent can be written as

$$\frac{p^{k/2} + 1}{r} = \frac{p^{k/2} + 1}{\Phi_k(p)} \cdot \frac{\Phi_k(p)}{r}$$

The final exponentiation

 <u>p</u>^{k/2}+1 <u>Φ</u>_k(p)

 is a polynomial in p with very small coefficients, and can be computed with some applications of the p-power Frobenius automorphism and some multiplications.

• Example
$$k = 12$$
:

$$\frac{p^6+1}{r} = (p^2+1) \cdot \frac{p^4-p^2+1}{r}.$$

• Compute $f^{(p^6+1)/r} = ((f^p)^p \cdot f)^{(p^4-p^2+1)/r}$.

The final slide... cheap pairings...

