Pairings on Edwards Curves

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information
Technische Universiteit Eindhoven
michael@cryptojedi.org

Pairings in Arithmetic Geometry and Cryptography
Essen, 05.05.2009
joint work with Christophe Arène (IML), Tanja Lange (TU/e), and Christophe Ritzenthaler (IML)

Edwards curves

Let K be a field of characteristic $\neq 2, d \in K, d \notin\{0,1\}$.

$$
E_{d}: x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- Associative operation on most points defined by Edwards addition law

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right), \\
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
\end{gathered}
$$

- Neutral element is $\mathcal{O}=(0,1),-\left(x_{1}, y_{1}\right)=\left(-x_{1}, y_{1}\right)$. $\mathcal{O}^{\prime}=(0,-1)$ has order $2 ;(1,0),(-1,0)$ have order 4.

Edwards curves

(a) $P_{3}=P_{1}+P_{2}$,
$x_{P_{1}}=-0.6, x_{P_{2}}=0.1$

(b) $P_{3}=P_{1}+P_{2}$,
$x_{P_{1}}=-1.1, x_{P_{2}}=1.2$

Relationship to elliptic curves

- Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.
- Let $P_{4}=\left(u_{4}, v_{4}\right)$ have order 4 , shift u s.t. $[2] P_{4}=(0,0)$. Then Weierstraß form:

$$
v^{2}=u^{3}+\left(v_{4}^{2} / u_{4}^{2}-2 u_{4}\right) u^{2}+u_{4}^{2} u .
$$

- Define $d=1-\left(4 u_{4}^{3} / v_{4}^{2}\right)$. Then the coordinates

$$
x=v_{4} u /\left(u_{4} v\right), y=\left(u-u_{4}\right) /\left(u+u_{4}\right)
$$

satisfy

$$
x^{2}+y^{2}=1+d x^{2} y^{2} .
$$

- Inverse map $u=u_{4}(1+y) /(1-y), v=v_{4} u /\left(u_{4} x\right)$.
- Finitely many exceptional points $\left(v\left(u+u_{4}\right)=0\right)$.
- Addition on Edwards and Weierstraß corresponds.

Nice features of the addition law

- Neutral element is affine point, this avoids special routines (for \mathcal{O} one of the inputs or the result).

$$
\begin{aligned}
P+Q & =\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right), \\
{[2] P } & =\left(\frac{x_{1} y_{1}+y_{1} x_{1}}{1+d x_{1}^{2} y_{1}^{2}}, \frac{y_{1}^{2}-x_{1}^{2}}{1-d x_{1}^{2} y_{1}^{2}}\right) .
\end{aligned}
$$

- If d is not a square in K, the denominators $1+d x_{1} x_{2} y_{1} y_{2}$ and $1-d x_{1} x_{2} y_{1} y_{2}$ are never 0 ; addition law is complete.
- Having addition law work for doubling removes some checks from the code; addition law also works for adding $P+(-P)$ or the neutral element.

Fast addition law

- Very fast point addition (10M + 1S + 1D). Even faster with Inverted Edwards coordinates ($9 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$) and Extended Edwards coordinates ($8 \mathrm{M}+1 \mathrm{~S}+1 \mathrm{D}$).
- Dedicated doubling formulas need only $3 \mathrm{M}+4 \mathrm{~S}$.
- Fastest scalar multiplication in the literature.
- For comparison: IEEE standard P1363 provides "the fastest arithmetic on elliptic curves" by using Jacobian coordinates on Weierstraß curves.
- Point addition $12 \mathrm{M}+4 \mathrm{~S}$.
- Doubling $4 \mathrm{M}+4 \mathrm{~S}$.
- For more curve shapes, better algorithms (even for Weierstraß curves) and many more operations (mixed addition, re-addition, tripling, scaling,...) see www .hyperelliptic.org/EFD.

Twisted Edwards curves

Let $a, d \in K^{*}, a \neq d$.

$$
\mathrm{E}_{a, d}: a x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- Isomorphic to plain Edwards curve $\mathrm{E}_{1, d / a}$ for $a=\square$.
- Set of twisted Edwards curves invariant under quadratic twists.
- Addition formulas very similar to Edwards curves

$$
x_{3}=\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}} \text { and } y_{3}=\frac{y_{1} y_{2}-a x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}} .
$$

- Arithmetic complete only for $a=\square, d \neq \square$.
- Operation count same as Edwards (except for 1A)

Pairings on Edwards curves

Das, Sarkar [Pairing 2008]:

- Map points to a curve in Weierstraß form using birational map and compute pairing there.
- Express functions $g_{R, R}$ and $g_{R, P}$ in the Miller loop by transformation to Montgomery form.
- Explicit formulas for supersingular curves with $k=2$. Ionica, Joux [Indocrypt 2008]:
- Compute Miller functions on a curve

$$
v^{2} u=(1+d u)^{2}-4 u .
$$

- Actually compute 4th power of the Tate pairing.
- Explicit formulas for even k.

A geometric interpretation of the addition law

- Find a function $g_{P_{1}, P_{2}}=h_{1} / h_{2}$ s.t.

$$
\operatorname{div}\left(g_{P_{1}, P_{2}}\right)=\left(P_{1}\right)+\left(P_{2}\right)-\left(P_{3}\right)-(\mathcal{O})
$$

for some point P_{3} and $\mathcal{O}=(0,1)$.

- Then

$$
\left(P_{1}\right)-(\mathcal{O})+\left(P_{2}\right)-(\mathcal{O}) \sim\left(P_{3}\right)-(\mathcal{O})
$$

i. e. $P_{1}+P_{2}=P_{3}$.

- Can use line functions for elliptic curves in Weierstraß form.

Weierstraß

- Line through P_{1} and P_{2} divided by vertical line through third intersection point:

$$
\begin{array}{r}
\left(\left(P_{1}\right)+\left(P_{2}\right)+\left(-P_{3}\right)-3(\mathcal{O})\right)-\left(\left(P_{3}\right)+\left(-P_{3}\right)-2(\mathcal{O})\right) \\
=\left(P_{1}\right)+\left(P_{2}\right)-\left(P_{3}\right)-(\mathcal{O}) .
\end{array}
$$

(c) Addition

(d) Doubling

Addition and doubling on $E: y^{2}=x^{3}-x$ over \mathbb{R}.

Edwards

- Edwards equation has degree 4 , so expect $4 \cdot \operatorname{deg}(h)$ intersection points by intersection with a function h.
- Functions h_{1}, h_{2} cannot be linear (would have 4 intersection points; need to eliminate 2 out of each).
- Quadratic functions h_{1}, h_{2} could offer enough freedom of cancellation (8 intersection points).
- General quadratic polynomial:

$$
c_{X^{2}} X^{2}+c_{Y^{2}} Y^{2}+c_{Z^{2}} Z^{2}+c_{X Y} X Y+c_{X Z} X Z+c_{Y Z} Y Z
$$

- Problem: a conic is determined by 5 points; not enough control over intersection points.

Conic sections

- Solution: observe that points at infinity

$$
\Omega_{1}=(1: 0: 0) \text { and } \Omega_{2}=(0: 1: 0)
$$

are singular and have multiplicity 2 .

- Conic C determined by passing through the 5 points

$$
P_{1}, P_{2}, \mathcal{O}^{\prime}, \Omega_{1}, \text { and } \Omega_{2}
$$

has only one more intersection point, say $-P_{3}$.

- Let h_{1} be the function corresponding to C :

$$
\operatorname{div}\left(h_{1}\right)=\left(P_{1}\right)+\left(P_{2}\right)+\left(\mathcal{O}^{\prime}\right)+\left(-P_{3}\right)-2\left(\Omega_{1}\right)-2\left(\Omega_{2}\right)
$$

Conic sections

- Use h_{2} to "replace" \mathcal{O}^{\prime} by \mathcal{O} and $-P_{3}$ by P_{3}.
- Can be done with product $h_{2}=l_{1} l_{2}$ of two lines, a horizontal line l_{1} through P_{3} and a vertical line l_{2} through \mathcal{O}.
- $\operatorname{div}\left(l_{1}\right)=\left(P_{3}\right)+\left(-P_{3}\right)-2\left(\Omega_{2}\right)$, $\operatorname{div}\left(l_{2}\right)=(\mathcal{O})+\left(\mathcal{O}^{\prime}\right)-2\left(\Omega_{1}\right)$

$$
\begin{aligned}
\operatorname{div}\left(h_{1} /\left(l_{1} l_{2}\right)\right)= & \left(P_{1}\right)+\left(P_{2}\right)+\left(\mathcal{O}^{\prime}\right)+\left(-P_{3}\right) \\
& -2\left(\Omega_{1}\right)-2\left(\Omega_{2}\right) \\
& -\left(P_{3}\right)-\left(-P_{3}\right)+2\left(\Omega_{2}\right) \\
& -(\mathcal{O})-\left(\mathcal{O}^{\prime}\right)+2\left(\Omega_{1}\right) \\
= & \left(P_{1}\right)+\left(P_{2}\right)-\left(P_{3}\right)-(\mathcal{O})
\end{aligned}
$$

Pictures I

Addition and doubling over \mathbb{R} for $d<0$.

Pictures II

Addition and doubling over \mathbb{R} for $d>1$.

Pictures III

Addition and doubling over \mathbb{R} for $0<d<1$.

Explicit functions

- Need to compute $g_{P_{1}, P_{2}}=h_{1} /\left(l_{1} l_{2}\right)$ from coefficients of the points P_{1}, P_{2}.
- Let $P_{3}=\left(X_{3}: Y_{3}: Z_{3}\right)$. Then the horizontal line through P_{3} is given by

$$
l_{1}=Z_{3} Y-Y_{3} Z
$$

- The vertical line through \mathcal{O} is given by

$$
l_{2}=X
$$

- Conic through $\mathcal{O}^{\prime}, \Omega_{1}$, and Ω_{2} has shape

$$
C: c_{Z^{2}}\left(Z^{2}+Y Z\right)+c_{X Y} X Y+c_{X Z} X Z=0
$$

where $\left(c_{Z^{2}}: c_{X Y}: c_{X Z}\right) \in \mathbb{P}^{2}(K)$.

Theorem

$P_{1}=\left(X_{1}: Y_{1}: Z_{1}\right), P_{2}=\left(X_{2}: Y_{2}: Z_{2}\right) \in E_{a, d}, Z_{1}, Z_{2} \neq 0$
(a) If $P_{1} \neq P_{2}, P_{1}, P_{2} \neq \mathcal{O}^{\prime}$, then

$$
\begin{aligned}
c_{Z^{2}} & =X_{1} X_{2}\left(Y_{1} Z_{2}-Y_{2} Z_{1}\right), \\
c_{X Y} & =Z_{1} Z_{2}\left(X_{1} Z_{2}-X_{2} Z_{1}+X_{1} Y_{2}-X_{2} Y_{1}\right), \\
c_{X Z} & =X_{2} Y_{2} Z_{1}^{2}-X_{1} Y_{1} Z_{2}^{2}+Y_{1} Y_{2}\left(X_{2} Z_{1}-X_{1} Z_{2}\right) .
\end{aligned}
$$

(b) If $P_{1} \neq P_{2}=\mathcal{O}^{\prime}$, then $c_{Z^{2}}=-X_{1}, c_{X Y}=Z_{1}, c_{X Z}=Z_{1}$.
(c) If $P_{1}=P_{2}$, then

$$
\begin{aligned}
c_{Z^{2}} & =X_{1} Z_{1}\left(Z_{1}-Y_{1}\right), \\
c_{X Y} & =d X_{1}^{2} Y_{1}-Z_{1}^{3}, \\
c_{X Z} & =Z_{1}\left(Z_{1} Y_{1}-a X_{1}^{2}\right) .
\end{aligned}
$$

Proof

(a) $P_{1} \neq P_{2}$ and $P_{1}, P_{2} \neq \mathcal{O}^{\prime}$

- From $P_{1}, P_{2} \in C$, we get

$$
\begin{aligned}
& c_{Z^{2}} Z_{1}\left(Z_{1}+Y_{1}\right)+c_{X Y} X_{1} Y_{1}+c_{X Z} X_{1} Z_{1}=0, \\
& c_{Z^{2}} Z_{2}\left(Z_{2}+Y_{2}\right)+c_{X Y} X_{2} Y_{2}+c_{X Z} X_{2} Z_{2}=0 .
\end{aligned}
$$

- The formulas follow from the (projective) solutions

$$
\begin{gathered}
c_{Z^{2}}=\left|\begin{array}{ll}
X_{1} Y_{1} & X_{1} Z_{1} \\
X_{2} Y_{2} & X_{2} Z_{2}
\end{array}\right|, c_{X Y}=\left|\begin{array}{ll}
X_{1} Z_{1} & Z_{1}^{2}+Y_{1} Z_{1} \\
X_{2} Z_{2} & Z_{2}^{2}+Y_{2} Z_{2}
\end{array}\right|, \\
c_{X Z}=\left|\begin{array}{ll}
Z_{1}^{2}+Y_{1} Z_{1} & X_{1} Y_{1} \\
Z_{2}^{2}+Y_{2} Z_{2} & X_{2} Y_{2}
\end{array}\right| .
\end{gathered}
$$

Proof

(c) First $P_{1}=P_{2} \notin\left\{\mathcal{O}, \mathcal{O}^{\prime}\right\}$:

Consider $P_{1}=\left(x_{1}, y_{1}\right)=\left(X_{1} / Z_{1}, Y_{1} / Z_{1}\right)$.

- Since $P_{1} \in C: c_{X Z}=-c_{X Y} y_{1}-c_{Z^{2}}\left(y_{1}+1\right) / x_{1}$.
- Intersection multiplicity of $E_{a, d}$ and C in P_{1} needs to be larger than 1: tangents in P_{1} equal.
- The tangents are

$$
\begin{aligned}
\left(c_{X Y} y_{1}+c_{X Z}\right)\left(x-x_{1}\right)+\left(c_{X Y} x_{1}+c_{Z^{2}}\right)\left(y-y_{1}\right) & =0 \\
2 x_{1}\left(a-d y_{1}^{2}\right)\left(x-x_{1}\right)+2 y_{1}\left(1-d x_{1}^{2}\right)\left(y-y_{1}\right) & =0
\end{aligned}
$$

- They are equal if
$\left(c_{X Y} x_{1}+c_{Z^{2}}\right) 2 x_{1}\left(a-d y_{1}^{2}\right)=\left(c_{X Y} y_{1}+c_{X Z}\right) 2 y_{1}\left(1-d x_{1}^{2}\right)$.

Proof

- Combine the two equations, multiply by x_{1}, apply curve equation:

$$
\left(1+y_{1}\right)\left(1-d x_{1}^{2} y_{1}\right) c_{Z^{2}}=-x_{1}\left(1-y_{1}^{2}\right) c_{X Y} .
$$

- $P_{1} \neq \mathcal{O}^{\prime}\left(y_{1} \neq-1\right)$:

$$
\left(1-d x_{1}^{2} y_{1}\right) c_{Z^{2}}=-x_{1}\left(1-y_{1}\right) c_{X Y}
$$

- Choose $c_{Z^{2}}=-x_{1}\left(1-y_{1}\right)$ and $c_{X Y}=1-d x_{1}^{2} y_{1}$.
- Then

$$
c_{X Z}=a x_{1}^{2}-y_{1} .
$$

The formulas follow from homogenization.

- Verify that special cases are obtained by same formulas.

Miller's algorithm

Let $k>1$ be the embedding degree of $E_{a, d}$ w.r.t. r,

$$
\begin{aligned}
& P \in E_{a, d}\left(\mathbb{F}_{p}\right)[r], Q \in E_{a, d}\left(\mathbb{F}_{p^{k}}\right), \\
& r=\left(r_{l-1}, \ldots, r_{1}, r_{0}\right)_{2} .
\end{aligned}
$$

Compute the Tate pairing as:

1. $R \leftarrow P, f \leftarrow 1$
2. for $i=l-2$ to 0 do
$2.1 f \leftarrow f^{2} \cdot g_{R, R}(Q), R \leftarrow 2 R$
//doubling step
2.2 if $r_{i}=1$ then
$f \leftarrow f \cdot g_{R, P}(Q), R \leftarrow R+P \quad$ //addition step
3. $f \leftarrow f^{\left(p^{k}-1\right) / n}$

Miller functions on twisted Edwards curves

Assume an even embedding degree k.

- Represent $\mathbb{F}_{p^{k}}=\mathbb{F}_{p^{k / 2}}(\alpha)$ where $\alpha^{2}=\delta \in \mathbb{F}_{p^{k / 2}}$.
- Use quadratic twist $E_{\delta a, \delta d}\left(\mathbb{F}_{p^{k / 2}}\right)$ to represent second pairing argument $Q=\psi\left(Q^{\prime}\right)$:

$$
\begin{aligned}
\psi: E_{\delta a, \delta d}\left(\mathbb{F}_{p^{k} / 2}\right) & \rightarrow E_{a, d}\left(\mathbb{F}_{p^{k}}\right), \\
Q^{\prime}=\left(x_{0}, y_{0}\right) & \mapsto\left(x_{0} \alpha, y_{0}\right) .
\end{aligned}
$$

- Here $y_{0} \in \mathbb{F}_{p^{k / 2}}$ lies in a proper subfield of $\mathbb{F}_{p^{k}}$.
- In Miller's algorithm compute
$f^{2} \cdot g_{R, R}\left(\psi\left(Q^{\prime}\right)\right)$ (doubling step) and $f \cdot g_{R, P}\left(\psi\left(Q^{\prime}\right)\right)$ (addition step).

Miller functions on twisted Edwards curves

- Compute

$$
\begin{aligned}
\frac{h_{1}}{l_{1} l_{2}}\left(x_{0} \alpha, y_{0}\right) & =\frac{c_{Z^{2}}\left(1+y_{0}\right)+c_{X Y} x_{0} \alpha y_{0}+c_{X Z} x_{0} \alpha}{\left(Z_{3} y_{0}-Y_{3}\right) x_{0} \alpha} \\
& =\frac{c_{Z^{2}} \frac{1+y_{0}}{x_{0} \delta} \alpha+c_{X Y} y_{0}+c_{X Z}}{Z_{3} y_{0}-Y_{3}},
\end{aligned}
$$

where ($X_{3}: Y_{3}: Z_{3}$) are the coord. of $[2] R$ or $R+P$,

- in $2(k / 2) \mathbf{m}$ over \mathbb{F}_{p} given the coefficients $c_{Z^{2}}, c_{X Y}, c_{X Z}$ and precomputed $\eta=\frac{1+y_{0}}{x_{0} \delta}$.
- Note that $Z_{3} y_{Q}-Y_{3} \in \mathbb{F}_{p^{k / 2}}$. Discard it since final exponentiation maps it to 1 anyway.

Pairing-friendly Edwards curves

How to get Edwards curves with small embedding degree?

- Construct pairing-friendly curves in Weierstraß form and then transform to Edwards or twisted Edwards form.
- Only requirement is that the group order is a multiple of 4 .
- If have a point of order 4, get plain Edwards curve.
- If not, get twisted Edwards curve. Can be transformed to plain Edwards form by using 2 -isogenies.

Pairing-friendly Edwards curves

- Need curves with $4 \mid \# E\left(\mathbb{F}_{p}\right)$.
- Use generalized MNT construction for curves with cofactor 4 as done by Galbraith, McKee, Valença.
- Parametrizations for embedding degree $k=6$ and cofactor 4.

Case	$q(\ell)$	$t(\ell)$	$n(\ell)$
1	$16 \ell^{2}+10 \ell+5$	$2 \ell+2$	$4 \ell^{2}+2 \ell+1$
2	$112 \ell^{2}+54 \ell+7$	$14 \ell+4$	$28 \ell^{2}+10 \ell+1$
3	$112 \ell^{2}+86 \ell+17$	$14 \ell+6$	$28 \ell^{2}+18 \ell+3$
4	$208 \ell^{2}+30 \ell+1$	$-26 \ell-2$	$52 \ell^{2}+14 \ell+1$
5	$208 \ell^{2}+126 \ell+19$	$-26 \ell-8$	$52 \ell^{2}+38 \ell+7$

Pairing-friendly Edwards curves

- First solve the norm equation

$$
t(\ell)^{2}-4 q(\ell)=-D v^{2}
$$

- Case 1 in the table:

$$
t(\ell)=2 \ell+2, q(\ell)=16 \ell^{2}+10 \ell+5
$$

Transform equation into corresponding Pell equation by completing the square:

$$
t(\ell)^{2}-4 q(\ell)=-D y^{2} \Longleftrightarrow x^{2}-15 D y^{2}=-44
$$

where $x=15 \ell+4$.

Pairing-friendly Edwards curves

- Constructed curves over \mathbb{F}_{p} have order

$$
\# E\left(\mathbb{F}_{p}\right)=4 h r
$$

for a prime r and cofactor h.

- Since embedding degree is fixed to 6 , balance the DLPs; eCrypt report on key sizes suggests the following bitsizes:

r	p	p^{6}	h
160	208	1248	46
192	296	1776	102
224	405	2432	179
256	541	3248	283
512	2570	15424	2056

Examples

$$
\begin{aligned}
& D=1,\lceil\log (n)\rceil=363,\lceil\log (h)\rceil=7,\lceil\log (p)\rceil=371 \\
& p=32428903728427434871960638456028409162281939582432575945 \\
& 30632153559402628010019946681624958973937239637420169141 \text {, } \\
& n=11105788948091587284918026868502879850096554651518005460 \\
& 623832064312035897815509951488907964532000965993787241 \text {, } \\
& h=73 \text {, } \\
& d=16214451864213717435980319228014204581140969791216287972 \\
& 65316076779701314005009973340812479486968619818710084571 . \\
& D=7230,\lceil\log (n)\rceil=165,\lceil\log (h)\rceil=34,\lceil\log (p)\rceil=201 \\
& p=2051613663768129606093583432875887398415301962227490187508801, \\
& n=44812545413308579913957438201331385434743442366277 \text {, } \\
& h=7 \cdot 733 \cdot 2230663 \text {, } \\
& d=889556570662354157210639662153375862261205379822879716332449 .
\end{aligned}
$$

Explicit formulas

- Use explicit formulas with extended Edwards coordinates by Hisil, et. al. [Asiacrypt 2008] for point doubling and addition in Miller's algorithm.
- Can reuse large parts of the computation for coefficients of the conic.
- Use even embedding degree and quadratic twist to represent second pairing argument Q, i.e. multiplications with coordinates x_{Q} and $y_{Q} \operatorname{cost} k / 2$ multiplications in \mathbb{F}_{p}.
- Compute conic coefficients in doubling step with $6 \mathbf{m}+5 \mathbf{s}+1 \mathbf{m}_{\mathrm{a}}$, in addition step with $14 \mathbf{m}+1 \mathbf{m}_{\mathrm{a}}$ (mixed addition $12 \mathrm{~m}+1 \mathrm{~m}_{\mathrm{a}}$).

Comparison of operation counts

	DBL	mADD	ADD
\mathcal{J}	$1 \mathbf{m}+11 \mathbf{s}+1 \mathbf{m}_{\mathbf{a}_{\mathbf{4}}}$	$9 \mathbf{m}+3 \mathbf{s}$	-
$\mathcal{J}, a_{4}=-3$	$7 \mathbf{m}+4 \mathbf{s}$	$9 \mathbf{m}+3 \mathbf{s}$	-
$\mathcal{J}, a_{4}=0$	$6 \mathbf{m}+5 \mathbf{s}$	$9 \mathbf{m}+3 \mathbf{s}$	-
\mathcal{E}	$8 \mathbf{m}+4 \mathbf{s}+1 \mathbf{m}_{\mathbf{d}}$	$14 \mathbf{m}+4 \mathbf{s}+1 \mathbf{m}_{\mathbf{d}}$	-
\mathcal{E}, this paper	$6 \mathbf{m}+5 \mathbf{s}+1 \mathbf{m}_{\mathbf{a}}$	$12 \mathbf{m}+1 \mathbf{m}_{\mathbf{a}}$	$14 \mathbf{m}+1 \mathbf{m}_{\mathbf{a}}$

All formulas need additional $k \mathrm{~m}+1 \mathrm{M}$ for (mixed) addition steps and $k \mathrm{~m}+1 \mathrm{M}+1 \mathrm{~S}$ for doubling steps.

Comparison of operation counts

	DBL	mADD	ADD
\mathcal{J}	$1 \mathbf{m}+11 \mathbf{s}+1 \mathbf{m}_{\mathbf{a}_{\mathbf{4}}}$	$9 \mathbf{m}+3 \mathbf{s}$	-
this paper	$1 \mathbf{m}+11 \mathbf{s}+1 \mathbf{m}_{\mathbf{a}_{\mathbf{4}}}$	$6 \mathbf{m}+6 \mathbf{s}$	$15 \mathbf{m}+6 \mathbf{s}$
$\mathcal{J}, a_{4}=-3$	$7 \mathbf{m}+4 \mathbf{s}$	$9 \mathbf{m}+3 \mathbf{s}$	-
this paper	$6 \mathbf{m}+5 \mathbf{s}$	$6 \mathbf{m}+6 \mathbf{s}$	$15 \mathbf{m}+6 \mathbf{s}$
$\mathcal{J}, a_{4}=0$	$6 \mathbf{m}+5 \mathbf{s}$	$9 \mathbf{m}+3 \mathbf{s}$	-
this paper	$3 \mathbf{m}+8 \mathbf{s}$	$6 \mathbf{m}+6 \mathbf{s}$	$15 \mathbf{m}+6 \mathbf{s}$
\mathcal{E}	$8 \mathbf{m}+4 \mathbf{s}+1 \mathbf{m}_{\mathbf{d}}$	$14 \mathbf{m}+4 \mathbf{s}+1 \mathbf{m}_{\mathbf{d}}$	-
\mathcal{E}, this paper	$6 \mathbf{m}+5 \mathbf{s}+1 \mathbf{m}_{\mathbf{a}}$	$12 \mathbf{m}+1 \mathbf{m}_{\mathbf{a}}$	$14 \mathbf{m}+1 \mathbf{m}_{\mathbf{a}}$

Explicit formulas and more curve examples in preprint

http://eprint.iacr.org/2009/155

