Pairings I

Michael Naehrig

Eindhoven Institute for the Protection of Systems and Information Technische Universiteit Eindhoven michael@cryptojedi.org

ECC Summer School 2008, Eindhoven 18 September 2008

What is a pairing?

A pairing is a non-degenerate, bilinear map

 $e: G_1 \times G_2 \to G_3,$

where G_1, G_2 are abelian groups written additively and G_3 is a multiplicative abelian group.

- Non-degenerate: for all 0 ≠ P ∈ G₁ there is a Q ∈ G₂ s.t. e(P,Q) ≠ 1, for all 0 ≠ Q ∈ G₂ there is a P ∈ G₁ s.t. e(P,Q) ≠ 1.
- ▶ Bilinear: for $P_1, P_2 \in G_1; Q_1, Q_2 \in G_2$ we have

$$\begin{array}{rcl} e(P_1+P_2,Q_1) &=& e(P_1,Q_1)e(P_2,Q_1),\\ e(P_1,Q_1+Q_2) &=& e(P_1,Q_1)e(P_1,Q_2). \end{array}$$

It follows: $e([a]P, [b]Q) = e(P, Q)^{ab} = e([b]P, [a]Q)$.

What can be done with pairings?

Pairings on elliptic curves can be used,

- as a means to attack DL-based cryptography on groups of points on elliptic curves,
- or to construct crypto systems with certain special properties:
 - One-round tripartite key agreement,
 - Identity-based key agreement,
 - Identity-based encryption (IBE),
 - Hierarchical IBE (HIDE),
 - Short signatures (BLS).
 - much more ...

Elliptic curves

Let p > 3 be a prime, \mathbb{F}_p the finite field with p elements and

$$E: Y^2 = X^3 + AX + B$$

an elliptic curve over \mathbb{F}_p .

• For a field extension $\overline{\mathbb{F}_p} \supseteq L \supseteq \mathbb{F}_p$ let

$$E(L) = \{(x, y) \in L^2 : y^2 = x^3 + Ax + B\} \cup \{P_\infty\}$$

the group of L-rational points on E.

Let n = #E(𝔽_p) be the number of 𝔽_p-rational points. We have

$$n = p + 1 - t, \quad |t| \le 2\sqrt{p},$$

where t is the trace of Frobenius.

Torsion points

Let m be a non-negative integer. The set of m-torsion points

$$E[m] = \{ P \in E = E(\overline{\mathbb{F}_p}) \mid [m]P = P_{\infty} \}$$

is a subgroup of E.

We denote by

$$E[m](L) = \{P \in E(L) \mid [m]P = P_{\infty}\}$$

the group of *L*-rational *m*-torsion points.

 $\blacktriangleright \ \text{If} \ p \nmid m \ \text{we have}$

$$E[m] \cong \mathbb{Z}/m\mathbb{Z} \times Z/m\mathbb{Z}.$$

The embedding degree

Let $r \neq p$ be a large prime dividing $n = \#E(\mathbb{F}_p)$. The embedding degree of E with respect to r is the smallest integer k s.t.

$$r \mid p^k - 1.$$

► This is equivalent to r | Φ_k(p), where Φ_k is the k-th cyclotomic polynomial. This follows from

$$X^{k} - 1 = \prod_{d|k} \Phi_{d}(X) = \Phi_{k}(X) \cdot \prod_{d|k, d \neq k} \Phi_{d}(X).$$

The embedding degree

• The embedding degree k is the order of p modulo r. Therefore

$$k \mid r-1.$$

- For k > 1 the field 𝔽_{p^k} is the smallest extension of 𝔽_p which contains the group μ_r of r-th roots of unity,
- ▶ and for which $E(\mathbb{F}_{p^k})$ contains all *r*-torsion points, i.e.

$$E[r] \subseteq E(\mathbb{F}_{p^k}).$$

For crypto-sized curve E and prime divisor r the embedding degree is usually very large.

The Weil pairing

The Weil pairing is a map

$$e_r : E[r] \times E[r] \to \mu_r \subseteq \mathbb{F}_{p^k}^*,$$

(P,Q) $\mapsto f_{r,P}(D_Q)/f_{r,Q}(D_P),$

- ▶ where D_P ~ (P) (P_∞) and D_Q ~ (Q) (P_∞) are divisors with disjoint support,
- $f_{r,P}$ and $f_{r,Q}$ are functions on the curve with divisors

$$(f_{r,P}) = rD_P = r(P) - r(P_{\infty}),$$

 $(f_{r,Q}) = rD_Q = r(Q) - r(P_{\infty}).$

The Weil pairing

The Weil pairing is a map

$$e_r: E[r] \times E[r] \to \mu_r \subseteq \mathbb{F}_{p^k},$$

(P,Q) $\mapsto f_{r,P}(D_Q)/f_{r,Q}(D_P),$

For a divisor $D = \sum_{P \in E} n_P(P)$ and a function $f \in \overline{\mathbb{F}_p}(E)$, we can evaluate f at D by

$$f(D) = \prod_{P \in E} f(P)^{n_p}.$$

► The Weil pairing is bilinear, non-degenerate and alternating (i.e. e_r(P, P) = 1).

The MOV-FR attack

Theorem: Let $P \in E[r](\mathbb{F}_p)$. Then there exists a point $Q \in E[r]$ s.t. $e_r(P,Q)$ is a primitive *r*-th root of unity, i.e. a generator of μ_r .

 Let P, Q be the points from the theorem. Then the map

$$f: \langle P \rangle \to \mu_r, \ R \mapsto e_r(R,Q)$$

is a group isomorphism.

▶ The map *f* 'reduces' the DLP on $E(\mathbb{F}_p)[r]$ to the DLP in $\mu_r \subseteq \mathbb{F}_{p^k}^*$: If R = [m]P then

$$e_r(R,Q) = e_r([m]P,Q) = e_r(P,Q)^m.$$

The MOV-FR attack

$$R = [m]P$$

$$\uparrow$$

$$e_r(R,Q) = e_r([m]P,Q) = e_r(P,Q)^m.$$

- One can find m by solving the DLP in $\mathbb{F}_{p^k}^*$.
- This attack is only useful, if we can compute the Weil pairing efficiently,
- ▶ and if the DLP in $\mathbb{F}_{p^k}^*$ is easier than the DLP in $E(\mathbb{F}_p)$.

The Tate pairing

The Tate pairing is a map

$$\begin{aligned} \langle \cdot, \cdot \rangle_r &: E[r](\mathbb{F}_{p^k}) \times E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k}) &\to \mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r, \\ (P, Q) &\mapsto f_{r, P}(D_Q). \end{aligned}$$

- ► The divisor D_Q is equivalent to the divisor (Q) (P_∞) and its support is disjoint from the support of (f_{r,P}) = r(P) r(P_∞).
- ► The result must be interpreted as representing a class in F^{*}_{p^k}/(F^{*}_{p^k})^r.
- Q is a representative of a class in $E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k})$.

The reduced Tate pairing

The reduced Tate pairing is a map

$$t_r : E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*,$$

(P,Q) $\mapsto f_{r,P}(Q)^{\frac{p^k-1}{r}}.$

- For the first group we restrict to $E[r](\mathbb{F}_p)$.
- If $r^2 \nmid n$ we may represent $E(\mathbb{F}_{p^k})/rE(\mathbb{F}_{p^k})$ by $E[r](\mathbb{F}_{p^k})$.
- For k > 1 we may replace D_Q by Q itself.
- ▶ Note that for k > 1 and $P \in E[r](\mathbb{F}_p)$ we have $t_r(P, P) = 1$.

The reduced Tate pairing

The reduced Tate pairing is a map

$$t_r : E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_{p^k}) \to \mu_r \subset \mathbb{F}_{p^k}^*,$$

$$(P,Q) \mapsto f_{r,P}(Q)^{\frac{p^k-1}{r}}$$

- We obtain a unique pairing value in μ_r by raising $f_{r,P}(Q)$ to the power of $\frac{p^k-1}{r}$.
- ► This so called final exponentiation is an isomorphism $\mathbb{F}_{p^k}^*/(\mathbb{F}_{p^k}^*)^r \to \mu_r.$

Miller functions

To compute pairings we need to know the functions $f_{r,P}$ with divisor $r(P) - r(P_{\infty})$.

▶ Let $f_{i,P}$, $i \in \mathbb{Z}$ be a function on *E* which has a divisor

$$(f_{i,P}) = i(P) - ([i]P) - (i-1)(P_{\infty}).$$

 $f_{i,P}$ is called a Miller function.

• The special case i = r leads to

$$(f_{r,P}) = r(P) - ([r]P) - (r-1)(P_{\infty}) = r(P) - r(P_{\infty}),$$
 since $[r]P = P_{\infty}.$

Miller's formula

Can we compute *f*_{i+j,P} from *f*_{i,P} and *f*_{j,P}?
▶ Compute the divisor of the product

$$(f_{i,P}f_{j,P}) = i(P) - ([i]P) - (i - 1)(P_{\infty}) + j(P) - ([j]P) - (j - 1)(P_{\infty}) = (i + j)(P) - ([i]P) - ([j]P) - (i + j - 2)(P_{\infty}) = (i + j)(P) - ([i + j]P) - (i + j - 1)(P_{\infty}) + ([i + j]P) - ([i]P) - ([j]P) + (P_{\infty}) = (f_{i+j,P}) + ([i + j]P) - ([i]P) - ([j]P) + (P_{\infty})$$

• The sum of the divisors is 'almost' the divisor of $f_{i+j,P}$.

Miller's formula

Now have a look at the lines occuring in the addition [i]P + [j]P = [i + j]P.

► The first line *l* goes through [*i*]*P*, [*j*]*P* and -[*i*+*j*]*P*, it has the divisor

$$(l) = ([i]P) + ([j]P) + (-[i+j]P) - 3(P_{\infty}).$$

► The second line v is a vertical line through [i + j]P and -[i + j]P with

$$(v) = ([i+j]P) + (-[i+j]P) - 2(P_{\infty}).$$

Compute

$$(l) - (v) = ([i]P) + ([j]P) - ([i+j]P) - (P_{\infty}).$$

Miller's formula

Remember

$$(f_{i,P}f_{j,P}) = (f_{i+j,P}) + ([i+j]P) - ([i]P) - ([j]P) + (P_{\infty})$$

and

$$(l) - (v) = ([i]P) + ([j]P) - ([i+j]P) - (P_{\infty}).$$

We get an equation of divisors

$$(f_{i+j,P}) = (f_{i,P}f_{j,P}) + (l) - (v).$$

For the functions we get Miller's formula

$$f_{i+j,P} = f_{i,P} f_{j,P} \cdot l/v.$$

We can choose normalized functions, i.e. $f_{1,P} = 1$.

Computing pairings (Miller's algorithm)

We can use the special cases i = j and j = 1 to compute the function $f_{r,P}$ in a square-&-multiply-like manner.

Square step:

$$f_{2i,P} = f_{i,P}^2 \cdot l_{[i]P,[i]P} / v_{[2i]P}.$$

Multiply step:

$$f_{i+1,P} = f_{i,P} f_{1,P} \cdot l_{[i]P,P} / v_{[i+1]P}.$$

► l_{R,S}: line through R and S, tangent if R = S, v_R: vertical line through R.

Computing pairings (Miller's algorithm)

Computing pairings (Miller's algorithm)

For Miller's algorithm we need arithmetic in $E(\mathbb{F}_p)$ and \mathbb{F}_{p^k} .

- ► If *k* is too large, we can't compute pairings this way.
- ► We need special curves with small k to be able to compute in F_{pk}.
- See tomorrow's talk for methods how to find such curves.

Tripartite key agreement

Tanja, Dan and Nigel would like to share a common secret key.

- They each choose a secret $a, b, c \in \mathbb{Z}_r$ resp.
- ► They compute *aP*, *bP*, *cP* resp. and send it to the other two.

Tripartite key agreement

Using a pairing e the three can compute a common secret key using their secrets:

$$e(aP, bP)^{c} = e(bP, cP)^{a} = e(aP, cP)^{b} = e(P, P)^{abc}$$

Only one round of communication is needed.

Symmetric Pairings

If k > 1 we can use the reduced Tate pairing on supersingular curves to construct a symmetric pairing

$$e: E[r](\mathbb{F}_p) \times E[r](\mathbb{F}_p) \to \mu_r \subseteq \mathbb{F}_{p^k}^*,$$

s.t. $e(P, P) \neq 1$.

- Supersingular elliptic curves have $k \le 6$.
- Supersingular elliptic curves have distortion maps.
- ▶ A distortion map is an endomorphism ϕ of E for which $\phi(P) \notin E(\mathbb{F}_p)$. If $E(\mathbb{F}_{p^k})$ has no points of order r^2 then

$$e(P,P) := t_r(P,\phi(P)) \neq 1.$$

BLS signatures

Using pairings it is possible to define a signature scheme with very short signatures.

System parameters are the pairing

$$e: \langle P \rangle \times \langle Q \rangle \quad \to \quad \mu_r \subseteq \mathbb{F}_{p^k}^*,$$

points $P \in E[r](\mathbb{F}_p)$, $Q \in E[r](\mathbb{F}_{p^k})$ s.t. $e(P,Q) \neq 1$ and a hash function

$$H: \{0,1\}^* \to E[r](\mathbb{F}_p).$$

BLS signatures

- ▶ To sign messages, Tanja chooses a private key $x_T \in \mathbb{Z}_r$ and publishes her public key $Q_T = [x_T]Q$.
- ▶ She signs the message $M \in \{0, 1\}^*$ by computing $H(M) \in E[r](\mathbb{F}_p)$ and the signature

$$\sigma = [x_T]H(M).$$

> To verify, anyone may take Q_T and check if

$$e(\sigma, Q) = e(H(M), Q_T).$$

•
$$e(\sigma, Q) = e([x_T]H(M), Q) = e(H(M), [x_T]Q) = e(H(M), Q_T).$$

BLS signatures

- ► The signature σ is just one point in E[r](𝔽_p), so can be represented by 2 𝔽_p-elements.
- ► Compare this to the signatures from Tanja's 1st talk. There the signature was (*R*, *S*), where

$$R = [k]P, \ S = s_s m + kH([k]P) \mod r.$$

- > This is 1 element of size r larger.
- If we represent points in E(F_p) by their x-coordinate only, this might be about half the size of the whole signature.

The Tate pairing is a bit slow...

Reducing the loop length - variants of the Tate pairing

It is possible to reduce the loop length in Miller's algorithm significantly and still get a pairing.

Ate pairing:

ate :
$$E[r](\mathbb{F}_{p^k}) \times E[r](\mathbb{F}_p) \rightarrow \mu_r \subset \mathbb{F}_{p^k}^*,$$

 $(Q, P) \mapsto f_{T,Q}(P)^{\frac{p^k-1}{r}}.$

Here T = t - 1 where t is the trace of Frobenius, i.e. the number of bits in T is about half that of r.

Reducing the loop length - variants of the Tate pairing

Twisted ate pairing: If E has a twist E' of degree d, we get a pairing

eta:
$$E[r](\mathbb{F}_p) \times E'[r](\mathbb{F}_{p^{k/d}}) \longrightarrow \mu_r \subset \mathbb{F}_{p^k}^*,$$

 $(P,Q') \mapsto f_{T^e,P}(\phi(Q'))^{\frac{p^k-1}{r}}$

We have T = t - 1 and $T^e \equiv \zeta_m \mod r$, e = k/m, $m = \gcd(k, d)$. $\phi : E'[r](\mathbb{F}_{p^{k/d}}) \to E[r](\mathbb{F}_{p^k})$.

Reducing the loop length - variants of the Tate pairing

- There are other choices for the loop variable which even give shorter loops depending on the type of curves one is using.
- Shortest loops right now are of length 1/φ(k) times the length of r. Corresponding pairings are called optimal pairings.

For more information we refer to

