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What is a pairing?
A pairing is a non-degenerate, bilinear map

e : G1 ×G2 → G3,

where G1, G2 are abelian groups written additively and G3

is a multiplicative abelian group.
I Non-degenerate:

for all 0 6= P ∈ G1 there is a Q ∈ G2 s.t. e(P,Q) 6= 1,
for all 0 6= Q ∈ G2 there is a P ∈ G1 s.t. e(P,Q) 6= 1.

I Bilinear: for P1, P2 ∈ G1;Q1, Q2 ∈ G2 we have

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 +Q2) = e(P1, Q1)e(P1, Q2).

It follows: e([a]P, [b]Q) = e(P,Q)ab = e([b]P, [a]Q).



What can be done with pairings?

Pairings on elliptic curves can be used,

I as a means to attack DL-based cryptography on
groups of points on elliptic curves,

I or to construct crypto systems with certain special
properties:

I One-round tripartite key agreement,
I Identity-based key agreement,
I Identity-based encryption (IBE),
I Hierarchical IBE (HIDE),
I Short signatures (BLS).
I much more ...



Elliptic curves

Let p > 3 be a prime, Fp the finite field with p elements and

E : Y 2 = X3 + AX +B

an elliptic curve over Fp.
I For a field extension Fp ⊇ L ⊇ Fp let

E(L) = {(x, y) ∈ L2 : y2 = x3 + Ax+B} ∪ {P∞}

the group of L-rational points on E.
I Let n = #E(Fp) be the number of Fp-rational points.

We have
n = p+ 1− t, |t| ≤ 2

√
p,

where t is the trace of Frobenius.



Torsion points

Let m be a non-negative integer. The set of m-torsion
points

E[m] = {P ∈ E = E(Fp) | [m]P = P∞}

is a subgroup of E.
I We denote by

E[m](L) = {P ∈ E(L) | [m]P = P∞}

the group of L-rational m-torsion points.
I If p - m we have

E[m] ∼= Z/mZ× Z/mZ.



The embedding degree

Let r 6= p be a large prime dividing n = #E(Fp).
The embedding degree of E with respect to r is the
smallest integer k s.t.

r | pk − 1.

I This is equivalent to r | Φk(p), where Φk is the k-th
cyclotomic polynomial. This follows from

Xk − 1 =
∏
d|k

Φd(X) = Φk(X) ·
∏

d|k,d6=k

Φd(X).



The embedding degree

I The embedding degree k is the order of p modulo r.
Therefore

k | r − 1.

I For k > 1 the field Fpk is the smallest extension of Fp

which contains the group µr of r-th roots of unity,
I and for which E(Fpk) contains all r-torsion points, i.e.

E[r] ⊆ E(Fpk).

For crypto-sized curve E and prime divisor r the
embedding degree is usually very large.



The Weil pairing

The Weil pairing is a map

er : E[r]× E[r] → µr ⊆ F∗pk ,

(P,Q) 7→ fr,P (DQ)/fr,Q(DP ),

I where DP ∼ (P )− (P∞) and DQ ∼ (Q)− (P∞) are
divisors with disjoint support,

I fr,P and fr,Q are functions on the curve with divisors

(fr,P ) = rDP = r(P )− r(P∞),

(fr,Q) = rDQ = r(Q)− r(P∞).



The Weil pairing

The Weil pairing is a map

er : E[r]× E[r] → µr ⊆ Fpk ,

(P,Q) 7→ fr,P (DQ)/fr,Q(DP ),

I For a divisor D =
∑

P∈E nP (P ) and a function
f ∈ Fp(E), we can evaluate f at D by

f(D) =
∏
P∈E

f(P )np .

I The Weil pairing is bilinear, non-degenerate and
alternating (i.e. er(P, P ) = 1).



The MOV-FR attack

Theorem: Let P ∈ E[r](Fp). Then there exists a point
Q ∈ E[r] s.t. er(P,Q) is a primitive r-th root of unity, i.e. a
generator of µr.

I Let P,Q be the points from the theorem. Then the
map

f : 〈P 〉 → µr, R 7→ er(R,Q)

is a group isomorphism.
I The map f ’reduces’ the DLP on E(Fp)[r] to the DLP

in µr ⊆ F∗
pk : If R = [m]P then

er(R,Q) = er([m]P,Q) = er(P,Q)m.



The MOV-FR attack

R = [m]P

l
er(R,Q) = er([m]P,Q) = er(P,Q)m.

I One can find m by solving the DLP in F∗
pk .

I This attack is only useful, if we can compute the Weil
pairing efficiently,

I and if the DLP in F∗
pk is easier than the DLP in E(Fp).



The Tate pairing

The Tate pairing is a map

〈·, ·〉r : E[r](Fpk)× E(Fpk)/rE(Fpk) → F∗pk/(F∗pk)r,

(P,Q) 7→ fr,P (DQ).

I The divisor DQ is equivalent to the divisor (Q)− (P∞)
and its support is disjoint from the support of
(fr,P ) = r(P )− r(P∞).

I The result must be interpreted as representing a
class in F∗

pk/(F∗pk)r.
I Q is a representative of a class in E(Fpk)/rE(Fpk).



The reduced Tate pairing

The reduced Tate pairing is a map

tr : E[r](Fp)× E[r](Fpk) → µr ⊂ F∗pk ,

(P,Q) 7→ fr,P (Q)
pk−1

r .

I For the first group we restrict to E[r](Fp).
I If r2 - n we may represent E(Fpk)/rE(Fpk) by
E[r](Fpk).

I For k > 1 we may replace DQ by Q itself.
I Note that for k > 1 and P ∈ E[r](Fp) we have
tr(P, P ) = 1.



The reduced Tate pairing

The reduced Tate pairing is a map

tr : E[r](Fp)× E[r](Fpk) → µr ⊂ F∗pk ,

(P,Q) 7→ fr,P (Q)
pk−1

r .

I We obtain a unique pairing value in µr by raising
fr,P (Q) to the power of pk−1

r
.

I This so called final exponentiation is an isomorphism
F∗

pk/(F∗pk)r → µr.



Miller functions

To compute pairings we need to know the functions fr,P

with divisor r(P )− r(P∞).
I Let fi,P , i ∈ Z be a function on E which has a divisor

(fi,P ) = i(P )− ([i]P )− (i− 1)(P∞).

fi,P is called a Miller function.
I The special case i = r leads to

(fr,P ) = r(P )− ([r]P )− (r − 1)(P∞) = r(P )− r(P∞),

since [r]P = P∞.



Miller’s formula

Can we compute fi+j,P from fi,P and fj,P ?
I Compute the divisor of the product

(fi,Pfj,P ) = i(P )− ([i]P )− (i− 1)(P∞)

+j(P )− ([j]P )− (j − 1)(P∞)

= (i+ j)(P )− ([i]P )− ([j]P )− (i+ j − 2)(P∞)

= (i+ j)(P )− ([i+ j]P )− (i+ j − 1)(P∞)

+([i+ j]P )− ([i]P )− ([j]P ) + (P∞)

= (fi+j,P ) + ([i+ j]P )− ([i]P )− ([j]P ) + (P∞)

I The sum of the divisors is ’almost’ the divisor of fi+j,P .



Miller’s formula
Now have a look at the lines occuring in the addition
[i]P + [j]P = [i+ j]P .

I The first line l goes through [i]P , [j]P and −[i+ j]P , it
has the divisor

(l) = ([i]P ) + ([j]P ) + (−[i+ j]P )− 3(P∞).

I The second line v is a vertical line through [i+ j]P
and −[i+ j]P with

(v) = ([i+ j]P ) + (−[i+ j]P )− 2(P∞).

I Compute

(l)− (v) = ([i]P ) + ([j]P )− ([i+ j]P )− (P∞).



Miller’s formula
I Remember

(fi,Pfj,P ) = (fi+j,P ) + ([i+ j]P )− ([i]P )− ([j]P ) + (P∞)

I and

(l)− (v) = ([i]P ) + ([j]P )− ([i+ j]P )− (P∞).

We get an equation of divisors

(fi+j,P ) = (fi,Pfj,P ) + (l)− (v).

I For the functions we get Miller’s formula

fi+j,P = fi,Pfj,P · l/v.

We can choose normalized functions, i.e. f1,P = 1.



Computing pairings (Miller’s algorithm)

We can use the special cases i = j and j = 1 to compute
the function fr,P in a square-&-multiply-like manner.

I Square step:

f2i,P = f 2
i,P · l[i]P,[i]P/v[2i]P .

I Multiply step:

fi+1,P = fi,Pf1,P · l[i]P,P/v[i+1]P .

I lR,S: line through R and S, tangent if R = S,
vR: vertical line through R.



Computing pairings (Miller’s algorithm)

Input: P ∈ E[r](Fp), Q ∈ E[r](Fpk), r = (rm, . . . , r0)2

Output: fr,P (Q)
R← P , f ← 1
for (i← m− 1; i ≥ 0; i−−) do

f ← f 2 lR,R(Q)

v[2]R(Q)

R← [2]R
if (ri = 1) then

f ← f
lR,P (Q)

vR+P (Q)

R← R + P
end if

end for
return f



Computing pairings (Miller’s algorithm)

For Miller’s algorithm we need arithmetic in E(Fp) and Fpk .

I If k is too large, we can’t compute pairings this way.
I We need special curves with small k to be able to

compute in Fpk .
I See tomorrow’s talk for methods how to find such

curves.



Tripartite key agreement

Tanja, Dan and Nigel would like to share a common
secret key.

I They each choose a secret a, b, c ∈ Zr resp.
I They compute aP, bP, cP resp. and send it to the

other two.
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Tripartite key agreement
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I Using a pairing e the three can compute a common
secret key using their secrets:

e(aP, bP )c = e(bP, cP )a = e(aP, cP )b = e(P, P )abc.

I Only one round of communication is needed.



Symmetric Pairings

If k > 1 we can use the reduced Tate pairing on
supersingular curves to construct a symmetric pairing

e : E[r](Fp)× E[r](Fp)→ µr ⊆ F∗pk ,

s.t. e(P, P ) 6= 1.
I Supersingular elliptic curves have k ≤ 6.
I Supersingular elliptic curves have distortion maps.
I A distortion map is an endomorphism φ of E for which
φ(P ) /∈ E(Fp). If E(Fpk) has no points of order r2 then

e(P, P ) := tr(P, φ(P )) 6= 1.



BLS signatures

Using pairings it is possible to define a signature scheme
with very short signatures.

I System parameters are the pairing

e : 〈P 〉 × 〈Q〉 → µr ⊆ F∗pk ,

points P ∈ E[r](Fp), Q ∈ E[r](Fpk) s.t. e(P,Q) 6= 1
and a hash function

H : {0, 1}∗ → E[r](Fp).



BLS signatures

I To sign messages, Tanja chooses a private key
xT ∈ Zr and publishes her public key QT = [xT ]Q.

I She signs the message M ∈ {0, 1}∗ by computing
H(M) ∈ E[r](Fp) and the signature

σ = [xT ]H(M).

I To verify, anyone may take QT and check if

e(σ,Q) = e(H(M), QT ).

I e(σ,Q) = e([xT ]H(M), Q) = e(H(M), [xT ]Q) =
e(H(M), QT ).



BLS signatures

I The signature σ is just one point in E[r](Fp), so can
be represented by 2 Fp-elements.

I Compare this to the signatures from Tanja’s 1st talk.
There the signature was (R, S), where

R = [k]P, S = ssm+ kH([k]P ) mod r.

I This is 1 element of size r larger.
I If we represent points in E(Fp) by their x-coordinate

only, this might be about half the size of the whole
signature.



The Tate pairing is a bit slow...



Reducing the loop length - variants of the
Tate pairing

It is possible to reduce the loop length in Miller’s algorithm
significantly and still get a pairing.

I Ate pairing:

ate : E[r](Fpk)× E[r](Fp) → µr ⊂ F∗pk ,

(Q,P ) 7→ fT,Q(P )
pk−1

r .

Here T = t− 1 where t is the trace of Frobenius, i.e.
the number of bits in T is about half that of r.



Reducing the loop length - variants of the
Tate pairing

I Twisted ate pairing: If E has a twist E ′ of degree d,
we get a pairing

eta : E[r](Fp)× E ′[r](Fpk/d) → µr ⊂ F∗pk ,

(P,Q′) 7→ fT e,P (φ(Q′))
pk−1

r .

We have T = t− 1 and T e ≡ ζm mod r, e = k/m,
m = gcd(k, d). φ : E ′[r](Fpk/d)→ E[r](Fpk).



Reducing the loop length - variants of the
Tate pairing

I There are other choices for the loop variable which
even give shorter loops depending on the type of
curves one is using.

I Shortest loops right now are of length 1/ϕ(k) times
the length of r. Corresponding pairings are called
optimal pairings.



For more information we refer to


